
Learning in Multidimensional Spaces — Neural Networks.
Matrix/Tensor Formulation

Andrew P Papliński
Monash University, Faculty of Information Technology

Technical Report

May 4, 2018

(This is a work in progress. Expect lots of small errors!)

Contents

1 Introduction 3
1.1 The scope of the report . 3
1.2 Generic problem formulation . 3
1.3 Classification of learning problems — modelling the data 5

2 Linear mapping 9
2.1 Linear Problem Specification . 9
2.2 Analytical solution . 10
2.3 Examples . 14

3 Fundamentals of Non-Linear mapping and learning algorithms 17
3.1 Gradient descent methods . 17
3.2 The Newton method . 19
3.3 The Gauss-Newton and Levenberg-Marquardt algorithms 20

4 More on non-linear learning algorithms 22
4.1 Why gradient-decent algorithms are slow . 22

4.1.1 Examples of error surfaces . 22
4.1.2 Illustration of sensitivity to a learning rate 24

4.2 Heuristic Improvements to the Back-Propagation Algorithm 24
4.2.1 The momentum term . 26
4.2.2 Adaptive learning rate . 26

4.3 Line search minimisation procedures . 28
4.4 Conjugate Gradient Algorithms . 29

1

Learning CONTENTS

4.5 The Adam learning/optimization algorithm . 31

5 Expectation Maximization Algorithm in Point Set Registration 32
5.1 Point Set Registration Fundamentals . 32
5.2 Expectation Maximization (EM) Algorithm . 34
5.3 Affine point set registration . 36
5.4 Rigid point set registration . 40
5.5 Nonrigid point set registration — Coherent Point Drift Algorithm 42

6 Structure of Neural Networks 44
6.1 Biological Foundations of Neural Networks . 44
6.2 A simplistic model of a biological neuron . 46
6.3 Models of artificial neurons . 48
6.4 Types of activation functions . 50
6.5 A layer of neurons . 53
6.6 Feedforward Multilayer aka Deep Neural Networks 55
6.7 Two-layer neural network . 55
6.8 Example of a function implemented by a two-layer nnet 58

7 Learning Algorithms for Feedforward/Deep Neural Networks 59
7.1 Fundamentals of Error-Correcting Learning Algorithms 59
7.2 Backpropagation of Errors in Two-layer nnets 61

7.2.1 The Last (output) Layer . 61
7.2.2 The Hidden Layer . 62
7.2.3 Summary of learning in two-layer nnet 64

7.3 Pattern and batch learning . 64
7.4 (Simple) example of function approximation . 66
7.5 Learning in deep neural networks . 70

8 Softmax Classifier 71
8.1 A linear Softmax classifier example . 73
8.2 A two-layer Softmax classifier spiral data example 76
8.3 The MNIST example: Hand-written digits classification 79

9 Convolutional Neural Networks 81
9.1 Preliminary considerations . 81
9.2 Convolution fundamentals . 82

9.2.1 Numerical example . 85
9.2.2 The proof . 86

9.3 A basic building block of a convolution Layer 87

A.P. Papliński 2

Learning 1 INTRODUCTION

1 Introduction

1.1 The scope of the report

This material in this report is considered to be well-known. The original sources can be traced
through, e.g., https://en.wikipedia.org. If you use this Report, please refer to is as: title,
author, Monash University, FIT Technical Report date, url.

The material is aimed at graduate students working in problems related to learning. As the
foundation concepts we will be operating with points and vectors in multidimensional spaces.
For this we will use knowledge from the linear algebra and multivariate calculus.
Learning and mapping sets of points between multidimensional spaces is a common problem
considered in many areas, for example:

• Machine learning as in multilayer neural networks, deep learning in particular,

• Multivariate linear and non-linear regression in statistics,

• Linear and non-linear control systems and signal processing,

• Procrustes analysis in statistics and computer vision,

• Point Set Registration

• Active Shape and Active Appearance Models in 2D and 3D computer vision.

The list can be made as long as we wish.

The background knowledge for the first part includes linear algebra and multivariable
calculus. In particular the essential concepts from linear algebra include: points and related
vectors in multidimensional spaces, inner (dot) products of two vectors, matrices. From the
calculus we need a concept of a “scalar” function of a vector, partial derivatives and gradients.

1.2 Generic problem formulation

We start with formulation of a problem generic, in particular, to supervised learning and
equivalent concepts.
Given data as:

• N points/vectors xn of dimensionality D

• N points/vectors yn of dimensionality Dy

Data points xn and yn are typically organized in matrices X and Y , one vector per
column, of dimensions D ×N and Dy ×N , respectively:

X =
[

x1 · · · xn · · · xN
]

and Y =
[

y1 · · · yn · · · yN
]

(1.1)

Note that, by convention, a D-dimensional vector x is represented by a D × 1 matrix
(column vector). Transposing x, we get a row-vector xT (a 1×D matrix).

A.P. Papliński 3

https://en.wikipedia.org

Learning 1 INTRODUCTION

Find:

• parameters w of a non-linear, in general, parametric function:

Z = F (X; w) such that Z ≈ Y (1.2)

Note that the size of the matrix Z is the same as the matrix Y , namely Dy × N . The
function F (.) can be implemented by a neural network as explained in the subsequent
sections.

In sec. 5, we will consider a slightly diffrent case in which the numbers of points X and Z is
different than number of target points Y . That will make considerations a bit more difficult.
For now, we consider the case as specified above, that is, the number of points X, Z, and Y
are the same, and equal to N .
The function F (·) is typically interpreted on a point-by-point basis as

zn = F (xn; w) (1.3)

Typically, the points zn approximate the points yn wrt some measure, the simplest being a
function of errors zn − yn. It means that there is a function, often called a loss function,
measuring the total approximation error, and the idea is to find the optimal vector of param-
eters w that minimises this function of errors. We can see, that this can be considered as a
optimization problem.
More precisely, we can specify:

• The point error:

en = zn − yn (1.4)

Note that each point-error en is an Dy-dimensional vector.

• In the most common case of the Least Mean Square (LMS) approximation, the total error
function E(w) is the sum of all squared errors:

E(w) =
1

2

N∑
n=1

||en||2 =
1

2

N∑
n=1

eTn · en =
N∑
n=1

En(w) ; where En(w) =
1

2
eTn · en (1.5)

Note that E(w) and the point error function En(w) are scalar functions of a vector parameter,
that is, multivariate or multivariable functions. Note also that we use an inner product of
the error vector to find the square of its length (norm):

||en||2 = eTn · en

A.P. Papliński 4

Learning 1 INTRODUCTION

We could divide E(w) by the total number of pointsN to have a mean square error. However,
since we are looking for the parameter w for which the error function E(w) attains minimum,
multiplication by a constant does not change anything.

Finally, it is not uncommon to weight individual errors with known parameters, using M ×M
fixed matrix Q in the following way:

E(w) =
N∑
n=1

En(w) ; where En(w) =
1

2
eTn ·Q · en (1.6)

1.3 Classification of learning problems — modelling the data

[You can skip this section in your first reading]

Given the data points we try to model them looking at the following generic possibilities:

Supervised Learning:

Given a set of data points as in eqn.(1.1) find an approximating parameterized function as in
eqn.(1.2). Fig. 1–1 shows collection of 1-D points , {x, y} and z = F (x).

0 5 10 15 20

x

0

0.5

1

y,
 z

Function approximation

Figure 1–1: The data points y (circles) are approximated by a function z = F (x) (continuous
line)

In a more general way, let us consider the following mapping, f(X), from a D-dimensional
domain X into an M -dimensional output space Y as in Fig. 1–2
A function:

f : X → Y , or y = f(x) ; x ∈ X ⊂ RD , y ∈ Y ⊂ RM

is assumed to be unknown, but it is specified by a set of learning examples, {X;Y }, that is,
the set of expected input-output pairs.
In particular, in classification problem, the output signals, y, represent labels of the classes the
input signals x belong to.

A.P. Papliński 5

Learning 1 INTRODUCTION

R D

F(W, X)

Y

Y^t

X

f(X) R
m

unknown function

neural network

Figure 1–2: Mapping from a D-dimensional domain into an M -dimensional output space

The unknown function f is approximated by a fixed, parameterised function F :

F : RD ×RM → Rm , or z = F (W,x); x ∈ RD, z ∈ Rm, W ∈ RM

where W here is a total set of M parameters, arranged into appropriate weight matrices.
The function F is often implemented as a multi-layer neural network that we will discuss in
the subsequent sections.
Approximation of the unknown function f is performed in such a way that during the super-
vised learning procedure some performance index, or the loss function L, a function of
the weight parameters W , the set of learning pairs X and Z,

L = L(X, Y, Z;W)

is minimised. A good candidate for a loss function is the error function of eqns (1.5, (1.6).
We will discuss details of the learning procedure in subsequent sections.

A.P. Papliński 6

Learning 1 INTRODUCTION

Unsupervised Clustering

In this case, the assumption is that data is organized in clusters of points in D-dimensional
space.

1

x
2

0.5

Clusters

0

0.2

x
1

0.4

0 0.2 0

x 3

0.4

0.6

0.6 0.8

0.8

1

1

Figure 1–3: Example of m = 8 clusters of datapoints in a D = 3-dimensional space

In the example we have M clusters and some number of points in each cluster. The dimen-
sionality od the data space in the example is D = 3. The unsupervised learning algorithm
should discover the centroids/means of the clusters marked in Fig. 1–3 with diamond shapes.
There are a number of clustering algorithms, the k-means algorithm (k = M) being the most
widely used.
The MATLAB code that generates Fig. 1–3 can be found in http://users.monash.edu/~app/

Lrn/Mtlb

Supervised Clustering – Classification

In the case of classification, the clusters of data points have labels assigned to each cluster.
We can have clusters of images of cats, dogs, or any other objects. The algorithm, or related
neural network would have an output for each category of objects. Each output should produce
a probability of a given data point to belong to a specific class. In sec. 8 we consider a popular
Softmax Classifier.

A.P. Papliński 7

http://users.monash.edu/~app/Lrn/Mtlb
http://users.monash.edu/~app/Lrn/Mtlb

Learning 1 INTRODUCTION

Principal components analysis

Conceptually, the objective of the Principal Components Analysis is to analyze a shape of a
single-cluster data. The datapoints are encapsulated inside a hyper-ellipsoid and we need to
find out the directions, and lengths of all axes.

(from https://en.wikipedia.org/wiki/Principal_component_analysis)

Figure 1–4: Example of PCA in 2D

The example in Fig. 1–4 shows an ellipsoidal cloud of 2D points with the principal vectors.
The MATLAB code for a 3D case can be found in http://users.monash.edu/~app/Lrn/Mtlb

The related neural network that discovers the principal components of the datapoint implements
the generalized Hebbian learning.

A.P. Papliński 8

https://en.wikipedia.org/wiki/Principal_component_analysis)
http://users.monash.edu/~app/Lrn/Mtlb

Learning 2 LINEAR MAPPING

2 Linear mapping

At this point it is a good idea to make sure that you are familiar with the notation introduced
in sec. 1.2.

2.1 Linear Problem Specification

As a special case of eqn (1.2) we consider a linear mapping that can be defined in the following
way:

zn = A · xn + b = W · x̂n ; where W = [A b] and x̂n =

[
xn
1

]
(2.1)

The matrix of the unknown parameters W is composed of a Dy × D matrix A and an M -
dimensional vector b referred to as a bias vector, so that the dimension of the matrix W is
Dy × (D + 1). The vector xn is prepended with 1 to form an extended vector x̂n. In specific
applications eqn (2.1) can define, among many others:

• an affine transform,

• a rigid body transform. In this case b is the translation vector, and the matrix A = s ·R
includes the scaling factor s and the unitary rotation matrix such that RTR = I and
detR = 1.

• a linear part of a neural network layer. In this case W is a weight matrix and b part is
the bias. We will consider this case in greater detail in the subsequent sections.

The extended, or augmented vector x̂n is typically used in the homogenous coordinates and
its usage simplify the notation by incorporating the bias vector into a single the matrix of
parameters. Using this notation, eqn (2.1) can be generalized for all N points as:

Z = W · X̂ ; where X̂ =

[
X
1TN

]
(2.2)

where 1N is a vector of N ones. Note that we multiply the Dy × (D + 1)-dimensional matrix

of parameters W by the (D + 1)×N -dimensional matrix of extended points X̂, which results
in the Dy ×N -dimensional matrix of transformed points Z.

The point error function specified in eqn (1.5) can be now calculated as

2En(W) = eTn · en = (zn − yn)T · (zn − yn)

= (W · x̂n − yn)T · (W · x̂n − yn)

Multiplying it out gives

En(W) =
1

2
(x̂Tn ·W T ·W · x̂n − 2yTn ·W · x̂n + yTn · yn) (2.3)

A.P. Papliński 9

Learning 2 LINEAR MAPPING

Note that the point error function En(W) is a quadratic scalar function of the matrix W ,
that is a quadratic scalar function of all elements of the matrix W . The total error function
E(W) is a sum of all point error functions as in eqn (1.5). In the space of the weight parameter,
E(W) is a hyper-paraboloid.

2.2 Analytical solution

Before we proceed make sure that you are confident with the vector/matrix differentiation. As
a background reading you might like to refer to https://en.wikipedia.org/wiki/Matrix_

calculus, or any alternative source of infrrmation.

The plan is to form the quadratic error function E(W) of parameters W as in eqns (2.3) and
(1.5), calculate the derivative of E(W) wrt W and find the value of the parameters W for which
the derivative attains 0. For such a matrix W the error function E(W) attains minimum.
We start with the following expression for the derivative:

∂E(W)

∂W
=

N∑
n=1

∂En(W)

∂W
(2.4)

Trying to calculate
∂En(W)

∂W
, where En(W) is specified in egn (2.3), will unavoidably results in

multidimensional objects known as tensors, a matrix being a tensor of the order 2.
In order to avoid tensors, that is, multidimensional collections of numbers, and operate with
vectors and matrices only, it is convenient to have an operation of converting a matrix into a
vector. This is done by stacking the columns of a matrix into one “long” vector, so that we
can write:

w = vec(W) = ↓W (2.5)

In general, if W is an r×c matrix, then w is an (r×c)-dimensional vector. If you use MATLAB,
then the column-stacking operation is performed by w = W (:) .
The column-stacking of the Dy × (D + 1) matrix W results in the vector w of dimensionality:

Dw = Dy × (D + 1)

The error function E(W) will become E(w), that is, a scalar function of a vector argument
and the derivative of eqn (2.4) becomes the gradient of the error function wrt w:

∇wE(w) =
∂E(w)

∂w
=

N∑
n=1

∂En(w)

∂w
(2.6)

Eqn (2.6) states that the total gradient ∇wE(w) is a Dw-dimensional vector and that it can

be calculated as a sum of the point gradients
∂En(w)

∂w
. Recalling the rule of the derivative of

a quadratic function, the chain rule, and using eqns (1.5) and (1.4), we have

A.P. Papliński 10

https://en.wikipedia.org/wiki/Matrix_calculus
https://en.wikipedia.org/wiki/Matrix_calculus

Learning 2 LINEAR MAPPING

∂En(w)

∂w
=
∂eTn (w)

∂w
· en =

∂zTn (w)

∂w
· en = Jn(zn,w) · en = Jn(zn,w) · (zn − yn) (2.7)

where

J (z,w) =
∂zT (w)

∂w
=

∂z1
∂w1

· · · ∂zM
∂w1

... · · · ...
∂z1
∂wDw

· · · ∂zM
∂wDw

 (2.8)

is the Dw ×Dy Jacobian matrix of the first derivatives of zn wrt the vector of parameters w.
Note that for notational convenience, in eqn (2.8) the subscript n has been dropped. Since a
Jacobian is a derivative of a vector with respect to another vector, it is important to agree on
the order of writing derivatives. In our case the rows of the Jacobian follow the transposed
vector zT , whereas the columns are arranged in the order of the denominator vector w.
Combining eqns (2.6) and (2.7), and substituting eqn (2.1), the total gradient can be expressed
as:

∇wE(w) =
N∑
n=1

Jn(zn,w) · (W · x̂n − yn) (2.9)

Equating the gradient to zero, gives the equation for the optimal matrix of parameters W in
the form

N∑
n=1

Jn(zn,w) ·W · x̂n =
N∑
n=1

Jn(zn,w) · yn (2.10)

Note that temporarily, the parameters are in two forms: as a matrix W and the column-
stacked vector w. Since the gradient is Dw-dimensional, we can think about eqn (2.10) as a set
of Dw = Dy × (D + 1) scalar linear equations for the unknown parameters W .

The next task is to calculate the Jacobian matrix needed in eqn (2.10). One way of doing so is
to represent the matrix of parameters W as a collection of column vectors

W =
[

w1 w2 · · · wD+1

]
so that the vector w stacks all column vectors wi. We can now calculate zn of eqn (2.1) as a
block inner product as follows

zn = W · x̂n =
D+1∑
i=1

wi · xin (2.11)

where xin is the i-the component of the n-th point. Referring to eqn (2.2) note that all xD+1n =
1. Now, to find the Jacobian as in eqn (2.8), we differentiate zn of eqn (2.11) with respect to
all wi. For each i we calculate a block of the Jacobian matrix in the following way:

∂zTn
∂wi

= xin · IDy for i = 1 . . . D + 1

A.P. Papliński 11

Learning 2 LINEAR MAPPING

where IDy is the Dy × Dy identity matrix. Arranging the above derivatives into a complete
point Jacobian matrix we have:

Jn(zn,w) =
∂zTn
∂w

=

x1n · IDy

x2n · IDy

...
xDn · IDy

IDy

 = x̂n ⊗ IDy (2.12)

where ‘⊗’ denotes the Kronecker product. This is a really simple and elegant result. Each
Dy ×Dy block of the Jacobian, is a diagonal matrix containing a single component of the n-th
input vector, i.e., xin · IDy . The important aspect to notice is that the Jacobian is independent
of the parameters w = ↓W . This is not a surprise since the zn as in eqn (2.11) is a linear
function of the parameters W and the Jacobian consists of first derivatives of the parameters.

