
A MULTIMODAL SELF-ORGANIZING NETWORK FOR SENSORY
INTEGRATION OF LETTERS AND PHONEMES

ABSTRACT
Integration of signals from sensory receptors of different
modalities is known to enhance perception. Integration
takes place in bimodal and multimodal association areas of
neocortex and results in robust bimodal or multimodal per-
cepts as well as in feedback mediated enhanced unimodal
perception. A Multimodal Self-Organizing Network, Mu-
SON, is presented as a tool for simulating sensory integra-
tion. This MuSON is a development of an earlier version
in that it takes into account also the degree of recognition
of stimuli in the various maps of the network. The simula-
tion results show the same characteristics as corresponding
results from psychology and neuroscience.
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1 Introduction

Many phenomena are manifest in two or more sensory
modalities. Such is, e.g., the case of speech which can be
seen in lip movements and heard. Bimodal or multimodal
integration of sensory information is advantageous in such
cases because the perception of the phenomena becomes
more robust against noise in one or more modalities. This
has been established in the case of audiovisual speech in
e.g. [1]. For an extensive review of studies in bimodal and
multimodal integration, see [2].

It has long been known that bimodal sensory integra-
tion takes place in association areas, e.g. in the superior
temporal polysensory area (STP), see e.g. [3, 4], but mul-
timodal convergence also occurs earlier in cortical sensory
processing see e.g. [5, 6].

There are different mechanisms for integrating sig-
nals conveying auditory and visual information onto a neu-
ral structure. Both feed forward (bottom up) connections
from lower levels to higher levels in the neural hierarchy
and feedback (top down) connections going in the oppo-
site direction serve to integrate information from different
sensory modalities, see e.g. [7, 8].

Both feed forward and feedback in neural processing
have been extensively studied. A presented stimulus will
cause a rapid feed forward sweep of activity with a short
delay at each hierarchical level [9]. This activity is subse-
quently modulated by feedback.

Feedback plays an important role in the processing
of audiovisual speech. Speech is processed in a network of

cortical regions, see [10] for a review, with early processing
taking place in sensory specific cortices [11, 5, 12]. Pro-
cessing for phoneme perception takes place in the left pos-
terior Superior Temporal Sulcus (STSp), see e.g. [13, 14].
Integration of the two modalities of audiovisual speech
takes place in the multimodal association area in the Su-
perior Temporal Sulcus (STS) and the Superior Temporal
Gyrus (STG) [12], located between the sensory-specific au-
ditory and visual areas.

Audiovisual speech exists in two forms, lip reading
and hearing and reading letters and hearing. In both forms
the auditory perception is enhanced compared to purely
auditory speech, see [15, 16]. The activity in unisensory
auditory cortex is increased due to feedback from the bi-
modal area in the STS to auditory cortex [17, 18]. Letters
are processed in unisensory visual cortex in or close to the
left fusiform gyrus, see [19, 20, 21]. Bimodal integration
of phonemes and letters takes place through feed forward
processing in the STS [22, 18].

We have earlier [23, 24, 25, 26] modelled the pro-
cessing of phonemes and letters in the sensory-specific ar-
eas and in the bimodal association area. We used a mul-
timodal self-organizing network (MuSON), consisting of
maps with phonetic and graphic inputs respectively, and an
integrating bimodal map, corresponding to the cortical ar-
chitecture described above. Feedback from the bimodal as-
sociation area to the auditory cortex was also modelled in
the auditory module.

With this model we have demonstrated [24, 25] that
bimodal percepts are robust against additive noise in the
letters and phonemes and that this robustness of the bi-
modal percepts is “transferred” down the auditory process-
ing stream by feedback. The results from simulations with
this model suggest that we hear a noisy phoneme better
when we see the corresponding uncorrupted letter.

The feedback from the bimodal area to the auditory
area should cause activity there even in the absence of au-
ditory stimuli, provided a visual stimulus is present. It has
been shown that there is activation in auditory cortex dur-
ing lip reading [5], even though the sound has been elimi-
nated. In this paper we will show that our model also ex-
hibits this property. To do this we extend our model further
with more versatile modules than we have previously been
using [24, 25].



2 The multimodal self-organizing network

Self-organizing neural networks have been inspired by bi-