In order to transform eqn (2.10) for the unknown paramaters W into a more efficient form, we
have to calculate a product of a Jacobian and a vector. We start with the RHS of eqn (2.10)
and use the result (2.12):

Jn(zn,w) · yn = (x̂n ⊗ IDy) · yn (2.13)

Now we can use the following well known identity related to mixing ordinary matrix products
with the Kronecker products. It states that for appropriately sized matrices A,B,C,D, we
have:

(A⊗B) · (C ⊗D) = (A ·B)⊗ (C ·D) (2.14)

Using (2.14) we can transform (2.13) further as:

(x̂n ⊗ IDy) · yn = x̂n ⊗ yn (2.15)

We can now use another mathematical identity that states that a Kronecker product of two
vectors a,b of any dimensions can be replaced by a vectorised outer product of those vectors,
namely:

a⊗ b = ↓(b · aT) (2.16)

Note the the outer product b · aT is a Db ×Da matrix (of rank one), unlike the inner product
bT · a which is a scalar. Note also the change of order of a,b. Utilizing the identities (2.15)
and (2.16), we can further write eqn (2.13), which is the RHS of eqn (2.10), in the following
simple form:

Jn(zn,w) · yn =
∂zTn
∂w
· yn = ↓(yn · x̂Tn) (2.17)

This is an important result that states that in the linear case, when zn = W · x̂n the product of
the Jacobian matrix and a vector yn is equal to the vectorised outer product of yn and x̂n.
We will use this results in discussing neural networks

A.P. Papliński 12

Learning 2 LINEAR MAPPING

Similarly, the LHS of eqn (2.10) can be expressed as

Jn(zn,w) ·W · x̂n = ↓(W · x̂n · x̂Tn) (2.18)

Combining (2.18) and (2.17) we can write eqn (2.10) for the unknown parameters W in the
following form:

N∑
n=1

↓(W · x̂n · x̂Tn) =
N∑
n=1

↓(yn · x̂Tn) (2.19)

Finally after dropping vectorizing of matrices and dividing by N , we arrive at the following
simple equation for the unknown matrix of parameters W :

W · R̂ = Ĉ hence W = Ĉ · R̂−1 (2.20)

where

R̂ =
1

N

N∑
n=1

x̂n · x̂Tn =
1

N
X̂ · X̂T (2.21)

is the (extended) input auto-correlation matrix of size (D + 1)× (D + 1), and

Ĉ =
1

N

N∑
n=1

yn · x̂Tn =
1

N
Y · X̂T (2.22)

is the cross-correlation matrix of size Dy × (D + 1).

(Before we move further we might like to examine the difference between the correlation and
covariance matrices. We need to re-check which values we use here.)

Eqn (2.20) is one of the most famous results in the LMS optimization. In equivalent versions it
is known as the normal equation, the Wienner-Hopf equation and as a number of other
names used over its long history.

Note that:

• Eqn (2.20) is a linear matrix equation with the unknown matrix of parameters W . It
makes sense, since the original mapping as in eqn (2.1) is linear.

• The auto-correlation matrix R̂ is a symmetrical, positive definite matrix. This property
flows from the fact that the main diagonal consists of the squares of all xin. If N > D
and xn vectors are linearly independent, it will be a full rank matrix, i.e., invertible.

The extended auto-correlation matrix R̂ of eqn (2.21) can be further expressed as:

R̂ =
1

N

[
X
1TN

]
·
[
XT 1N

]
=

1

N

[
X ·XT X · 1N
1TN ·XT 1TN · 1N

]
=

[
R x̄
x̄T 1

]
(2.23)

where

A.P. Papliński 13

Learning 2 LINEAR MAPPING

R =
1

N
X ·XT ; x̄ =

1

N
X · 1N =

1

N

N∑
n=1

xn (2.24)

are the “proper” D×D auto-correlation matrix R, and the mean input vector x̄, respectively.
Similarly, the extended cross-correlation matrix (2.22) can be further expressed as:

Ĉ =
1

N
Y ·

[
XT 1N

]
=

1

N

[
Y ·XT Y · 1N

]
=
[
C ȳ

]
(2.25)

where

C =
1

N
Y ·XT ; ȳ =

1

N
Y · 1N =

1

N

N∑
n=1

yn (2.26)

are the “proper” Dy×D cross-correlation matrix C, and the mean desired vector ȳ, respectively.

2.3 Examples

Let us consider a rather demanding case of mapping 3D points located on some surface on a
2D shape, as illustrated in Fig. 2–1.

1413

25242627282930

151617181920212223
31

4849

1110
87
654

3
2150

3
49

50 33

47 46

32
42434445

3243344733312342

48

34

46

5
29

1 930
28

45
41

35

373635

12

38
394041

37

4012

36

15
0

10

2

4

8

A 3-D shape to be mapped onto a 2-D shape

6 10

2
4
6

27

84

26

6

98

2

2517181920212224
1011

4

7
39

4416

0

13

2
0-2

38
14

Figure 2–1: A set of 3D points to be mapped onto a set of 2D points

The MATLAB code can be found in http://users.monash.edu/~app/Lrn/Mtlb/Lin1.m
There are N = 50 points and the first 16 points X are as follows

A.P. Papliński 14

http://users.monash.edu/~app/Lrn/Mtlb/Lin1.m

Learning 2 LINEAR MAPPING

X(:,1:16) =

2.0 0.1 0.9 -0.4 0.8 -0.4 -1.1 0.3 0.3 0.3 0.3 0.1 0.1 -0.4 0.8 0.9

5.8 5.1 3.7 5.8 4.1 5.8 2.0 2.0 2.0 2.0 2.0 -1.1 -1.1 -1.8 -0.1 0.3

3.9 2.1 1.6 2.7 2.7 3.3 3.9 1.6 1.6 4.4 4.4 2.1 3.9 3.3 3.3 4.4

The points X are located on a 3D surface. The first 16 2D target points Y are as follows:

Y(:,1:16) =

3.8 3.9 4.3 4.8 5.3 5.5 5.9 6.2 7.0 7.8 8.2 8.8 9.3 9.7 10.0 10.2

6.9 7.2 7.7 8.4 8.6 8.9 9.5 9.9 10.2 10.3 10.1 9.8 9.5 9.3 8.6 8.1

Now, we are going to perform the linear mapping as in eqn (2.2), and the problem is to find
the matrix W that makes the points Z as close as possible to Y . We start with eqn (2.23) to

calculate the extended autocorrelation matrix R̂:

wNs = ones(1,N) ;

Xh = [X ; wNs] ;

Rh = Xh*Xh’/N ;

to get:

Rh = 1.86 2.14 3.20 1.09

2.14 8.19 5.95 1.98

3.20 5.95 10.39 2.99

1.09 1.98 2.99 1.00

You can compare this result with the structure presented in eqn (2.23). Subsequently, we

calculate the extended cross-correlation matrix Ĉ as in eqn (2.25)

Ch = Y*Xh’/N ;

to get:

Ch = 8.12 11.70 22.99 7.43

6.60 14.80 21.59 6.95

Finally, we can calculate the mapping matrix of parameters W as in eqn (2.20):

W = Ch/Rh % left division is used instead of an inverse

= 0.064 -0.711 0.542 7.149

-1.392 0.235 0.492 6.529

Finally we can map points X into points Z and compare with points Y :

Z = W*Xh;

mse = sum(sum((Z-Y).^2))/N ; % the mean square error

The results of mapping are illustrated in Fig. 2–2 The results of mapping do not look very
encouraging, with the mse = 2.78. This is an early warning that the linear mapping has an
obvious limitations. The linear operations involved translation, rotation, scaling and projection.
It is rather limited set to mould a 3D shape into a 2D shape accurately.

A.P. Papliński 15

Learning 2 LINEAR MAPPING

3 4 5 6 7 8 9 10 11
3

4

5

6

7

8

9

10

11
The desired shape Y and its approximation by Z

mse = 2.78

Y
Z

Figure 2–2: The result of a linear mapping from a 3D shape into a 2D shape

A.P. Papliński 16

Learning3 FUNDAMENTALS OF NON-LINEAR MAPPING AND LEARNING ALGORITHMS

3 Fundamentals of Non-Linear mapping and learning al-

gorithms

Optimization or minimisation of a function of many variables (multi-variable function), L(w),
has been researched since the XVII century and its principles were formulated by such mathe-
maticians as Kepler, Fermat, Newton, Leibnitz, Gauss.

We start again with the problem formulation as in section 1.2. Go back and inspect eqns (1.1)
to (1.5). This time, since the function

zn = F (xn; w)

is nonlinear in parameters w, the analytical solution to find an optimal vector of parameters
that minimises the error function E(w) of eqn (1.5) most likely does not exists, since each
individual point error contains the nonlinearity:

en = F (xn; w)− xn (3.1)

Therefore, the idea is to arrive at the optimal w iteratively. We start with an initial value of
w and then, at each step we calculate an increment ∆w such that

E(w + ∆w) < E(w) ; w← w + ∆w (3.2)

The iteration is repeated until the error function is satisfactory small.

In order to find a “good” value of the parameter increment ∆w, we expand E(w + ∆w) into
the Taylor power series:

E(w + ∆w) = E(w) + (∇E(w))T ·∆w +O(||∆w||2) (3.3)

where the gradient ∇E(w) can be calculated as a sum of point gradients ∇En(w) as in eqns
(2.6) and (2.7). For convenience we re-state that:

∇En(w) =
∂eTn (w)

∂w
· en = Jn(en,w) · en , where Jn =

∂eTn
∂w

=
∂zTn
∂w

= Jn(zn,w) (3.4)

For the future reference let us also re-state that the error function E(w) and its point compo-
nents En(w) are scalar functions of a vector argument, w. The vector w and its increment ∆w
are Dw-dimensional vectors. A scalar function of a vector argument is also called a multivariable
(or multivariate) function.

3.1 Gradient descent methods

The simplest non-linear optimization method known as the steepest or gradient descent is
based on the observation that in order to reduce the error as in eqn (3.2), the inner product of
the gradient and the increment vector in eqn (3.3) must be negative:

A.P. Papliński 17

Learning3 FUNDAMENTALS OF NON-LINEAR MAPPING AND LEARNING ALGORITHMS

(∇E)T ·∆w < 0

that is, the two vectors should point in the opposite direction, or more precisely, the angle
between (∇E) and ∆w should be larger than 90o. Hence, in the steepest decent method of
selecting the parameter increment vector we have:

∆w = −η∇E(w) (3.5)

where η is a small positive constant that controls the rate of descent.
Demonstration of the gradient decent method in the simple case of one only scalar parameter
w is shown in Fig. 3–1. In the equivalent linear case E(w) would be a parabola. The shape of

dE

dw

dE

dw

0 w

minE

w(n+1) w(n)

γ

E(w)

o

w = −∆

w

Figure 3–1: Demonstration of a gradient decent concept in the single w case

E(w) in Fig. 3–1 is similar in that that it has one only minimum for which
dE

dw
= 0. We can

see that in order to find the optimal value of wo for which E(wo) attains minimum we modify

w(n+ 1) = w(n) + ∆w, where ∆w = −ηdE
dw

, as in eqn (3.5).

Note that in multidimensional nonlinear case the error function creates a complex landscape
with potentially many local minima for which∇E(w) = 0. This is a nontrivial problem without
a single simple solution.

Using the gradient decent, optimization rule results in a rather slow optimization procedure,
therefore, a number of improvements have been developed, some of which are presented in the
subsequent sections.

A.P. Papliński 18

Learning3 FUNDAMENTALS OF NON-LINEAR MAPPING AND LEARNING ALGORITHMS

3.2 The Newton method

The gradient descent methods use only information from the first derivatives, i.e., the gradient.
Using second derivatives will take better into account the shape of the error function, hence,
possibly speed up the iteration process.

We calculate the gradient of the Taylor expansion of eqn (3.3) neglecting the higher order terms
O(||∆w||2). This gives:

∇E(w + ∆w) = ∇E(w) +∇2E(w) ·∆w (3.6)

where ∇2E(w) is the Dw ×Dw matrix of second derivatives known as the Hessian matrix:

∇2E(w) = HE(w) =
∂2E

∂wi∂wj

∂2E
∂w2

1
· · · ∂2E

∂w1∂wDw
∂2E

∂wj∂wi

...
. . .

...
∂2E

∂wi∂wj

∂2E
∂wDw∂w1

· · · ∂2E
∂w2

Dw

=
∂ ∇TE(w)

∂w
(3.7)

Note that the Hessian matrix can be expressed as a derivative of the (transposed) gradient wrt
the parameter vector w.
Since the second partial derivative is independent of the order of differentiation:

∂2E

∂wi∂wj
=

∂2E

∂wj∂wi

The Hessian matrix is symmetrical: (HE(w))
T = HE(w)

In order to find the minimum of the error function we equate the gradient ∇E(w + ∆w) of eqn
(3.6) to zero. It gives the following equation for the increment ∆w:

∇E(w) +HE(w) ·∆w = 0

Hence, the resulting Newton method states that:

∆w = −(HE(w))
−1 · ∇E(w) (3.8)

Comparing with the gradient descent rule (3.5), this time the opposite-to-gradient direction is
modified by the inverse of the Hessian matrix.

A.P. Papliński 19

Learning3 FUNDAMENTALS OF NON-LINEAR MAPPING AND LEARNING ALGORITHMS

3.3 The Gauss-Newton and Levenberg-Marquardt algorithms

In these two algorithms, the Hessian matrix is approximated by the Jacobian matrix.
Note that the total Hessian matrix can be calculated as a sum of the point Hessian matrices as
follows:

HE =
N∑
n=1

HEn

where

HEn =
∂ ∇TEn
∂w

=
∂

∂w
(Jn · en)T =

∂

∂w
(eTn ·

∂en
∂wT

) =
∂eTn
∂w
· ∂en
∂wT

+ eTn ·
∂2en
∂w2

Now, we have:

HEn = Jn · J T
n + eTn · Hen ≈ Jn · J T

n (3.9)

assuming that the errors ||en|| are small.

Using the above approximation of the Hessian matrix we arrive at a Gauss-Newton iterative
method:

∆w = −(
N∑
n=1

Jn · J T
n)−1 ·

N∑
n=1

Jn · en (3.10)

It is possible to replace summations in eqn (3.10) by arranging all point Jacobians in a block
Jacobian matrix of dimension Dw ×M ·N as follows:

Jε = [J1 . . .JN] (3.11)

Then the sum of products of Jacobians as in eqn (3.10) can be calculated as a product of the
block-Jacobians, namely:

N∑
n−1
Jn · J T

n = Jε · J T
ε (3.12)

Note that the dimension of the product is Dw ×Dw.

Similarly, to deal with the second summation in eqn (3.10), we start with stacking all N error
vectors en in one N ·M vector ε:

ε = ↓(Z − Y) = ↓ [e1 . . . eN] (3.13)

then the sum of products of Jacobians and error vectors of eqn (3.10) can be calculated as
follows:

N∑
n=1

Jn · en = Jε · ε (3.14)

A.P. Papliński 20

Learning3 FUNDAMENTALS OF NON-LINEAR MAPPING AND LEARNING ALGORITHMS

Note that the dimension of the product is Dw × 1.

Using the above notation the Gauss-Newton equation can be written in the following simple
form:

∆w = −(Jε · J T
ε)−1 · Jε · ε (3.15)

Note that the dimensionality of the ∆w and w vectors is Dw.

The Hessian matrix of second derivatives and its Jacobian approximation can become a non-
invertible (singular, non-full rank) matrix for some values of parameters. Recall that for the
single-variable function its second derivative is zero in the point of inflection, at which the curve
changes from being concave to convex, or vice versa.
In order to prevent the singularity of the Hessian matrix at inflection points/lines stopping
the iterations, in the Levenberg-Marquardt algorithm a small constant µ is added to the
diagonal of the matrix to be inverted. This results in the following expression for the increment
of the parameter vector:

∆w = −(Jε · J T
ε + µI)−1 · Jε · ε (3.16)

A.P. Papliński 21

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

4 More on non-linear learning algorithms

This section is a conceptual continuation of sec. 3. Neural networks are the most popular and
well-studied example of a non-linear mapping and related learning or optimization procedures.

4.1 Why gradient-decent algorithms are slow

• The basic pattern-based back-propagation learning law is a gradient-descent algorithm
based on the estimation of the gradient of the instantaneous sum-squared error for each
layer:

∆W (n) = −η · ∇WE(n) = η · δ(n) · xT (n) (4.1)

Such an algorithm is slow for a few reasons:

• It uses an instantaneous sum-squared error E(W,n) to minimise the mean squared error,
L(W), over the training epoch.

• The gradient of the instantaneous sum-squared error is not a good estimate of the gradient
of the mean squared error.

• Therefore, satisfactory minimisation of this error typically requires many repetitions of
the training epochs.

• It is a first-order minimisation algorithm which is based on the first-order derivatives (a
gradient). Faster algorithms utilise also the second derivatives (the Hessian matrix) as
discussed in sec. 3.

• The error back propagation, which is conceptually very interesting, serialises computa-
tions on the layer by layer basis.

A general problem is that the mean squared error, L(W), is a relatively complex surface in
the weight space, possibly with many local minima, flat sections, narrow irregular valleys, and
saddle points, therefore, it is difficult to navigate directly to its minimum.

4.1.1 Examples of error surfaces

Consider an example of a function of two weights, L(w1, w2) representing a possible mean-
squared error or a Loss function. In Figure 4–1 the surface plot and the contour map are
shown.
In the plots note that the loss function has the local and global minima, and a saddle point.
Depending on initialisation, during learning we might end up either inn a local or global mini-
mum. Complexity of the error surface is the main reason that behaviour of a simple gradient
descend minimisation algorithm can be very complex often with oscillations around a local
minimum.

A.P. Papliński 22

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

local minimum0 saddle
2

4

global minimum1 2

8

10

12

0
w

2
-1 -1

-2
w

1-2

A 2-D error surface: L(w
1
, w

2
)

-2 -1 0 1 2
-2

-1

0

1

2

Figure 4–1: An example of a Loss function of two weights

In order to gain more insight into the shape of the error surfaces let us consider a simple
two-layer network approximating a single-variable function similar to that considered in sec.
6.8.

y

h1

h2

w1

w2

w3

w11

w22w21

w12

W h

σ

σ

+1

y
σ

x +1

w

z(n) = σ(wy·

 σ(W h ·
[
x(n)

1

]
)

1

)

If, for example, the weights are as follows:

W h =

[
1 −2

0.5 −5

]
and wy =

[
2 −1 1

]
then, the network approximate the following function:

A.P. Papliński 23

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

-2 0 2 4 6 8 10 12 14 16

x

0

1

2

3

4

y,
 z

An approximated function

Wh =
 1 -2
0.5 -5

wy = 2 -1 1

In order to obtain the error surface, we will vary parameters w = [W h wy] and calculate
L(w) for the selected inputs X. The error function L(w) depends on 4+3 parameters and is an
8-dimensional object, hence difficult to visualise. Therefore we will vary only a pair of selected
weights at a time. The resulting surfaces of the loss function are shown in Figure 4–2.
Note that the surfaces are very far away from and ideal second order paraboloidal shapes. Note
also that finding the minimum of such complex function is very sensitive to the initial position,
learning rate and the direction of movement.

4.1.2 Illustration of sensitivity to a learning rate

(Figures 9.1, 9.2, 9.3, 12.6, 12.7 12.8 from: M.T. Hagan, H. Demuth, M. Beale, Neural Network Design,

PWS Publishing, 1996)

For a linear network, aka Adaline, when the error surface is paraboloidal, the maximum stable
learning rate can be can be shown to be inversely proportional to the largest eigenvalue of the
input correlation matrix, R.
As an illustration we consider the case when ηmx = 0.04 and observe the learning trajectory on
the error surface for a linear case as in Figure 4–3.
In the case of the nonlinear neural network, with the loss surfaces as illustrated in Figure 4–
2, learning trajectories are even more complex. In Figure 4–4 there are examples of possible
learning trajectories in for the gradient descent backpropagation algorithm in the batch mode.

4.2 Heuristic Improvements to the Back-Propagation Algorithm

As discussed sec. 3, the significant improvement to the learning speed can be achieved by
replacing the gradient decent algorithm by the second order algorithms using second derivatives

A.P. Papliński 24

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

−10

0

10
−10

0

10

0

0.5

1

wy
1

Wh
1 1

J

−10

0

10
−10

0

10

0

0.5

1

wy
2

Wh
1 1

J
−10

0

10
−10

0

10

0

0.5

1

wy
3

Wh
1 1

J

−10

0

10
−10

0

10

0

0.5

1

wy
1

Wh
1 2

J

−20

0

20
−10

0

10

0.4

0.6

0.8

1

wy
2

Wh
1 2

J

−10

0

10
−10

0

10

0

0.5

1

wy
3

Wh
1 2

J

−10

0

10
−10

0

10

0

0.5

1

wy
1

Wh
2 1

J

−10

0

10
−10

0

10

0

0.5

1

wy
2

Wh
2 1

J

−10

0

10
−10

0

10

0

0.5

1

wy
3

Wh
2 1

J

−10

0

10
−10

0

10

0

0.5

1

wy
1

Wh
2 2

J

−10

0

10
−10

0

10

0

0.5

1

wy
2

Wh
2 2

J

−10

0

10
−10

0

10

0

0.5

1

wy
3

Wh
2 2

J

Figure 4–2: Projections of a loss function of seven parameters on the 2-dimensional space.

η = 0.01 η = 0.035 η = 0.039 η = 0.041

Figure 4–3: Example of learning trajectories for various learning rate for a linear network

of the loss function.
As the calculation of the Hessian matric of second derivatives is typically computationally
demanding, in this section, we will consider heuristic group o methods aiming at improvement
of the learning speed of the basic gradient decent algorithm without using the second derivatives.
These methods do not directly address the inherent weaknesses of the back-propagation algo-
rithm, but aim at improvement of the behaviour of the algorithm by making modifications to
its form or parameters.

A.P. Papliński 25

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

Plots on the right shows the error versus the iteration number.

Trajectory for the learning rate too large

Figure 4–4: Example of learning trajectories for the gradient descent backpropagation algorithm
in the batch mode

4.2.1 The momentum term

One of the simple method to avoid an error trajectory in the weight space being oscillatory
is to add to the weight update a momentum term. Such a term is proportional to the weight
update at the previous step.

∆W (n) = η · δ(n) · xT (n) + α ·∆W (n− 1) , 0 < α < 1 (4.2)

where α is a momentum term parameter.
Such modification to the steepest descend learning law acts as a low-pass filter smoothing the
error trajectory as shown in Figure 4–5. As a result it is possible to apply higher learning rate,
η.

4.2.2 Adaptive learning rate

One of the ways of increasing the convergence speed, that is, to move faster downhill to the
minimum of the mean-squared error, J(W), is to vary adaptively the learning rate parameter,
η. A related example is shown in Figure 4–6.
A typical strategy is based on monitoring the rate of change of the mean-squared error and can
be described as follows.

A.P. Papliński 26

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

Figure 4–5: Example of learning trajectories with momentum term

Figure 4–6: Example of learning trajectories with adaptive learning rate

If L is decreasing consistently, that is, ∇L is negative for a prescribed number of steps, then
the learning rate is increased linearly:

η(n+ 1) = η(n) + a , a > 0 (4.3)

If the error has increased, (∇L > 0), the learning rate is exponentially reduced.

η(n+ 1) = b · η(n) , 0 < b < 1 (4.4)

The rational behind the exponential reduction of the value of the learning rate is that, in
general, increasing the value of the learning rate the learning tends to become unstable which
is indicated be an increase in the value of the error function. Therefore it is important to
quickly reduce η.

A.P. Papliński 27

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

4.3 Line search minimisation procedures

Another approach is to try to find an optimal learning rate η that minimizes the loss function
wrt to η. This is equivalent to the line search optimization procedure.
Gradient descent minimization procedures are based on updating the weight vector

w(n+1) = w(n) + η p(n) (4.5)

where the vector p(n) describes the direction of modification of the weight vector. The vector
p is typically equal to the negative gradient of the error function

�
�
�
�
�
�
�
��

���

��:
���

���
��

s

s s

0

w
w(n+1)

η p

p(n) = −g(n) , where g(n) = ∇L(w(n))

Note that the next value of weight vector, w(n+ 1), is obtained from the current value of
weight vector, w, by moving it along the direction of a vector, p. We can now find an optimal
value of η for which the loss function

L(w(n+1)) = L(w(n) + η p) (4.6)

is minimised. The optimal η is typically found through a search procedure along the direction
p as illustrated above.
The next step is to calculate the partial derivative of L with respect to η:

∂L(w(n+1))

∂η
=
∂L(w(n+1))

∂w(n+1)

∂w(n+1)

∂η
=
∂L(w(n+1))

∂w(n+1)
η pT = η∇L(w(n+1)) · pT (4.7)

For the optimal value of η, this derivative needs to be zero and we have the following rela-
tionship

∇L(w(n+1)) · pT = 0 (4.8)

and consequently

g(n+1) · pT = 0 (4.9)

It states, unexpectedly, that for the optimal value of η, the next estimate of the gradient,
g(n+1) = ∇L(w(n+1)), is to be orthogonal to the current search direction, p.
This means, in particular, that if we combine the line minimisation technique with the
gradient descent algorithm when we move in the direction opposite to the gradient, p = −g,

A.P. Papliński 28

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

then we will be descending along the zig-zag line, each segment being orthogonal to the next
one as illustrated in the following Figure.

In order to smooth the descend direction, the basic line minimization method is replaced with
the conjugate gradient algorithms.

4.4 Conjugate Gradient Algorithms

The conjugate gradient algorithms also involved the line optimisation with respect to η, but
in order to avoid the zig-zag movement through the error surface, the next search direction,
p(n+1), instead of being exactly orthogonal to the gradient, tries to maintain the current
search direction, p(n), namely

p(n+ 1) = −g(n) + β(n)p(n) (4.10)

where scalar β(n) is selected in such a way that the directions p(n + 1) and p(n) are
conjugate with respect to the Hessian matrix, ∇2L(w) = H (the matrix of all second
derivatives of J), that is,

p(n+ 1) ·H · pT (n) = 0 (4.11)

In practice, the Hessian matrix is not being calculated and the following three approximate
choices of β(n) are the most commonly used

• Hestenes-Steifel formula

β(n) =
(g(n)− g(n− 1)) · gT (n)

(g(n)− g(n− 1)) · pT (n− 1)
(4.12)

• Fletcher-Reeves formula

β(n) =
g(n) · gT (n)

g(n− 1) · gT (n− 1)
(4.13)

A.P. Papliński 29

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

• Polak-Ribiére formula

β(n) =
(g(n)− g(n− 1)) · gT (n)

g(n− 1) · gT (n− 1)
(4.14)

In summary, the conjugate gradient algorithm involves:

• initial search direction, p(0) = −g(0),

• line minimisation with respect of η,

• calculation of the next search direction as in eqn (4.10),

• β from one of the above formulae.

A.P. Papliński 30

Learning 4 MORE ON NON-LINEAR LEARNING ALGORITHMS

4.5 The Adam learning/optimization algorithm

Refer to the original paper: Diederik P. Kingma and Jimmy Lei Ba, Adam: A Method for
Stochastic Optimization, ICLR 2015 (arXiv:1412.6980v9 [cs.LG] 30 Jan 2017)
quote from the above:

Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are α = 0.001,
β1 = 0.9, β2 = 0.999 and ε = 10−8. All operations on vectors are element-wise. With βt1 and βt2
we denote β1 and β2 to the power t.
Require: α: Stepsize
Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates
Require: f(θ): Stochastic objective function with parameters θ
Require: θ0: Initial parameter vector
m0 0 (Initialize 1st moment vector)
v0 0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while θt not converged do
t t+ 1
gt ∇θft(θt−1) (Get gradients w.r.t. stochastic objective at timestep t)
mt ← β1 ·mt−1 + (1− β1) · gt (Update biased first moment estimate)
vt β2 · vt−1 + (1− β2) · g2t (Update biased second raw moment estimate)
m̂t mt/(1− βt1) (Compute bias-corrected first moment estimate)
v̂t vt/(1− βt2) (Compute bias-corrected second raw moment estimate)
θt θt−1 − α · m̂t/(

√
v̂t + ε) (Update parameters)

end while
return θt (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(θ) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters θ. We are in-
terested in minimizing the expected value of this function, E[f(θ)] w.r.t. its parameters θ. With
f1(θ), ..., , fT (θ) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = ∇θft(θ) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t θ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the βs are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates m̂t and v̂t. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
αt = α ·

√
1− βt2/(1− βt1) and θt ← θt−1 − αt ·mt/(

√
vt + ε̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ε = 0, the
effective step taken in parameter space at timestep t is ∆t = α · m̂t/

√
v̂t. The effective stepsize has

two upper bounds: |∆t| ≤ α · (1 − β1)/
√

1− β2 in the case (1 − β1) >
√

1− β2, and |∆t| ≤ α

2

A.P. Papliński 31

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

5 Expectation Maximization Algorithm in Point Set Reg-

istration

In previous sections we have performed optimization by reducing errors. In this section, we
present an alternative approach, often referred to as a Bayesian approach, in which we maximize
expectations rather than minimize errors.
In particular, in this section we study some popular concepts from the non-linear mapping area.
In particular, we investigate

• Gaussian Mixture Models (GMMs)

• Expectation Maximization (EM) Algorithm

• Affine and Rigid Point Set Registration

• Coherent Point Drift Algorithm

We will generalize the generic mapping problem formulation as described in sec. 1.2, to the
case when the number of points in the sets X and Y are different. Therefore, we cannot use
the errors as in eqn (1.4), instead of we need the probabilistic re-formulation of the mapping
problem. We consider details of point set registration following formulation closely similar
to that presented in the paper: Andriy Myronenko and Xubo Song, Point Set Registration:
Coherent Point Drift. IEEE Tran. PAMI, 32(12), 2010.

5.1 Point Set Registration Fundamentals

We have to map (or register) N points X to N points Z that are as close as possible to M
points Y . Unlike in sec. 1.2, all points have dimensionality D. Modifying notation from sec.
1.2 we define:

X =
[

x1 · · ·xn · · ·xN
] F

=⇒ Z =
[

z1 · · · zn · · · zN
]
≈ Y =

[
y1 · · ·ym · · ·yM

]
(5.1)

and the parameterize mapping:

zn = F (xn; w) or Z = F (X; w) such that Z ≈ Y (5.2)

that is, the original point set, X, is mapped into the aligned point set, Z, that approximates
the target point set Y . We illustrate the arrangement for D = 2 in Fig. 5–1
In addition to finding parameters w of the mapping F , we have to find the correspondence
between pointsX and Y since their numbers are different. To solve the correspondence problem,
we create a Gaussian Mixture Model (GMM) that generates points ym given points zn as the
centroids of the GMM. The GMM probability density function is defined as:

p(ym) =
N+1∑
n=1

P (n)p(ym|n) (5.3)

A.P. Papliński 32

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

o

o

X

Z Y

o o
o

o

o
o o

o

o

o o
o

o

o

o
o

o

o

N
 points

N
 p

o
in

ts

M
 p

o
in

ts

+ +
+

+
+
+

+
+

+
+

+
+

+

==>
F

Figure 5–1: Illustration of mapping/registration of 2D points X and Y using function F as in
eqn (5.2)

for n = 1, . . . , N
we use Gaussian distributions centered around zn and with equal isotropic covariances σ2

p(ym|n) =
1

(2πσ2)D/2
exp(−||ym − zn||2

2σ2
) =

1

(2πσ2)D/2
exp(−hnm

2σ2
) (5.4)

where hnm are the squares of Euclidian distances between points ym and zm:

hnm = ||ym − zn||2 = (zn − ym)T · (zn − ym) , H = {hnm}N×M (5.5)

and H is an N ×M matrix collecting all the squares of distances between points zn and
ym. Note that the all the differences zn−ym create a tensor (3-dimensional array) of the
size N ×M ×D.

We also assume equal membership probabilities

P (n) =
1

N
(5.6)

for n = N + 1
we have an additional uniform distribution to account for noise and outliers

p(ym|N + 1) =
1

M
(5.7)

For each ym, the uniform distribution contributes to the model with the weight 0 ≤ ω ≤ 1 so
that the complete mixture model of eqn (5.3) takes the following form:

p(ym) =
ω

M
+

1− ω
N

N∑
n=1

p(ym|n) (5.8)

where p(ym|n) are Gaussians as in eqn (5.4).
Now, the first task is to find the optimal parameters w of the mapping Z = F (X; w) and σ2 of
the distribution p(ym|n). We can do that by minimising the negative log-likelihood function:

A.P. Papliński 33

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

E(w, σ2) = −
M∑
m=1

log p(ym) = −
M∑
m=1

log
N+1∑
n=1

P (n)p(ym|n) (5.9)

The second task is to establish the correspondence between points zn (xn) and ym. We define
it as the posterior probability of the GMM centroids zn given the points ym, that is, as :

P (n|ym) =
P (n)p(ym|n)

p(ym)
(5.10)

5.2 Expectation Maximization (EM) Algorithm

Now, we use the Expectation Maximization (EM) algorithm in which, the problem of
minimisation of the function E(w, σ2) of eqn (5.9) is replaced by minimisation of the expectation
of the complete log-likelihood function, namely

Q = −
M∑
m=1

N+1∑
n=1

P (n|ym) log(P (n)p(ym|n)) (5.11)

Expanding the inner sum we get:

−
N∑
n=1

P (n|ym) log(P (n)p(ym|n))− P (N + 1|ym) log(P (N + 1)p(ym|N+1))

= −
N∑
n=1

P (n|ym) log

(
1− ω
N

1

(2πσ2)D/2
exp(−hnm

2σ2
)

)
− P (N+1|ym) log

(
ω

M

)

=
N∑
n=1

P (n|ym)

(
log

(
N

1− ω
(2πσ2)

D
2

)
+
hnm
2σ2

)

)
+ P (N+1|ym) log

(
ω

M

)

=
1

2σ2

N∑
n=1

P (n|ym) · hnm +
N∑
n=1

P (n|ym)

log
N(2π)

D
2

1− ω
+
D

2
log σ2

+ P (N+1|ym) log
(
ω

M

)
Before we put this result back into the final form of the objective function Q, we note that we
can ignore terms independent of w, hidden in dnm, and σ2. Also, we can collect the posterior
probabilities into an N ×M matrix P with entries:

pnm = P (n|ym) , P = {pnm}N×M (5.12)

With that the objective function of eqn (5.11) can be written in the form

Q(w, σ2) =
1

2σ2

M∑
m=1

N∑
n=1

pnmhnm +
p̄D

2
log σ2 (5.13)

where p̄ is the sum of all posterior probabilities

p̄ =
M∑
m=1

N∑
n=1

P (n|ym) = 1TN · P · 1M = 1TM · P T · 1N (5.14)

A.P. Papliński 34

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

Note that p̄ ≤ M and p̄ = M only if ω = 0. We denote by 1M a column vector of a M
ones. Such a vector of ones is convenient to describe summation and also replication of another
vector.

The posterior probabilities can be evaluated using eqn (5.10) as:

pnm = P (n|ym) =

1− ω
N

1

(2πσ2)D/2
exp(−hnm

2σ2
)

ω

M
+

1− ω
N

1

(2πσ2)D/2

N∑
k=1

exp(−hkm
2σ2

)

and can be re-written as:

pnm = P (n|ym) =
exp(−hnm

2σ2
)

c+
N∑
k=1

exp(−hkm
2σ2

)

(5.15)

where

c =
ω

1− ω
N

M
(2πσ2)

D
2 (5.16)

or, in a matrix form

P = E /r (c+ 1N · E) , E = exp(− H

2σ2
) (5.17)

where the matrix H is specified in eqn (5.5) and /r denotes division of a matrix by a row vector
on a row-by-row basis.

We are ready to consider minimization of the objective function (5.13) using the EM algorithm.
The algorithm consists of two steps:

E-step: In this step we calculate the posterior probabilities pnm for the current values of
parameters w and σ2 ,

M-step: In this step we assume that the posterior probabilities pnm are constant and minimise
the objective function wrt to “new” values of parameters w and σ2. Having pnm constant,
makes calculation of the gradient of the objective function Q(w, σ2) simpler.

The E and M steps are repeated until the convergence is attained.

We can start with calculation of the M-step-optimal value of the variance σ2 that minimizes the
objective function (5.13). Assuming as explained in the E-step that the posterior probabilities
are calculated for the old value of σ2, the objective function is reduced to the form:

Q =
α

2σ2
+
p̄D

2
log σ2 (5.18)

A.P. Papliński 35

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

where

α =
M∑
m=1

N∑
n=1

pnmhnm = tr(P ·HT) = tr(H · P T) (5.19)

where tr(M) is a sum of the diagonal elements of a square matrix M . You can refresh your
knowledge of the trace from:
https://en.wikipedia.org/wiki/Trace_(linear_algebra).

Calculating the derivative
∂Q

∂σ2
and equating it to zero, gives the optimal value of σ2

σ2 =
α

p̄D
(5.20)

Next we can calculate the optimal value of the parameters w. Without making any assumption
yet about the form of the mapping zn = F (xn), we can express the gradient of the objective
function wrt parameters w as (Note that you have scalar, vectors and matrices which enforces
specific order of multiplications. It might be useful to go back to sec. 2)

∂Q

∂w
=

1

2σ2

M∑
m=1

N∑
n=1

pnm
∂zTn
∂w

∂hnm
∂zn

Noting that hnm = (zn − ym)T · (zn − ym) we can write:

∂Q

∂w
=

1

σ2

M∑
m=1

N∑
n=1

(
pnm

∂zTn
∂w

(zn − ym)

)
(5.21)

5.3 Affine point set registration

Firstly, we consider the simplest case of the affine transformation, used to register points X
and Y . As in sec. 2, we have

zn = A · xn + b or Z = A ·X + b · 1TN (5.22)

It is now convenient to do optimization wrt the vector b. Hence, adopting eqn (5.21) the
gradient can be written as:

∂Q

∂b
=

1

σ2

M∑
m=1

N∑
n=1

pnm(zn − ym)

since
∂zTn
∂b

= ID

where ID is the D ×D identity matrix. Equating the gradient to zero gives:

M∑
m=1

N∑
n=1

znpnm =
N∑
n=1

M∑
m=1

ympnm

A.P. Papliński 36

https://en.wikipedia.org/wiki/Trace_(linear_algebra)

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

re-writing in a matrix form gives:

Z · P · 1M = Y · P T · 1N

or
Z · pc = Y · pr

where

pc = P · 1M and pr = P T · 1N (5.23)

are N × 1 and M × 1 vectors being sums of columns and rows of the matrix P , respectively.
Using eqn (5.22) gives the expression for the optimal value of the vector b in the current M-step
of the EM algorithm:

b · 1TN · P · 1M = Y · pr − A ·X · pc

or
b · p̄ = Y · pr − A ·X · pc

and finally

b = yr − A ·X · p̂c (5.24)

where p̄ is defined in eqn (5.14) and

p̂c = pc/p̄ , p̂r = pr/p̄ and yr = Y · p̂r (5.25)

Note that the D × 1 vector yc is a weighted sum of all vectors ym.
Now, we can eliminate the vector b from the mapping (5.22) to get:

Z = A ·X + yr · 1TN − A ·X · p̂c · 1TN

Re-arranging the terms, we get

Z = A ·X · (IN − p̂c · 1TN) + yr · 1TN

and finally

Z = A · X̂ + yr · 1TN or zn = A · x̂n + yr (5.26)

where

X̂ = {x̂n}D×N = X · (IN − p̂c · 1TN) (5.27)

Eqn (5.26) is modification of the original mapping given in eqn (5.22) after substitution of the
M-step optimal value of b. Now, we can continue calculation of the M-step optimal value of
the matrix A, starting with the gradient of eqn (5.21) knowing that

A.P. Papliński 37

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

w = vec(A) = ↓A (5.28)

Now, we can follow considerations of sec. 2.2 and, in particular, eqns (2.12) – (2.18) and expand
the eqn (5.21) in the following way:

∂zTn
∂w

(zn − ym) = (x̂n ⊗ ID) · (zn − ym) = x̂n ⊗ (zn − ym) = ↓((zn − ym) · x̂Tn)

Equating the gradient to zero results in the following set of linear equations for the matrix A:

M∑
m=1

N∑
n=1

pnm ↓
(
(A · x̂n + yr − ym) · x̂Tn

)
= 0

where x̂n are defined in eqn (5.27). Further we have

M∑
m=1

N∑
n=1

pnm ↓(A · x̂n · x̂Tn) =
M∑
m=1

N∑
n=1

pnm ↓(ŷm · x̂Tn)

where
ŷm = ym − yr = ym − Y · pr and Ŷ = Y · (IM − p̂r · 1TM) (5.29)

Dropping out the vectorization, we subsequently have:

A ·
M∑
m=1

N∑
n=1

pnm(x̂n · x̂Tn) =
M∑
m=1

N∑
n=1

pnm(ŷm · x̂Tn)

This can be written in a matrix form as

A · X̂ · dg(pc) · X̂T = Ŷ · P T · X̂T

or simply

A · R = C =⇒ A = C · R−1 (5.30)

where

R = X̂ · dg(pc) · X̂T and C = Ŷ · P T · X̂T (5.31)

are modified auto- and cross-correlation matrices, respectively. Both matrices are D ×D.
The R and C matrices can be further modified using eqns (5.27), (5.29), (5.25) and (5.23) in
the following way

R = X · PC ·XT and C = Y · P̂ T ·XT (5.32)

where

PC = γ · dg(pc) · γT , γ = IN −
1

p̄
pc · 1TN (5.33)

A.P. Papliński 38

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

and

P̂ T = (IM − p̂r · 1TM) · P T · (IN − 1N · p̂Tc)

= P T − P T · 1N · p̂Tc − p̂r · 1TM · P T + p̂r · 1TM · P T · 1N · p̂Tc
= P T − pr · p̂Tc − p̂r · p̂Tc + p̂r · p̄ · p̂Tc

Finally we have

P̂ T = P T − 1

p̄
pr · pTc (5.34)

In summary, the point set registration with en affine transform can be described as follows:

Initialization

• ω ∈ [0 . . . 1) — eqn (5.8)

• Z = X

• Calculate H — eqn (5.5) or (5.35)

• σ2 =
1

DNM
1TN ·H · 1M

Repeat until convergence (Q ≤ Qmin)

E-step

• Calculate H — eqn (5.5). In order to avoid a 3-D tensor induced by zn − ym, we
can calculate the matrix H in the following way:

H = −2 · ZT · Y +c dg(ZT · Z) +r dg(Y T · Y) (5.35)

where ZT · Y is an N ×M matrix, dg(ZT ·Z) and dg(Y T · Y) are N × 1 and 1×M
vectors that are added to all columns and vectors of the matrix ZT · Y , respectively

In MATLAB:

H = -2*Z’*Y + diag(Z’*Z) + diag(Y’*Y)’ ;

• Calculate E and P — eqn (5.17)

• Calculate p̄ — eqn (5.14), pc, p̂c,pr — eqns (5.23), (5.25)

• Calculate PC — eqn (5.33) and P̂ T — eqn (5.34)

M-step

• Calculate R, C — eqn (5.32) and A — eqn (5.30)

• Calculate b — eqns (5.24) , (5.25)

• Calculate the aligned point set, Z — eqns (5.26) , (5.27) or eqn (5.22)

• Calculate the objective function, Q — eqns (5.18) , (5.19)

A.P. Papliński 39

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

5.4 Rigid point set registration

A rigid body transformation is similar to the affine transform of eqn (5.22) with the following
restrictions:

A = sR , RT ·R = ID , det(R) = +1 (5.36)

where s is a scaling factor, R is a rotation matrix. A rotation matrix is an orthogonal matrix
with the determinant equal to 1. the vector b of eqn (5.22) in now a translation vector.
Following consideration of the previous section, the M-step optimal translation vector b can be
calculated as in eqn (5.24). To calculate the optimal value of the rotation matrix R given the
conditions as in eqn (5.36) we first modify the objective function (5.13) by substituting (5.26).
Ignoring terms independent of A, or R, we have:

Q̄ =
M∑
m=1

N∑
n=1

pnm(zn − ym)T · (zn − ym) =
M∑
m=1

N∑
n=1

pnm(A · x̂n − ŷm)T · (A · x̂n − ŷm)

where x̂n and ŷm are defined in eqns (5.27) and (5.29), respectively. Subsequently, we have:

Q̄ =
M∑
m=1

N∑
n=1

pnm(x̂Tn · AT · A · x̂n − 2ŷTm · A · x̂n + ŷTm · ŷm)

From eqn (5.36) we note that AT · A = s2 ID, hence we further have:

Q̄ =
M∑
m=1

N∑
n=1

pnm(s2 x̂Tn · x̂n − 2sŷTm ·R · x̂n + ŷTm · ŷm) (5.37)

Using the concept of the trace of a matrix, we have the following equalities:

M∑
m=1

N∑
n=1

pnmxTn · xn = tr(XT ·X · dg(pc)) = tr(X · dg(pc) ·XT)

M∑
m=1

N∑
n=1

pnmyTm · ym = tr(Y · dg(pr) · Y T) (5.38)

M∑
m=1

N∑
n=1

pnmyTm · xn = tr(X · P · Y T)

Using these equalities, eqn (5.37) can be re-written in the following matrix form

Q̄ = s2tr(X̂ · dg(pc) · X̂T)− 2s · tr(R · X̂ · P · Ŷ T) + tr(Ŷ · dg(pr) · Ŷ T) (5.39)

From this, we can calculate
∂Q̄

∂s
and after equating it to zero we have the optimal scaling factor:

s = tr(R · X̂ · P · Ŷ T)/tr(X̂ · dg(pc) · X̂T) (5.40)

A.P. Papliński 40

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

We are ready to calculate the value of the rotation matrix R that minimises the modified
objective function given by eqn (5.39). Since R is only in the middle term, minimization of Q̄
is equivalent to maximization of

Q̂ = tr(R · R̂T) = tr(R̂T ·R) where R̂ = Ŷ · P T · X̂T (5.41)

Now we can write:

Q̂ =
D∑
d=1

r̂Td · rd (5.42)

where r̂d and rd are column vectors of the matrices R and R̂. It is clear that maximization
of Q̂ can be achieved when vectors r̂d and rd are collinear. The easiest way to achieve it is to
make R = R̂ and impose the conditions on the rotation matrix as in eqn (5.36). One way of
achieving this is to follow
Andriy Myronenko and Xubo Song, On the Closed-Form Solution of the Rotation Matrix Aris-
ing in Computer Vision Problems. arXiv:0904.1613v1,
and perform the singular value decomposition of R̂:

R̂ = Ŷ · P T · X̂T = U · S · V T (5.43)

Then, the rotation matrix can use the same unitary matrices U and V with the singular values
S being replaced by unities, namely:

R = V · ξ · UT where ξ = dg([1, . . . , det(V · UT)]) (5.44)

where the last element of ξ, ξD = ±1 is selected such that detR = +1.
It is interesting to know that in a 3D case (D = 3) the rotation matrix has one eigenvalue equal
to 1, and, typically a pair of complex conjugate eigenvalues that specifies the angle of rotation.

The overall rigid point set registration algorithm has the same initialization and the same E-step
as for the affine registration. The M-step is appropriately adjusted to be:

M-step

• Calculate R̂ and its svd — eqn (5.43)

• Calculate R — eqn (5.44)

• Calculate s — eqn (5.40)

• Calculate A — eqn (5.36)

• Calculate b — eqns (5.24) , (5.25)

• Calculate the aligned point set, Z — eqns (5.26) , (5.27) or eqn (5.22)

• Calculate the objective function, Q — eqns (5.18) , (5.19)

A.P. Papliński 41

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

5.5 Nonrigid point set registration — Coherent Point Drift Algo-
rithm

This is an important case when two instantiations of an object are deformed, so that neither
rigid body, nor affine transformation can describe such a deformation. It is a typical case for
many medical images often taken in different modalities, e.g. X is from MRI, whereas Y are
from ultrasonic images.
Following Tikhonov regularization framework
https://en.wikipedia.org/wiki/Regularization_(mathematics)#Tikhonov_regularization

the transformation is in the form of an initial position plus a displacement function v:

zn = xn + v(xn) or Z = X + v(X) (5.45)

We add a regularization term to the objective function of eqn (5.13) to get:

Q(v, σ2) =
1

2σ2

M∑
m=1

N∑
n=1

pnmhnm +
p̄D

2
log σ2 +

λ

2
||Lv||2 (5.46)

where L is differential regularization operator acting on the function v and ||Lv||2 is the square
of its norm. It is a well-known fact that the function v that minimizes the objective function
5.46 must satisfy the following Euler-Lagrange differential equation:

1

σ2λ

M∑
m=1

N∑
n=1

pnm(zn − ym)δ(u− xn) = L̂Lv(u) (5.47)

for all vectors u, where L̂ is the adjoint operator to L, and zn is given in eqn (5.45). The solution
to such a differential equation is written in terms of a Green’s function G of the self-adjoint
operator L̂L in the following form:

v(u) =
1

σ2λ

M∑
m=1

N∑
n=1

pnm(zn − ym) ·G(u,xn) =
N∑
n=1

wn ·G(u,xn) (5.48)

where

wn =
1

λσ2

M∑
m=1

pnm(zn − ym) (5.49)

where wn is a D × 1 vector of coefficients being an nth column of a respective matrix W .
The Green’s function can be selected to be a matrix of Gaussians with the entries:

gk,n = G(xk,xn) = exp(−||xk − xn||2

2β2
) (5.50)

This, following eqn (5.35), can be calculated as

X = XT ·X , Ĝ = −2X +c dg(X) +r dg(X) , G = exp(− X
2β2

) (5.51)

A.P. Papliński 42

https://en.wikipedia.org/wiki/Regularization_(mathematics)#Tikhonov_regularization

Learning5 EXPECTATION MAXIMIZATION ALGORITHM IN POINT SET REGISTRATION

Re-writing eqn (5.48) in the matrix form we have:

v(X) = W ·G hence Z = X +W ·G (5.52)

The matrix of coefficients from eqn (5.49) can be further expressed as:

W =
1

λσ2
(Z · dg(pc)− Y · P T)

Expanding Z as in (5.52) gives:

(X +W ·G) · dg(pc)− Y · P T = λσ2W

Re-arranging the terms, we can get an equation for the matrix of coefficients W :

W · (G− λσ2dg(pc)
−1) = Y · P T · dg(pc)

−1 −X (5.53)

The optimal value of σ2 is given by eqns (5.20) and (5.19), namely

σ2 =
1

p̄D
tr(H · P T) (5.54)

where H is specified in eqn (5.5). We also have:

tr(H · P T) = tr(Y · dg(pr) · Y T) + tr(Z · dg(pc) · ZT)− 2 tr(Z · P · Y T) (5.55)

The overall non-rigid point set registration algorithm has the similar initialization. This time
there are three parameters: ω, β, λ

• Initialize: ω ∈ [0 . . . 1) — eqn (5.8), β > 0 , λ > 0

• Initialize: Z = X , W = 0

• Calculate H — eqn (5.35)

• Calculate: σ2 =
1

DNM
1TN ·H · 1M — eqn (5.5)

• Calculate G — eqn (5.51)

and the same E-step as for the affine registration. The M-step is appropriately adjusted to be:

M-step

• Solve eqn (5.53) for W

• The aligned point set Z is given by eqn (5.52)

• Calculate σ2 — eqn (5.54)

• Calculate the objective function, Q — eqns (5.18) , (5.19)

A.P. Papliński 43

Learning 6 STRUCTURE OF NEURAL NETWORKS

6 Structure of Neural Networks

Neural Networks are non-linear mapping devices/algorithms, therefore, its mathematical foun-
dations are covered in sections 1, 2 and 3.

6.1 Biological Foundations of Neural Networks

This section is non-essential wrt mathematical aspects of artificial neural networks and can be
omitted in the first reading.

We start with considering the structure of a typical biological neuron, or a nerve cell. Be aware
of imprecision behind the word “typical”.

(From Kandel, Schwartz and Jessel, Principles of Neural

Science)

Figure 6–1: Structures of “typical” biological neurons.

A.P. Papliński 44

Learning 6 STRUCTURE OF NEURAL NETWORKS

• The cell body contains the nucleus, the storehouse of genetic information, and gives rise
to two types of cell processes, axons and dendrites.

• Axons, the output transmitting element of neurons, can vary greatly in length; some can
extend more than 3m within the body. Most axons in the central nervous system are very
thin (0.2 . . . 20 µm in diameter) compared with the diameter of the cell body (50 µm or
more).

• Many axons are insulated by a fatty sheath of myelin that is interrupted at regular
intervals by the nodes of Ranvier.

• The action potential, the cell’s conducting signal, is initiated either at the axon hillock,
the initial segment of the axon, or in some cases slightly farther down the axon at the
first nod of Ranvier. The single action potential is similar to the following:

0 5 10 15 20
−20

0

20

40

60

80

100

120

time [msec]

A
ct

io
n

po
te

nt
ia

l [
m

V
]

Injected current and action potential

• Branches of the axon of one neuron (the presynaptic neuron) transmit signals to another
neuron (the postsynaptic cell) at a site called the synapse.

• The branches of a single axon may form synapses with as many as 1000 other neurons.

• Whereas the axon is the output element of the neuron, the dendrites (apical and basal)
are input elements of the neuron. Together with the cell body, they receive synaptic
signals from other neurons.

Simplified functions of these very complex in their nature “building blocks” of a neuron are as
follow:

• The synapses are elementary signal processing devices.

A.P. Papliński 45

Learning 6 STRUCTURE OF NEURAL NETWORKS

– A synapse is a biochemical device which converts a pre-synaptic electrical signal into
a chemical signal and then back into a post-synaptic electrical signal.

– In the synapse, neuro-transmitters (information-carrying chemicals) are released pre-
synaptically, floats across the synaptic cleft, and activate receptors postsynaptically.

– The input pulse train has its amplitude modified by parameters stored in the synapse.
The nature of this modification depends on the type of the synapse, which can be
either inhibitory or excitatory.

– The postsynaptic signals are aggregated and transferred along the dendrites to the
nerve cell body.

– The cell body generates the output neuronal signal, activation potential, which is
transferred along the axon to the synaptic terminals of other neurons.

– The frequency of firing of a neuron is proportional to the total synaptic activities
and is controlled by the synaptic parameters (weights).

– The pyramidal cell can receive 104 synaptic inputs and it can fan-out the output
signal to thousands of target cells — the connectivity difficult to achieve in the
artificial neural networks.

• According to Calaj’s “neuron-doctrine” information carrying signals come into the den-
drites through synapses, travel to the cell body, and activate the axon. Axonal signals
are then supplied to synapses of other neurons.

6.2 A simplistic model of a biological neuron

Basic signal processing characteristics of a biological neuron:

• data is coded in a form of instantaneous frequency of pulses

• synapses are either excitatory or inhibitory

• Signals are aggregated (“summed”) when travel along dendritic trees

• The cell body (neuron output) generates the output pulse train of an average frequency
proportional to the total (aggregated) post-synaptic activity (activation potential).

The brain is a highly complex, non-linear, parallel information processing system. It performs
tasks like pattern recognition, perception, motor control, many times faster than the fastest
digital computers.

• Biological neurons, the basic building blocks of the brain, are slower than silicon logic
gates. The neurons operate in milliseconds which is about six–seven orders of magnitude
slower that the silicon gates operating in the sub-nanosecond range.

• The brain makes up for the slow rate of operation with two factors:

A.P. Papliński 46

Learning 6 STRUCTURE OF NEURAL NETWORKS

t

xi

t

Dendrite

Axon

Synapses

Post−synaptic signal

Axon−Hillock

Cell Body (Soma)

Activation potential

jOutput Signal,

x

z

Input Signals,

y j

Figure 6–2: Conceptual structure of a biological neuron

– a huge number of nerve cells (neurons) and interconnections between them. The
number of neurons is estimated to be in the range of 1010 with 60 · 1012 synapses
(interconnections).

– A function of a biological neuron seems to be much more complex than that of a
logic gate.

• The brain is very energy efficient. It consumes only about 10−16 joules per operation per
second, comparing with 10−6 J/oper·sec for a digital computer.

A.P. Papliński 47

Learning 6 STRUCTURE OF NEURAL NETWORKS

6.3 Models of artificial neurons

Artificial neural networks are nonlinear information (signal) processing devices which are built
from interconnected elementary processing devices called neurons.

An artificial neuron is a D-input single-output signal processing element which can be thought
of as a simple model of a non-branching biological neuron.

Three basic graphical representations of a single D-input (D-synapse) neuron:

1

1

D

. . .

. . .

x1

w1

= [

= [

]
T

x

w

xx2

w2

synapse

dendrite

a.

Input layer Output layer

x

x2

x1

z

w1

z

x =

x w

p

synapse

c.

b.

Block−diagram representation

σ

σ

Dendritic representation

D

z

potential

σ

u

activation

w

Signal flow representation

u

D

u

wD+1

D+1]w

w

D

2

.

.

.
.
.
.

summing
node

w

u = w1 · x1 + · · ·+ wD · xD + wD+1 = w · x̂ , x̂ =

[
x
1

]

z = σ(u)

where x̂ is the augmented input vector.

From a dendritic representation of a single neuron we can identify D+1 synapses arranged
along a linear dendrite which aggregates the synaptic activities, and a neuron body or axon-
hillock generating an output signal.

The pre-synaptic activities are represented by a D-element column vector of input (affer-
ent) signals

x = [x1 . . . xD]T , x̂ = [x1 . . . xD 1]T

A.P. Papliński 48

Learning 6 STRUCTURE OF NEURAL NETWORKS

Hence, the space of input patterns is D-dimensional. In addition, there is a constant biasing
input equal to 1.

Synapses are characterised by adjustable parameters called weights or synaptic strength pa-
rameters. The weights are arranged in a D + 1-element row vector:

w = [w1 . . . wD wD+1]

The parameter wD+1 specifies the bias.

• In a signal flow representation of a neuron, D + 1 synapses are arranged in a layer
of input nodes. A dendrite is replaced by a single summing node. Weights are now
attributed to branches (connections) between input nodes and the summing node.

• Passing through synapses and a dendrite (or a summing node), input signals are ag-
gregated (combined) into the activation potential, u, which describes the total post-
synaptic activity.

• The activation potential is formed as a linear combination of input signals and synaptic
strength parameters, that is, as an inner product of the weight and input vectors:

u =
D∑
i=1

wixi + wD+1 = w · x̂ =
[
w1 w2 · · · wD+1

]
·

x1
x2
...
xD
1

 (6.1)

• Subsequently, the activation potential (the total post-synaptic activity) is passed through
an activation function, σ(·), which generates the output (efferent) signal:

z = σ(u) (6.2)

• The activation function is typically a saturating function which normalises the total post-
synaptic activity to the standard values of output (axonal) signal. Many other options
are possible

• The block-diagram representation encapsulates basic operations of an artificial
neuron, namely, aggregation of pre-synaptic activities, eqn (6.1), and generation of the
output signal, eqn (6.2).

A.P. Papliński 49

Learning 6 STRUCTURE OF NEURAL NETWORKS

6.4 Types of activation functions

You can skip detail of this section in first reading and go to sec. 6.5. Activation functions
become important in the learning procedures.

Typically, the activation function
z = σ(u)

generates either unipolar or bipolar signals.
Many learning algorithms also require calculation of the derivative of the activation function

z′ =
dσ

du

A linear function: z = u.

Such linear processing elements, sometimes called ADALINEs, are studied in the theory of
linear systems, for example, in the “traditional” signal processing and statistical regression
analysis.

Note that
dz

du
= 1.

A step function

unipolar:

z = σ(u) =

{
1 if u ≥ 0
0 if u < 0

z

1

0

u

Such a processing element is traditionally called perceptron, and it works as a threshold
element with a binary output.

bipolar:

z = σ(u) =

{
+1 if u ≥ 0
−1 if u < 0

z

0

1

−1

u

A step function with bias

The bias (threshold) can be added to both, unipolar and bipolar step function. We then
say that a neuron is “fired”, when the synaptic activity exceeds the threshold level, θ.
For a unipolar case, we have:

z = σ(u) =

{
1 if w · x ≥ θ
0 if w · x < θ

z

1

0

w x

θ

Note that the derivative of the step function is zero apart from the point of discontinuity.

(The McCulloch-Pitts perceptron — 1943)

A.P. Papliński 50

Learning 6 STRUCTURE OF NEURAL NETWORKS

A piecewise-linear function

z = σ(u) =

0 if u ≤ − 1

2α

αu+ 1
2

if |u| < 1
2α

1 if u ≥ 1
2α

-

6

1

z

− 1
2α

1
2α

u

• For small activation potential, u, the neuron works as a linear combiner (an ADA-
LINE) with the gain (slope) α.

• For large activation potential, v, the neuron saturates and generates the output
signal either) or 1.

• For large gains α→∞, the piecewise-linear function is reduced to a step function.

• The derivative is equal to α in the linear part and zero otherwise.

Logistic sigmoid functions

unipolar:

z = σ(u) =
1

1 + e−u
=

1

2
(tanh(u/2)−1)

z

1

0

u

The derivative:

σ′ =
dz

du
= z(1− z) , σ′(0) = 1

bipolar:

z = σ(u) = tanh(βu) =
2

1 + e−2βu
−1

z

1

0

−1

u

The parameter β controls the slope of the function.

The hyperbolic tangent (bipolar sigmoid) function is perhaps the most popular choice of
the activation function specifically in problems related to function mapping and approx-
imation.

The derivative: σ′ =
dz

du
= β(1− z2) σ′(0) = β

ReLU – Rectifier function (ramp function)

z = σ(u) = max(0, u) =

{
u if u ≥ 0
0 if u < 0

0

u

z

The derivative: σ′ =

{
1 if u ≥ 0
0 if u < 0

A.P. Papliński 51

Learning 6 STRUCTURE OF NEURAL NETWORKS

Radial-Basis Functions

• Radial-basis functions arise as optimal solutions to problems of interpolation, ap-
proximation and regularisation of functions. The optimal solutions to the above
problems are specified by some integro-differential equations which are satisfied by
a wide range of nonlinear differentiable functions (S. Haykin, Neural Networks – a
Comprehensive Foundation, Ch. 5).

• Typically, Radial-Basis Functions ϕ(x; ti) form a family of functions of a D-
dimensional vector, x, each function being centered at point ti.

• A popular simple example of a Radial-Basis Function is a symmetrical multivariate
Gaussian function which depends only on the distance between the current point, x,
and the center point, ti, and the variance parameter σi:

ϕ(x; ti) = G(||x− ti||) = exp

(
−||x− ti||2

2σ2
i

)

where ||x− ti|| is the norm of the distance vector between the current vector x and
the centre, ti, of the symmetrical multidimensional Gaussian surface.

• The spread of the Gaussian surface is controlled by the variance parameter σi.

A.P. Papliński 52

Learning 6 STRUCTURE OF NEURAL NETWORKS

6.5 A layer of neurons

Neurons as in sec. 6.3 can be arrange into a layer of neurons.
A single layer neural network consists of m neurons each with the same D input signals
plus a constant bias input
Similarly to a single neuron, the neural network can be represented in all three basic forms:
dendritic, signal-flow, and block-diagram form:

1

1

.

.
.
.
.

.

.

.
.
.
.

wwm,D+1

m,D+1ww

ww2,D+1

2

m z

z2

m

W

Input layer Output layer

x =

x

1u

u

u

b. Signal−flow graph

c. Block−diagram

σ

σ

σ

a. Dendritic graph

x
m

u
σ

m

z
W

= z

D

x]

w w

w w

ww

= [1

11

21

m1

12

m2

x x2 x

.

.

1:

2:

m:

w

w

w

.

T

...

. . .

22
W =

D

w

w

w

w

w

w

w

w

w

w1D

2D

mD

1,D+1

2,D+1
= z

z

z1

z

2

m

2

m

1

2

m

1u

u

u

σ

σ

σ

.

.

.

1,D+1ww

D

1Dw

w11

21w

w2D

wm1

mD

x

w

1

.

.

.
.
.
.

.

.

.

1z

.

.

.

.

.

.
.
.
.

. . .

. . .

. . .

.

.

.
.

Figure 6–3: Three representations of a single layer neural network

• From the dendritic representation of the neural network it is readily seen that a layer
of neurons is described by a m× (D + 1) matrix W of synaptic weights.

A.P. Papliński 53

Learning 6 STRUCTURE OF NEURAL NETWORKS

• Each row of the weight matrix is associated with one neuron.

Operations performed by the network can be described as follows:

u1
u2
...
um

︸ ︷︷ ︸

u

=

w11 · · · w1D w1D+1

w21 · · · w2D w2D+1

... · · · ...
wm1 · · · wmD wmD+1

︸ ︷︷ ︸

W

x1
...
xD
1

︸ ︷︷ ︸

x̂

;

z1
z2
...
zm

︸ ︷︷ ︸

z

=

σ(u1)
σ(u2)

...
σ(um)

︸ ︷︷ ︸
σ(u)

or in a matrix form as:

x̂ =

[
x
1

]
, u = W · x̂ , z = σ(u) = σ(W · x̂) (6.3)

where u is a vector of activation potentials. The calculation steps are as follows:

• The vector of input signals x is augmented with a bias constant input signal “1”

• The vector u of activating potential aka output from the linear part of the network is
calculated

• u is passed through the nonlinear part of the system σ to create the vector of the output
signals z

It is sometime convenient to explicitly split the weight matrix into its “signal” and bias part
as follows:

W =
[
W̄ b

]
; W̄ =

w11 · · · w1D

w21 · · · w2D
... · · · ...

wm1 · · · wmD

 , b =

w1D+1

w2D+1
...

wmD+1

 (6.4)

so that

u = W · x̂ = W̄ · x + b (6.5)

From the signal-flow graph it is visible that each weight parameter wij (synaptic strength)
is now related to a connection between nodes of the input layer and the output layer.
Therefore, the name connection strengths for the weights is also justifiable.

The block-diagram representation of the single layer neural network is the most compact one,
hence most convenient to use.

A.P. Papliński 54

Learning 6 STRUCTURE OF NEURAL NETWORKS

6.6 Feedforward Multilayer aka Deep Neural Networks

Feedforward multilayer neural networks are one of the major tools used in machine learning.
Pattern recognition and classification being the major tasks. Such a network is trained for a
set of patterns and then it is expected to recognize an unknown pattern. During the training,
or learning step the correct weight parameters are being derived.
A multilayer neural network consists of K layers of neurons as presented in sec. 6.5. The kth
layer is described by the following equations:

x(k)
n = z(k−1)

n , x̂(k)
n =

[
x(k)
n

1

]
for n = 1, . . . , N and for k = 1, . . . , K

u(k)
n = W (k) · x̂(k)

n (6.6)

z(k)
n = σ (u(k)

n)

x(1)
n = xn — input to the first layer ; z(K)

n = zn — output from the last layer

Descriptively we can say that for each nth input pattern/stimulus and for each layer kth

• An input to a kth layer x(k)
n is formed from the output from the (k − 1)th layer z(k−1)

n

• A biasing constant input is added to create an augmented input vector x̂(k)
n

• the postsynaptic activity u(k)
n is created using the weight matrix W (k)

• The output from the layer is created passing u(k)
n through the nonlinearity σ

A network of K layers as in eqn (6.6) is known as Multilayer Perceptrons (MLP), or Mul-
tilayer Neural Network (nnet) and more recently as a deep neural network.
It is easy to identify that eqn (6.6) is a special case of a general nonlinear mapping described
in eqn (1.2) and elaborated on in sec. 3.

6.7 Two-layer neural network

The smallest “deep” neural network consists of two layers of neurons as in the following
block-diagram:

W h ��
��
ϕ W o ��

��
σ-

x
o
D ��

1

-
uh

o
Dh

-
zh = xo

o
Dh ��

1

-
u
o
m

-
z

o
m︸ ︷︷ ︸

Hidden layer
︸ ︷︷ ︸

Output layer

Figure 6–4: Block diagram of a two-layer neural network

Note:

A.P. Papliński 55

Learning 6 STRUCTURE OF NEURAL NETWORKS

• D input signals, x, and biasing input “1”

• Dh hidden neurons generating signals uh and zh. For simplicity we have omitted the
parenthesis in the superscripts as in D(h)

• m output neurons generating signals u and z,

• biasing inputs at both layers.

The two-layer architecture is often referred to as a single hidden layer neural network.

Input signals, x, are passed through synapses of the hidden layer with connection strengths
described by the hidden weight matrix, W h, and the Dh hidden activation signals, uh,
are generated.

The hidden activation signals are then normalised by the functions ψ into the Dh hidden
signals, zh that form the inputs xo to the output layer

Similarly, the input signals to the output layer xo = zh, are first, converted into m output
activation signals, uo, by means of the output weight matrix, W o, and subsequently, into m
output signals, z, by means of the functions σ. Hence

x̂ =

[
x
1

]
; zh = ϕ(W h · x̂) , x̂o =

[
zh

1

]
, z = σ(W o · x̂o) (6.7)

Functions ϕ and σ can be identical.
The block-diagram representation of a two-layer neural network as in Fig. 6–4 can also be
presented in a dendritic and data-flow forms, similarly to a single layer of neurons presented in
Fig. 6–3.
Note the constant unity inputs added to each layer that form the biasing inputs. The nonlinear
functions σ in two layers can be, and often are, different.

A.P. Papliński 56

Learning 6 STRUCTURE OF NEURAL NETWORKS

Dendritic diagram:

--��
��
σ@ @ @· · · · · ·

--��
��
σ@ @ @· · · · · ·

--��
��
σ@ @ @· · · · · ·

...

...

x1 xi xD 1

W h
1:

W h
j: whji

W h
Dh:

W h is Dh×(D + 1)

uh1

uhj

uhDh

...

...

zh1

zhj

zhDh

...

...

-

-

-

zh–bus

zh1 zhj zhDh 1

--��
��
σ@ @ @ @· · · · · ·

--��
��
σ@ @ @ @· · · · · ·

--��
��
σ@ @ @ @· · · · · ·

-

-

-

W o
1:

W o
k: wokj

W o
m:

W o is m×(Dh + 1)

u1

uk

um

...

...

z1

zk

zm

...

...

Signal-flow diagram:

x =

 t
t
t

-

-

-

...

...

x1

xi

xD

wh11

���
���

�:

b
b
b
bb
Q
QQs

J
J
J
J
J
J
J
J
J
J
Ĵ

�
��

,
,
,
,
,,

-whji

@
@R

l
l
l
l
ll

�

"
"
"
""
�
��3

XXXXXXXXz

wh
Dhp

W h
t

t

t

...

...

-��
��
σ -

-��
��
σ -

-��
��
σ -

6

6

6

1

1

1

uh1

uhj

uhDh

zh1

zhj

zhDh t

t

t

...

...

wo11hhhXXzl
l
l
l
ll
@
@R

T
T
T
T
T
T
T
T
T
J
JĴ

�
�
�
�
�
�
�>

-wokj
Z
Z
Z
Z
Z
Z
Z~

�
�
�
�
�
�
�
�
�

�

,
,
,
,
,,
�
��

(((�
�:wo

mDh

W o

t

t

t

...

...

-��
��
σ -

-��
��
σ -

-��
��
σ -

6

6

6

1

1

1

u1

uk

um

...

...

z1

zk

zm

= z

� -Input Layer� -Hidden Layer � -Output Layer

uhj = W h
j: · x̂ ; zhj = σ(uhj) ; uk = W o

k: · ẑh ; zk = σ(uk)

zh = σ(W h · x̂) , z = σ(W o · ẑh)

Figure 6–5: Two representations of a two-layer neural network

A.P. Papliński 57

Learning 6 STRUCTURE OF NEURAL NETWORKS

6.8 Example of a function implemented by a two-layer nnet

Consider a single-variable function y = f(x) implemented by the following two-layer nnet. Note
that we assume that the weight matrices are known.

z

w1

w2

w3

w11

w22w21

w31

w12

w32

u1

u2

u3

σ

σ

σ

x +1

hidden layer output
layer

Wh w −1 0 1 2 3 4 5 6
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Function implementation with a two−layer perceptron

x

y,
 u

w
1
u

1

w
2
u

2

w
3
u

3

y

The first layer is described by the 3×2 matrix W h:

W h =

 wh11 wh12
wh21 wh22
wh31 wh32

 =

 2 −1
3 −4

0.75 −2

that is followed by the function σ = tanh(u).
The second layer’s weight matrix is reduced to a vector:

w = [w1 w2 w3] = [0.5 0.1 −0.3

The neural net implements the following function:

z = w · u = w · tanh

(
Wh ·

[
x
1

])
= w1 · u1 + w2 · u2 + w3 · u3

= w1 · tanh(wh11 · x+ wh12) + w2 · tanh(wh21 · x+ wh22) + w3 · tanh(wh31 · x+ wh32)

= 0.5 · tanh(2x− 1) + 0.1 · tanh(3x− 4)− 0.3 · tanh(0.75x− 2)

A.P. Papliński 58

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

7 Learning Algorithms for Feedforward/Deep Neural Net-

works

In this section we will start our journey through the fundamentals of the supervising learning
algorithms. We first start with the error-correcting algorithms and introduce the concept of
error back-propagation

7.1 Fundamentals of Error-Correcting Learning Algorithms

Error-correcting learning algorithms are supervised learning algorithms that modify the param-
eters w of the network in such a way to minimise that error between the desired y and actual
outputs z as illustrated in Fig. 7–1

e
w w = w +

x; wF()=z
x z

y
∆

Figure 7–1: The principle of error-correcting learning

Repeating the considerations of sec. 3 we can say that learning is a two step procedure

• in the feedforward pass, for a current input pattern xn, we calculate the output of the
network

zn = F (xn; w)

• In the feedback pass, we first calculate the point aka pattern error vector

en = zn − yn = F (xn; w)− yn (7.1)

then the pattern squared error function

En(w) =
1

2
eTn · en (7.2)

next, the total mean squared error function, aka the performance function:

E(w) =
1

N

N∑
n=1

En(w) (7.3)

A.P. Papliński 59

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

(compare with eqn (1.5)).

After that we calculate the gradient of the performance function ∇E(w) and additively
update the vector of parameters w using any method described in sec. 3, the gradient
decent method being the simplest, hence the most popular:

∆w = −η∇E(w)

where η is the learning rate.

The vector of parameters w includes the elements of ALL weight matrices. In the case of the
multilayer nnet that would give:

w = vec([W1 W2 . . . WK]) (7.4)

In the next section we will study a method of updating each weight matrix Wk, layer-by-layer
using the concept of error backpropagation:

W (k) = W (k) + ∆W (k) for each layer k = K,K − 1, . . . 1

As an introductory comment, we note that the weights can be updated in two ways:

• in the pattern mode weights are updated after the presentation of each learning pattern
xn, using the pattern performance function and the resulting pattern gradient

∆wn = −η∇En(w) (7.5)

• in the batch mode weights are updated after each epoch, that is presentation of all N
datapoints X, using the total performance function and the resulting total gradient

∆w = −η∇E(w) (7.6)

Finally, we need to calculate the gradient, or pattern gradient, for a specific form of nonlinearity
as used in nnets and described in sec. 6.6, eqn (6.6). Descriptively, a nnet consists of K layers,
each having the linear mapping with the weight matrix W k followed by the nonlinearity σ(·).

A.P. Papliński 60

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

7.2 Backpropagation of Errors in Two-layer nnets

In this section we will calculate gradients for layers of the neural network specified in eqn (6.6).
For simplicity we start with a two-layer network as presented in Figures 6–4 and 6–5, and in
eqn (6.7). Also it may be convenient to refer to a diagram in Figure 7–2. We will generalize
the results to a multilayer case in sec. 7.5. We start with the gradient of the pattern error as in
eqn (3.4), however, we will calculate the gradient layer by layer, starting from the last/output
layer.

7.2.1 The Last (output) Layer

The output layer, for each datapoint, calculates:

x̂on =

[
zhn
1

]
; un = W o · x̂on ; zn = σ(un) ; en = zn − yn (7.7)

The dimensionality of the output vector from the hidden layer, zhn, is Dh, while vectors
un, zn, enyn are M -dimensional. Note that σ(u) is a vector in which the non-linear func-
tion σ() is applied to each component of u. A collection of possible non-linear functions, aka
activation functions, was discussed in sec. 6.4. In order to calculate the pattern gradient wrt
to components of the output weight matrix W o, we vectorize the matrix as:

wo = vec(W o) = ↓W o (7.8)

The dimensionality of the vector wo is equal to M×(Dh+1). Note that the input vector to the
output layer, xo, is independent of wo and, following eqn (3.4), we can calculate the pattern
gradient as:

∇En(wo) =
∂eTn
∂wo

· en =
∂zTn
∂wo

· en = Jn(zn,w
o) · en (7.9)

The subscript n refers to the nth data point, the superscript o refers to the parameters of W o

in the output layer. Using the chain rule of differentiation, and eqn (7.7), the Jacobian can be
further expressed as:

Jn(zn,w
o) =

∂zTn
∂wo

=
∂uTn
∂wo

· diag(
dσ

dun
) = Jn(un,w

o) · diag(σ′
n) (7.10)

where

σ′
n =

dσ

dun

is a Dh-component vector of derivatives of the activation function wrt to its input vector u.
The methods of calculating such derivatives were discussed in sec. 6.4. For example, if

z = σ(u) = atanh(u) , then
dσ

du
= σ′ = 1− z2

A.P. Papliński 61

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

Combining the above results together we can re-write eqn (7.9) for the pattern gradient in the
following form:

∇En(wo) = Jn(un,w
o) · diag(σ′

n) · en = Jn(un,w
o) · δn (7.11)

where

δn = diag(σ′
n) · en = σ′

n � en (7.12)

are called the delta errors.
Note that if we have two vectors of the same size, say a,b then

diag(a) · b = a� b

where � denotes the component-wise multiplication of two vectors.
Following considerations of sec. 2.2 we note that the Jacobian in eqn (7.11) is independent of
wo, and since u = W o · zh and using eqn (2.17) we have

∇En(wo) = Jn(un,w
o) · δn = ↓(δn · (x̂on)T) (7.13)

Re-shaping the pattern gradient into the equivalent matrix form and following eqn (3.5) we
finally have the expression for the upgrade of the output weight matrix W o

∆W o
n = −η · δn · (x̂on)T (7.14)

It is an important result stating that the weight update in the pattern mode is proportional
to the outer product of the delta errors and the input vector ẑhn, with η being the learning
rate parameter.
It is perhaps a good place to say that one of the typical problem encountered during learning
stems from the fact that the delta errors are products of the errors and derivatives of the non-
linear function σ. If the derivatives are zero, e.g. for the large values of the input signal, no
learning takes place since ∆W o

n = 0, see eqn (7.14).

7.2.2 The Hidden Layer

The hidden layer, for each datapoint, calculates:

x̂n =

[
xn
1

]
; uhn = W h · x̂n ; zhn = ϕ(uhn) (7.15)

The dimensionality of the vector xn is D, while vectors uhn, zhn are Dh-dimensional. As before
we vectorize the hidden weight matrix W h:

wh = vec(W h) = ↓W h (7.16)

The dimensionality of the vector wh is equal to Dh × (D + 1). The pattern gradient wrt wh

can be calculated as in eqn (7.9)

A.P. Papliński 62

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

Calculation of the gradient follows eqn (7.9) with wh replacing wo

∇En(wh) =
∂eTn
∂wh

· en =
∂zTn
∂wh

· en =
∂uTn
∂wh

· diag(σ’) · en =
∂uTn
∂wh

· δn = Jn(uhn,w
h) · δn (7.17)

where the n-th delta error is specified in eqn (7.12). Note that initially the gradient calculations
used the output signals zn and en that, by using the chain rule of differentiation, has been
replaced by un and δn which are closer to the hidden layer.
To continue calculations of the gradient as in eqn (7.17) we first isolate the non-bias component
in un following the notation used in eqn (6.5)

un = W o · ẑhn = W̄ o · zhn + bo

After transposition we have
uTn = zhTn · W̄ oT + boT

Now, knowing that bo is independent of wh, we can continue with the gradient calculations as
follows:

∇En(wh) =
∂uTn
∂wh

· δn =
∂zhTn
∂wh

· W̄ oT · δn =
∂ẑhTn
∂wh

· ehn = Jn(zhn,w
h) · ehn (7.18)

where

ehn = W̄ oT · δn = W̄ oT · (σ’� en) (7.19)

is the equivalent error as seemed at the hidden layer, that is, the output error en back-
propagated through the output layer described by W̄ o and σ.
Eqn (7.18) is exactly equivalent to eqn (7.9), hence, following considerations for the output
layer we can define:
The derivative of the nonlinear function in the hidden layer:

ϕ′
n =

dϕ

duhn

The delta error in the hidden layer:

δhn = diag(ϕ′
n) · ehn = ϕ′

n � ehn (7.20)

The pattern gradient wrt wh

∇En(wh) = Jn(uhn,w
h) · δhn = ↓(δhn · x̂

T
n) (7.21)

and the update of the weight matrix in the hidden layer

∆W h
n = −η · δhn · x̂

T
n (7.22)

A.P. Papliński 63

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

7.2.3 Summary of learning in two-layer nnet

The block diagram of a two-layer nnet showing its feedforward part and the learning, that is,
feedback part is shown in Fig. 7–2.
For each input pattern, the feedforward part calculates the signals as outlined in the previous
sections, namely

xn → uhn → zhn = xon → un → zn

M M

M

x

W h

uh

ϕ

eh �ϕ′

−
dσ

du
Σ

u
σ

e
σ′

y

z = σ(u)

dϕ

duh

ϕ′

e� σ′

ex

δh

W o
eh

γhδ
h x̂T

δ
∆W h ∆W o

zh = ϕ(uh)

γoδ (ẑh)T

D

1 1

Dh Dh

Dh

Dh

M×D̂hDh×D̂

Figure 7–2: The feedforward and feedback parts of a two-layer nnet

In the learning path we calculate the vectors derivatives of the nonlinear functions:

σ′n and ϕ′n

and then the error vectors, namely, delta errors and back-propagated error

(exn ←) δhn ← ehn ← δn ← en

Note that according to eqn (7.19) the delta errors are back-propagated through the relevant
weight matrices. The exn error is not used in calculations but is shown to illustrate the concept
of back-propagation.
Finally, two weight updates are calculated

W o and W h

7.3 Pattern and batch learning

In the previous sections we concentrated on the pattern learning. The conceptual objective
of the learning procedure is to arrive at the values of network parameter, the weight matrices
in this case, such that the total error aka the performance or loss function of eqns (7.2), (7.3)
is minimised to the satisfactory level. This is going to be achieved by updating the weight

A.P. Papliński 64

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

matrices as described in eqns (7.14) and (7.22) for all input patterns available. We refer to one
pass through all pattern as one learning epoch. Typically a number of epochs is required to
reduce the error to the desired level. We will highlight this problem in examples.
Eqns (7.14) and (7.22) describe the pattern learning in which we aim at minimizing the pattern
error of eqn (7.2) that should eventually result in minimisation of the total error as in eqn (7.3).
In the batch learning, the pattern weight updates are accumulated for the whole epoch and
performed once per epoch.

∆W o =
N∑
n=1

∆W o
n = −η

N∑
n=1

δn · (x̂on)T = −ηzSo · X̂oT (7.23)

where So and Xo are matrices collecting all delta errors and outputs from the hidden layer,
respectively, that is:

So = [δ1 . . . δN] , X̂o = [x̂o1 . . . x̂oN]

Similarly for the hidden layer we calculate:

∆W h =
N∑
n=1

∆W h
n = −η

N∑
n=1

δn · (x̂n)T = −ηhSh · X̂T (7.24)

where Sh is the matrix collecting all hidden delta errors:

Sh =
[
δh1 . . . δhN

]

Some points to consider:

Weight Initialisation The weight are initialised in one of the following ways:

• using prior information if available. The Nguyen-Widrow algorithm presented used in
MATLAB function initnw is a good example of such initialisation.

• to small uniformly distributed random numbers.

Incorrectly initialised weights cause that the activation potentials may become large which
saturates the neurons. In saturation, derivatives σ′ = 0 and no learning takes place.

A good initialisation can significantly speed up the learning process.

Randomisation For the pattern learning it might be a good practice to randomise the order
of presentation of learning examples between epochs.

Validation In order to validate the process of learning the available data is randomly parti-
tioned into a learning set which is used for learning, and a test set which is used for validation
of the obtained data model.

A.P. Papliński 65

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

7.4 (Simple) example of function approximation

(The full MATLAB code is in http://users.monash.edu/~app/Lrn/fap2D.m)
We consider a two-layer nnet as in Fig. 7–2 that is going to approximate two functions of two
variables. The network parameters ar as follows:

D = 2 ; % Dimensionality of input signals

Dh = 24; % Dimensionality of hidden signals

M = 2 ; % Dimensionality of outputs

The relevant structure can be visualised in the following way:

- W h W o-��
��

- -��
��

-σ σ
x uh zh u zo o o o o

3 24 25 2 2

��
��
σ -@ @ @ -

��
��
σ -@ @ @ -

��
��
σ -@ @ @ -

...
...

x1 x2 x3 = 1

W h

uh1

uh2

uh24

zh1

zh2

...

zh24

zh–bus

zh1 zh2
. . . zh25 = 1

-��
��
σ -@ @ @ -

-��
��
σ -@ @ @ -

W o

u1

u2

z1

z2

As non-linear functions we selected the sigmoidal and atan functions. See sec. 6.4 for details.
Two functions to be approximated by the two-layer nnet are as follows:

y1 = x1e
−ρ2 , y2 =

sin 2ρ2

4ρ2
, where ρ2 = x21 + x22

The domain of the function is a square x1, x2 ∈ [−2, 2).
In order to form the learning set the functions are sampled on a regular 16×16 grid so that
the number of datapoints is N = 256. Subsequently for each data point xn = [x1n, x2n]T we
calculate yn = [y1n, y2n]T using the expressions above. Finally we can form matrices X̂ and Y
that look as follows

Xh = -2.00 -2.00 ... 1.75 1.75

-2.00 -1.75 ... 1.50 1.75

1.00 1.00 ... 1.00 1.00

Y = -0.0007 -0.0017 ... 0.0086 0.0038

-0.0090 0.0354 ... -0.0439 -0.0127

A.P. Papliński 66

http://users.monash.edu/~app/Lrn/fap2D.m

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

The functions to be approximated are plotted side-by-side in Fig. 7–3. Note that in reality the
functions are defined over the same domain, namely, x1, x2 ∈ [−2, 2), hence are superimposed
on each other.

-0.4

-0.2

y
1 y

2

1

0

0.2

2

Two 2-D target functions

0

0.4

0
-1 -2

-2 -4

Figure 7–3: Two functions to be approximated

Having the datapoints representing functions to be approximated, and the structure of the
nnet, we can perform the learning steps. In the example we use the batch learning as described
in sec. 7.3 and the relevant code is as follows:

for ep = 1:nepchs % the epoch loop

% The forward pass

Uh = Wh*Xh; % hidden post synaptic

% Hidden signals (Dh by N)

Zh = ones(Dh, N)./(1+exp(-Uh)); % sigmoidal nonlinearity

dZh = Zh.*(1-Zh); % Derivatives of hidden signals

Zhh = [Zh ; ones(1,N)] ; % appending the bias input

Z = tanh(Wz*Zhh) ; % Output signals (M by N)

dZ = 1 - Z.^2 ; % Derivatives of output signals

% The backward pass

Ey = Z - Y; % The output errors (M by N)

% the performance function: total mse

Er(ep) = sum(sum(Ey.^2)/2)/N ; % mse after each epoch

delY = Ey.*dZ; % Output delta signal (M by N)

A.P. Papliński 67

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

dWz = -delY*Zhh’; % Update of the output matrix M by Dh+1

Eh = Wz(:,1:end-1)’*delY; % The backpropagated hidden errors (Dh by N)

delH = Eh.*dZh ; % Hidden delta signals (Dh by N)

dWh = -delH*Xh’; % Update of the hidden matrix

% The batch update of the weights:

Wz = Wz + gamma(1)*dWz ; Wh = Wh + gamma(2)*dWh ;

end % of the epoch loop

You should compare and match the lines of code with expressions from sec. 7.3. The result of
approximation is presented in Fig. 7–4.

-0.4

-0.2

1

0

0.2

2

epoch: 2000, error: 0.0043, gamma: 0.0010 0.0350

0

0.4

0
-1

-2
-2 -4

Figure 7–4: Two approximated functions

The convergence of the algorithm is monitored by the total mean squared error that the learn-
ing algorithm minimises. Evolution of the total mean squared error over learning epochs is
presented in Fig. 7–5.
From the example we can see that there are a number of parameters to consider — the main
are:

• The structure. The number of hidden layers and how many neurons in each layer. We
have arbitrarily decided one hidden layer with 24 neurons.

A.P. Papliński 68

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

0 200 400 600 800 1000 1200 1400 1600 1800 2000

number of training epochs

0

0.005

0.01

0.015

0.02

0.025

0.03
The approximation error. Final: 0.0043

Figure 7–5: Evolution of the total mean squared error over learning epochs

• The nonlinear functions. We have arbitrarily selected the sigmoidal and the hyperbolic
tangent functions.

• The learning algorithm. We selected the gradient decent algorithm. Other options are
considered in sec. 3. In sec. 8 we consider a stochastic gradient algorithm which is popular
in the classification networks. In any case the concept of error backpropagation plays
the fundamental role.

A.P. Papliński 69

Learning7 LEARNING ALGORITHMS FOR FEEDFORWARD/DEEP NEURAL NETWORKS

7.5 Learning in deep neural networks

In this section we will generalise algorithms developed for two-layer neural network into the
multilayer case recently referred to as deep neural networks. The deep neural network will
consist of K layers. We start with repeating eqn (6.6) describing the deep architecture.
In the feedforward pass, we calculate, layer by layer, postsynaptic activities, u(k), and the
output signals from each layer, z(k):

x(k)
n = z(k−1)

n , x̂(k)
n =

[
x(k)
n

1

]
, u(k)

n = W (k) · x̂(k)
n , z(k)

n = σ (u(k)
n) (7.25)

In the feedback pass, we calculate the delta errors as in eqns (7.12) and (7.20):

δ(k)n = σ
′(k)
n � e(k)

n , for k = K, . . . , 1 , e(K)
n = en = zn − yn (7.26)

together with the backpropagated errors as in eqn (7.19)

e(k−1)
n = W̄ (k)T · δ(k)n , for k = K, . . . , 2 (7.27)

Note that backpropagating error through the weight matrix as in eqn (7.27), we only take the
non-bias part of the matrix, W̄ (k).
For each layer, we can now calculate the weight updates as discussed in the previous sections,
either in the pattern mode:

∆W (k)
n = −η · δn(k) · (x̂kn)T (7.28)

or in the batch mode

∆W (k) = −ηzS(k) · X̂(k)T (7.29)

where S(k) and X(k) are matrices collecting delta errors and inputs to the given layer for all
patterns, respectively, that is:

S(k) =
[
δ1

(k) . . . δN
(k)
]
, X̂(k) =

[
x̂
(k)
1 . . . x̂

(k)
N

]

A.P. Papliński 70

Learning 8 SOFTMAX CLASSIFIER

8 Softmax Classifier

In sec. 1.3 we briefly mentioned classification aka pattern/object recognition as an example of
supervised clustering.
In the spirit of “deep learning” the network for object classification, aka classifier, consists of
K neuronal layers as discussed in the previous sections, in particular in 6.6, 7.1 and 7.5.
The final layer of the classifier has the number of outputs z equal to the number of expected
classes, say M . Traditionally, the objects to be classified are represented by feature vectors xn.
For each such vector, the expected output vector yn has unity at the position, say m, equivalent
to the expected class label, and zero at all other positions, e.g.

yn = [0 0 1 0 0 0]T , M = 6, m = 3

The real output would have maximum value at that position:

m = arg max(zn)

m = 3 in the example.
It seems more natural, to organize the real output to show the probabilities zn that the output
znm recognizes the input pattern with the label m. We could start with using sigmoidal logistic
function at all outputs (see sec. 6.4) so that the output values would be between zero and one.
Typically, to have a probability-like values we use a softmax function which is a generalization
of the logistic function. The softmax function is defined in the following way

zn = S(un) =
eun

1T · eun
, or znm =

eunm∑M
i=1 e

uni
, for m = 1, . . . ,M (8.1)

where un = W o · ẑ(K−1)
n , is a postsynaptic activity at the final layer of the neural network for

the nth pattern, see sec. 7.5, and 1 is a vector of all ones. It is easy to note that

M∑
m=1

znm = 1

In other words, the output of the softmax function zn for each pattern n, represents a proba-
bility distribution over M different possible outcomes of the classification process.

The Softmax Classifier uses the cross-entropy, that is, a negative logarithm of probabilities,
as its loss function. The cross entropy is “gated” by the expected probabilities yn. Hence we
have:

Ln = − log
eun�yn

1T · eun
= log(1T · eun)− un � yn (8.2)

where un � yn is a component-wise multiplication of two vectors. Note that yn is a vector
having a unity on position m. Therefore, un � yn has only one non-zero component at the
position m.

A.P. Papliński 71

Learning 8 SOFTMAX CLASSIFIER

In order to perform the gradient decent we calculate first the derivative of the loss function
with respect to the postsynaptic activities un. Differentiation of eqn (8.2) yields:

∂Ln
∂un

=
eun

1T · eun
− yn = zn − yn = en (8.3)

This is a very elegant results that states that the derivatives of the loss function are equal to
probabilities zni for the i 6= m and zni − 1 for the output matching the label of the pattern xn.
In other words, the derivative of the loss function wrt to postsynaptic activity as in eqn (8.3),
is simply equal to the nth error as specified in eqn (1.4).
Finally, we can calculate the gradient of the loss function wrt to weights. Let the final layer
performs the operations as described above:

un = W o · x̂on , zn = S(un) (8.4)

where, for simplicity, xon = z(K−1)
n is the input to the final layer. The gradient is:

∂Ln
∂W o

=
∂Ln
∂un

· ∂un
∂W o

= en · xoTn (8.5)

where the pattern error en = zn − yn. Note the outer product of the error and input vectors.
The pattern weight update is now

∆W o
n = −ηz · en · xoTn (8.6)

This equation is equivalent to eqn (7.28) for the pattern learning. Similarly for the batch
mode we can adopt the eqn (7.29)in the following form:

∆W o = −ηzSo · X̂oT (8.7)

where So and X̂o are matrices collecting delta errors and inputs to the given layer for all
patterns, respectively, that is:

So = [e1 . . . eN] , X̂o = [x̂o1 . . . x̂oN]

It has been shown that the convergence of the learning algorithms with the softmax function
works better if we add to the loss function of eqn (8.2) the regularization term equal to:

LR =
1

2
woT ·wo (8.8)

where

wo = vec(W o) = ↓W o

It is easy to notice that the gradient of the regularization term, LR is simply:

∂LR
∂W o

= W o (8.9)

A.P. Papliński 72

Learning 8 SOFTMAX CLASSIFIER

We can modify the batch weight update eqn (8.7) to become:

∆W o = −ηzSo · X̂oT − λW o (8.10)

Similar modification can be done to the pattern learning eqn (8.6).

8.1 A linear Softmax classifier example

In this section we consider the simplest case of a linear softmax classifier. For each input
pattern xn, the network calculates, for each mth output, probabilities zn that xn belongs to
the class k. It is expected that for correct classification, znm ≈ 1 for the mth output and ≈ 0
for all other outputs. The working of the network is described as follows:

un = W · x̂n , zn = S(un) (8.11)

where S() is the softmax function as in eqn (8.1) and W is the weight matrix obtained during
the learning procedure
It needs to be said that the linear classifier can work well only for the
linearly separable patterns. We explain this concept below.
For N patterns of dimensionality D belonging to M classes, we can re-write eqn (8.11)

U = W · X̂ , Z = S(U)

where X̂ is (D + 1)×N , W is M × (D + 1) and U,Z are M ×N .
In the example the 2-D pattern consists of M = 5 clusters of points, 20 points per cluster, so
that N = 100, as in Fig. 8–1.
The learning part of the code is as follows:

% M neurons ; Weights initialization

% the weight matrix W will be M by D+1 (including the bias)

W = 0.1*(rand(M,D+1)-0.5) ;

% learning/learning meta parameters

reg = 1e-3 ; % lambda in reqularization

eta = 5/N ; % learning rate

nepchs = 40 ; % number of learning epochs

L = zeros(nepchs,1) ; % total loss

LData = zeros(nepchs,1) ; % data loss

% learning

for epch=1:nepchs % the epoch loop

% Calculating the scores (postsynaptic activities) M by N

U = W*Xh ; % each column (stimulus) gives the class scores

% corresponding to the M classes

% the Softmax classifier -- the cross-entropy loss function

A.P. Papliński 73

Learning 8 SOFTMAX CLASSIFIER

0 5 10 15 20 25 30 35 40
0.6

0.8

1

1.2

1.4

1.6

1.8
Loss function

Training accuracy: 0.990

L
Ldata

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Data points and calculated class boundries

Figure 8–1: Left plot: evolution of the loss function L and the data loss function LD over the
learning epochs. Right plot: clusters of data points (circles) organized into M = 5 linearly
separable classes

ewx = exp(U) ; % is M by N

s_ewx = sum(ewx) ; % is 1 by N

Pr = ewx./s_ewx ; % probabilities, M by N, outputs Z

% selecting the correct probability for each class m

pk = sum(Pr.*YY) ; % is 1 by N , class probabilities

% data loss is an average cross entropy

LData(epch) = -mean(log(pk)) ; % mean of -log(probs(k))

LReg = 0.5*reg*(W(:)’*W(:)) ; % regularization loss

L(epch) = LData(epch) + LReg ; % total loss

gL = Pr - YY ; % gradient of LD,

% The weight matrix update (including the regularization)

dW = gL*Xh’ + reg*W ;

W = W - eta*dW ;

end % the epoch loop

% evaluate learning set accuracy

U = W*Xh ;

[~, Umx] = max(U) ;

tsacc = sum(Umx == Y)/N ;

The linear classifier works well only when the patterns are linearly separable. If this is not the
case. The results might look like those in Fig. 8–2.

A.P. Papliński 74

Learning 8 SOFTMAX CLASSIFIER

0 5 10 15 20 25 30 35 40
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15
Loss function

Training accuracy: 0.531

L
Ldata

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 1

Data points and calculated class boundries

Figure 8–2: Left plot: evolution of the loss function L and the data loss function LD over the
learning epochs. Right plot: classification of noisy spiral data which is not linearly separable

The three spirals are clearly not linearly separable. From the left plot in Fig. 8–2 it can be
seen that the loss function is nicely minimised, however, the learning accuracy is approximately
50%, that is, about half of the points are misclassified. The right plot in Fig. 8–2 shows the
location of points in three areas of classification. Equations of the straight lines separating the
regions are given by the weight matrix

W ·

 x1
x2
1

 = 0

In our case the weight matrix scaled by the central column is:

W = -2.20 1 0.05

0.01 1 -0.01

1.70 1 -0.01

so the equations of three lines can be approximated as:

−2.2x1 + x2 = 0 , x2 = 0 , 1.7x1 + x2 = 0

A.P. Papliński 75

Learning 8 SOFTMAX CLASSIFIER

8.2 A two-layer Softmax classifier spiral data example

In order to deal with patterns that cannot be separated by straight lines, or hyperplanes in
the case of higher dimensionality, we need to add nonlinear neuronal layers. For the example
of a 3-spiral pattern, we use a two-layer network as described in sec. 7.2. In the classification
multilayer networks it is typical to use the ReLU nonlinearity (see sec. 6.4) in hidden layer(s)
and to softmax at the output layer.
There are two basic ways to perform the learning procedure, in the pattern mode or the
batch mode.
In the case of the pattern learning mode, the weights are updated after each pattern is applied
to the network as in eqn. (7.28). The complete code is given in http://users.monash.edu/

~app/Lrn/Mtlb/sftMx2LyrPt.m

In the case of the batch learning mode, the weights are updated once per epoch, for all N
patterns as in eqn. (7.29). The complete code is given in http://users.monash.edu/~app/

Lrn/Mtlb/sftMx2Lyr.m

The learning part of the code is given below. Different lines of code for two modes are shown
side-by-side. The same line of codes are not repeated for two modes.

% learning parameters

% pattern learning % batch learning

etah = 5/N ; etah = 0.53/N ; % learning rate (hidden)

etaz = 1/N ; etaz = 0.09/N ; % learning rate (output)

reg = 1e-2/N ; reg = 1e-4 ; % lambda in reqularization

nepchs = 3000 ; nepchs = 8000 ; % number of learning epochs

L = zeros(nepchs,1) ; % total loss

LData = zeros(nepchs,1) ; % data loss

logpk = zeros (N,1) ; % pattern log(pk_n)

for epch=1:nepchs % the epoch loop

for n=1:N % pattern loop

% evaluate all signals in the 2-layer Neural Network

% first layer

% postsynaptic activities in the 1st (hidden) layer

uh = Wh*Xh(:,n) ; Uh = Wh*Xh ;

% ReLU nonlinearity and bias

zh = [max(0,uh); 1]; Zh = [max(0,Uh); ones(1,N)];

% second layer

% Calculating the postsynaptic activities (scores)

uz = Wz*zh ; % M by 1 Uz = Wz*Zh ; %M by Dh+1

% the Softmax classifier -- the cross-entropy loss function

ewx = exp(uz) ; % M by 1 ewx = exp(Uz) ; % M by N

s_ewx = sum(ewx); % 1 by 1 s_ewx = sum(ewx); % is 1 by N

% probabilities = outputs z_n

Pr = ewx./s_ewx ; % M by 1 Pr = ewx./s_ewx ; % M by N

% selecting the correct probability for each class -- class probabilities

pk = sum(Pr.*YY(:,n)); % 1 by 1 pk = sum(Pr.*YY) ; % 1 by N

A.P. Papliński 76

http://users.monash.edu/~app/Lrn/Mtlb/sftMx2LyrPt.m
http://users.monash.edu/~app/Lrn/Mtlb/sftMx2LyrPt.m
http://users.monash.edu/~app/Lrn/Mtlb/sftMx2Lyr.m
http://users.monash.edu/~app/Lrn/Mtlb/sftMx2Lyr.m

Learning 8 SOFTMAX CLASSIFIER

logpk(n) = log(pk) ;

% gradient of LData

gL = Pr - YY(:,n) ; gL = Pr - YY ;

% The weight matrix update (including the regularization)

dWz = gL*zh’ + reg*Wz ; dWz = gL*Zh’ + reg*Wz ;

Wz = Wz - etaz*dWz ;

% backpropagation from 2nd layer to the 1st layer

delh = Wz(:,1:end-1)’*gL ; % backprop error

% backprop through ReLU

delh(uh<=0) = 0 ; delh(Uh<=0) = 0 ;

% The weight matrix update (including the regularization)

dWh = delh*Xh(:,n)’ + reg*Wh; dWh = delh*Xh’ + reg*Wh ;

Wh = Wh - etah*dWh;

end % pattern loop

% data loss is an average cross entropy

% mean of -log(probs(pk))

LData(epch) = -mean(logpk) ; LData(epch) = -mean(log(pk)) ;

% regularization loss

Lreg = 0.5*reg*(Wh(:)’*Wh(:) + Wz(:)’*Wz(:)) ;

L(epch) = LData(epch) + Lreg ; % total loss

end % the epoch loop

In the pattern mode the time taken was 3 msec/epoch, total ≈ 9 sec The results of learning
are graphically presented in Fig. 8–3.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2
Loss function

Training accuracy: 0.953

L
Ldata

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 1

Data points and calculated class boundries

Figure 8–3: Left plot: evolution of the loss function L and the data loss function LD over the
learning epochs. Right plot: classification of noisy spiral data with two-layer neural network

In the case of the batch mode the time taken was 2 msec/epoch, total ≈ 9 sec. The results of
learning are graphically presented in Fig. 8–4.

A.P. Papliński 77

Learning 8 SOFTMAX CLASSIFIER

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.2

0.4

0.6

0.8

1

1.2
Loss function

Training accuracy: 0.990

L
Ldata

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 1

Data points and calculated class boundries

Figure 8–4: Left plot: evolution of the loss function L and the data loss function LD over the
learning epochs. Right plot: classification of noisy spiral data with two-layer neural network

Equations of three curves separating the patterns is given by:

F (x1, x2) = W o ·

 max(0,W h ·

 x1
x2
1

)

1

 = 0 (8.12)

where W o is M × (Dh + 1) = 3 × 101 and W h is Dh × (D + 1) = 100 × 3, the total of 603
parameters.
The learning accuracy is validated by calculating the maximum class probabilities and
comparing them with the expected class labels given by Y . The achieved learning accuracy for
one particular learning session is 95.3%. It means that nine patterns have been miss-classified,
since (N − 9)/N = 95.3%.
In general, no fundamental differences between two modes of learning have been identified. In
our example the pattern mode required less learning epochs, however the total learning time
was similar.
It is a good opportunity to consider options that could increase the training accuracy. Some
points to consider are as follows:

• For the two-layer case, we can increase the size of the hidden layer. More hidden neurons
shouls result in the increased accuracy.

• We could “go deep” adding more hidden layer. It typically works.

• We can try to use more complex learning algorithm. We use the basic gradient descent
algorithm. We could try, for example, the Adam algorithm described in sec. 4.5.

A.P. Papliński 78

Learning 8 SOFTMAX CLASSIFIER

8.3 The MNIST example: Hand-written digits classification

We will use the same code as in the previous section to create a neural network that can
recognize handwritten digits. The MNIST database of handwritten digits is available from
http://yann.lecun.com/exdb/mnist/. It contains a training set of 60,000 examples, and a
test set of 10,000 examples. Each example is a 28 × 28 black-and-white image of a hand written
characters.
The first problem to consider is how to represent an image in a form of an equivalent vector.
We adopt the simplest example of stacking the columns of the image to create a vector of
dimensionality D = 28× 28 = 784. We consider other possibilities later.
In our first experiment we train the network with only N = 5, 000 samples out of the total
60,000 to save on the computational time. As in the spiral case, we use a two-layer classifier
with ReLU non-linearity in the hidden layer and the softmax at the output. The number of
classes is equal to number of digits to be classified, that is, M = 10.
The number of hidden neurons has been set to Dh = 40. This time we use the pattern mode.
The complete code can be found in http://users.monash.edu/~app/Lrn/Mtlb/hndWrtnS.m.
We do not use the regularization term. During learning the loss function evolves as in Figure
8–5.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5
Loss function. Final value = 0.0117

Figure 8–5: Evolution of the loss function L during training the network for the handwritten
digit recognition

The training time for 500 epochs is just 239 sec on my Dell laptop. After 500 epochs we test
the results for the training set of N = 5, 000 and the accuracy is 100%, that is, all the training
patterns are correctly classified.

A.P. Papliński 79

http://yann.lecun.com/exdb/mnist/
http://users.monash.edu/~app/Lrn/Mtlb/hndWrtnS.m

Learning 8 SOFTMAX CLASSIFIER

Now we test the network for all 60,000 training example and then for 10,000 testing exam-
ples. The code for validation can be found in http://users.monash.edu/~app/Lrn/Mtlb/

hndWrtnSVld.m. The accuracy for both cases are 92.21% and 91.88%, respectively, or equiva-
lently, the test error rates are 7.8% and 8.1%. It should be compared with the results reported
in Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Docu-
ment Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998. The reported
error rate was 4.5% for a network of Dh = 1000 hidden neurons trained for all 60,000 examples
and tested with 10,000 testing images.

A.P. Papliński 80

http://users.monash.edu/~app/Lrn/Mtlb/hndWrtnSVld.m
http://users.monash.edu/~app/Lrn/Mtlb/hndWrtnSVld.m

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

9 Convolutional Neural Networks

9.1 Preliminary considerations

Convolutional neural networks (CNNs) are modifications of the deep neural networks considered
in sec. 6.6 and 7.5. CNNs have become standard tools in cases when the input data consist of
2-D objects like images. In this case CNNs eliminate one of the fundamental problem, namely
creation of the feature vectors that would represent objects in the image. It is expected that
the convolutional layers will find out the best features automatically.
In the MNIST example of sec. 8.3 the feature vector was created in the simplest possible way
just by stacking the columns of the image one upon the other. It is clearly visible that doing
so we seem to be loosing the neighbourhood information about the pixels. The pixels that are
adjacent in the image are located far-apart in the feature vector.
In this section we will present introductory concepts used in CNNs before formal definitions
given in the next sections. We start with the concept of the receptive field. The neighbour-
hood of each pixel contributes to the neuronal output signal through a related set of weights
organized into a filter aka kernel or mask. Typically, the filter is fixed for the given layer of
the network and the output signal is created using a 2D convolution operation:

U = conv2d (X,W) = W ?X (9.1)

where X represents an input image to the layer, U is the output image aka 2D feature map,
and W is a 2D filter aka mask aka kernel aka weight matrix. The ‘?’ is often used as a
convolution operator. The related MATLAB function is called conv2. The convolution is a
linear operator and conceptually replaces operation u(k)

n = W (k) · x̂(k)
n in eqn (7.25).

The simplest component of a convolutional layer might look like an example in Figure 9–1. It

σ

Input Image X

Mask W
at pixel xmn

Result of convolution U

N
on

li
n
ea

ri
ty

Output feature map Z

umnxmn

X
W

U Z

Figure 9–1: One layer of a simple convolutional neural network

is a 2D case, that is, a 2D 3×3 filter (kernel, mask, weight matrix) W is applied to an image
X using convolution operation as in eqn (9.1). For each pixel xmn and its eight neighbouring

A.P. Papliński 81

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

pixels the m,n neuron calculates umn as a sum of products of pixel values and corresponding
mask values:

umn = xm−1,n−1·w−1,−1+xm−1,n·w−1,0+xm−1,n+1·w−1,1
+ xm,n−1 · w0,−1 + xm,n · w0,0 + xm,n+1 · w0,1

+ xm+1,n−1· w1,−1 +xm+1,n·w+1,0+xm+1,n+1· w1,1

(9.2)

or
U = W ?X

After the linear part of a neuronal layer U , a typical non-linearity σ is included, so that the
output pixel (neuronal output) is calculated as:

zmn = σ(umn + b), or Z = σ(W ?X +B) (9.3)

where σ is any suitable activation function described in sec. 6.4, ReLU being a recent popular
choice, B being the bias for the layer. Z is typically referred to as a feature map.
The convolutional network of Figure 9–1 demonstrates two other concepts, typical to this type
of networks, namely, limited connectivity and the weight sharing. Comparing Figure 9–1
and eqns (9.2), (9.3) with Figure 6–3 and eqns (6.3) we note that each neuron is calculating
its output umn using input neurons from the receptive field only, 3 × 3 = 9 in the example,
rather than all input neurons as in the full connectivity case of the Figure 6–3. Additionally,
each neuron in Figure 6–3 has its own weight vector, whereas in the CNN of 9–1 only one mask
W k is used for the layer, so that neurons share the weights.

The next complication stems from the fact that objects like colour images are represented by,
typically, three 2D images. We can say that the colour image is represented by a 3D tensor. In
general, at each layer of a convolutional network the input can be represented by P -dimensional
tensor and the output can be a Q-dimensional tensor. Not to complicate the notation at this
stage too much, we can write for each q-th output feature map

Uq = convT (X,Wq) , for q = 1 . . . Q (9.4)

where X is a P -dimensional input tensor (e.g. colour image, P = 3), Wq is a P -dimensional
tensor filter, and convT represents a P -dimensional convolution operation. Related operation
in MATLAB is called convn.
In general (and in practice) we can have a number of filters W l in a given layer.

9.2 Convolution fundamentals

In this section we will cover details of two-dimensional convolution operation. You can skip
this section if you are familiar with the contents.

In a 2D case, we have an image/feature map X of size R× C: R

C

X =

x1
...

xR

A.P. Papliński 82

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

and a mask W of size r × c: r

c

W .

Each p, q pixel of the convolution of X and W can be calculated as:

Up,q = (W ?X)p,q =
r−1∑
m=0

c−1∑
n=0

Wm,nXp−m,q−n (9.5)

The resulting size P × Q of the convolution U depends on whether we allow the mask to be
partially outside the image borders, assuming that the image is padded with enough zeros
around its borders. If that is the case, then we have

p = 1, . . . , R + r − 1 , q = 1, . . . , C + c− 1 , P = R + r − 1 , Q = C + c− 1 (9.6)

If, on the other hand, we require the mask to be entirely inside the image borders, then we
have

p = r, . . . , R , q = c, . . . , C , P = R− r + 1 , Q = C − c+ 1 (9.7)

It maybe beneficial to know the difference between convolution and cross-correlation. Note
that if we replace in eqn (9.5) m,n with −m,−n, namely

Cp,q =
r−1∑
m=0

c−1∑
n=0

W−m,−nXp+m,q+n (9.8)

then the convolution becomes cross-correlation with the mask W being flipped over in both
directions (left-right and up-down). Such a flipped mask can be calculated as follows:

V = Jr ·W · Jc (9.9)

where J is an anti-diagonal identity-like matrix. J matrix is a special case of a permutation
matrix aka an exchange matrix. It is clarified in the following example:

V =

[
0 1
1 0

]
·
[

1 2 3
4 5 6

]
︸ ︷︷ ︸

W

·

 0 0 1
0 1 0
1 0 0

 =

[
4 5 6
1 2 3

]
·

 0 0 1
0 1 0
0 0 1

 =

[
6 5 4
3 2 1

]

The structure of eqn (9.5) clearly indicates that convolution is a linear operation. The ex-
pression describe how to calculate each point/pixel of convolution. Since it is a linear operation,
it must be possible to represent it in an equivalent matrix form. It can be shown that the con-
volution is a matrix product of specially formed block-matrices, the left convolution matrix
of order R, and the right convolution matrix of order c, rcmc, where R is a number of rows
in X and c is number of columns in W , that is:

W ?X = X ?W = lcmR(W) · rcmc(X) = lcmr(X) · rcmC(W) (9.10)

A.P. Papliński 83

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

where the convolution matrices are defined as follows:
The left convolution matrix lcmR(W) is composed of the weight matrix W replicated in
columns R times, each block shifted down by one row in the following way:

� c ·R -

lcmR(W) =

0 0 · · · 0
W 0 · · · 0

W 0 0
0 · · · 0
0 0 W
0 · · · 0 W
0 · · · 0 0

6

R−1

?

6

r

?

(9.11)

The size of the left convolution matrix is (R + r − 1)× (c ·R).

The right convolution matrix, rcmc(X), consists of one-dimensional convolution matrices
of order c formed from the rows of the image X:

� C+c−1-

rcmc(X) =

〈x1〉c
〈x2〉c
· · ·
〈xR〉c

6

R · c
?

(9.12)

where xk denotes the k-th row of the image X, and the angle brackets denote the 1-D convolu-
tion matrix. For a row vector x of length C, the one-dimensional convolution matrix of order
c, also known as the Sylvester resultant matrix [?, ?], is formed from the shifted vector x
in the following way:

〈x〉c =

x1 x2 · · · xC

x1 x2 · · · xC 0

0
.

x1 x2 · · · xC

6

c

?

� C+c−1 -

(9.13)

Therefore, the right convolution matrix is of size (R · c)× (C + c− 1). After multiplication of
left and right convolution matrices the resulting 2-D convolution matrix has the size (R + r −
1)× (C + c− 1).

A.P. Papliński 84

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

9.2.1 Numerical example

The following numerical example should clarify most of the details
http://users.monash.edu/~app/Lrn/Mtlb/gpconvEx1.m

X = 11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

61 62 63 64 65

71 72 73 74 75

size(X) = [R C] = [7 5]

W = 0.11 0.12

0.21 0.22

0.31 0.32

size(W) = [r c] = [3 2]

lcmWR = 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.21 0.22 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.32 0.21 0.22 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.31 0.32 0.21 0.22 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.31 0.32 0.21 0.22 0.11 0.12 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.32 0.21 0.22 0.11 0.12 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.32 0.21 0.22 0.11 0.12

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.32 0.21 0.22

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.32

size(lcmWR) = [R+r-1 c*R] = [9 14]

rcmXc = 11 12 13 14 15 0

0 11 12 13 14 15

21 22 23 24 25 0

0 21 22 23 24 25

31 32 33 34 35 0

0 31 32 33 34 35

41 42 43 44 45 0

0 41 42 43 44 45

51 52 53 54 55 0

0 51 52 53 54 55

61 62 63 64 65 0

0 61 62 63 64 65

71 72 73 74 75 0

0 71 72 73 74 75

size(rcmXc) = [R*c C+c-1] = [14 6]

A.P. Papliński 85

http://users.monash.edu/~app/Lrn/Mtlb/gpconvEx1.m

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

XCW = conv2(X, W) = lcmWR*rcmXc =

1.21 2.64 2.87 3.10 3.33 1.80

4.62 9.88 10.54 11.20 11.86 6.30

11.23 23.72 25.01 26.30 27.59 14.50

17.53 36.62 37.91 39.20 40.49 21.10

23.83 49.52 50.81 52.10 53.39 27.70

30.13 62.42 63.71 65.00 66.29 34.30

36.43 75.32 76.61 77.90 79.19 40.90

33.82 69.48 70.54 71.60 72.66 37.30

22.01 45.04 45.67 46.30 46.93 24.00

size(XCW) = [R+r-1 C+c-1] = [9 6]

9.2.2 The proof

The proof of eqn (9.10) is inductive over R.
For R = 1 the image X is reduced to a row vector x1 and from eqn (9.12) we have

rcmc(X) = x1

Eqn (9.11) is reduced to
lcm1(W) = W

The convolution of W and X is reduced to the well-known 1-D case, namely, to convolution of
each row of matrix W with a row vector x1, and can be written as

W ?X = W · 〈x1〉c = W ·

x1 x2 · · · xc

x1 x2 · · · xc 0

0
.

x1 x2 · · · xc

Assuming now that eqn (9.10) is true for some R, we will show that it holds for R+ 1. In this
case we have:

(W ?X)R+1 =

0R×c
lcmR(W)

W
0

·
rcmc(X)

〈xR+1〉c

=

=

[
lcmR(W)

0

]
rcmc(X)+

[
0R×c
W

]
〈xR+1〉c =

[
(W ?X)R

0

]
+

[
0R×c

W ? xR+1

]
=

[
(W ?X)R
W ? xR+1

]

which completes the proof.

A.P. Papliński 86

Learning 9 CONVOLUTIONAL NEURAL NETWORKS

9.3 A basic building block of a convolution Layer

The basic building block of convolutional layers, equivalent to fully-connected neuronal layers
presented, among others in sec. 7.5 and earlier in sec. 6.6, see also Figure 9–1, is presented in
Figure 9–2

Figure 9–2: A building block of convolutional neural networks

For simplicity of initial explanation we have ignored two facts. The first one is that the kth
convolutional layer consists, in general, of a number, say Lk, building blocks as in Figure 9–2,
hence we work with two set of indexes, e.g., X(k,l)

n . As a result the objects are three-dimensional
tensors represented by three dimensional arrays. The second simplification is that the entry
to each building block X(k,l)

n is not a matrix, but a Lk−1-dimensional tensor/array. Therefore,
we use a P-dimensional convolution as in eqn (9.4). Finally, keep in mind the sample index
n = 1 . . . N . Easy to get lost.

A.P. Papliński 87

	Introduction
	The scope of the report
	Generic problem formulation
	Classification of learning problems — modelling the data

	Linear mapping
	Linear Problem Specification
	Analytical solution
	Examples

	Fundamentals of Non-Linear mapping and learning algorithms
	Gradient descent methods
	The Newton method
	The Gauss-Newton and Levenberg-Marquardt algorithms

	More on non-linear learning algorithms
	Why gradient-decent algorithms are slow
	Examples of error surfaces
	Illustration of sensitivity to a learning rate

	Heuristic Improvements to the Back-Propagation Algorithm
	The momentum term
	Adaptive learning rate

	Line search minimisation procedures
	Conjugate Gradient Algorithms
	The Adam learning/optimization algorithm

	Expectation Maximization Algorithm in Point Set Registration
	Point Set Registration Fundamentals
	Expectation Maximization (EM) Algorithm
	Affine point set registration
	Rigid point set registration
	Nonrigid point set registration — Coherent Point Drift Algorithm

	Structure of Neural Networks
	Biological Foundations of Neural Networks
	A simplistic model of a biological neuron
	Models of artificial neurons
	Types of activation functions
	A layer of neurons
	Feedforward Multilayer aka Deep Neural Networks
	Two-layer neural network
	Example of a function implemented by a two-layer nnet

	Learning Algorithms for Feedforward/Deep Neural Networks
	Fundamentals of Error-Correcting Learning Algorithms
	Backpropagation of Errors in Two-layer nnets
	The Last (output) Layer
	The Hidden Layer
	Summary of learning in two-layer nnet

	Pattern and batch learning
	(Simple) example of function approximation
	Learning in deep neural networks

	Softmax Classifier
	A linear Softmax classifier example
	A two-layer Softmax classifier spiral data example
	The MNIST example: Hand-written digits classification

	Convolutional Neural Networks
	Preliminary considerations
	Convolution fundamentals
	Numerical example
	The proof

	A basic building block of a convolution Layer

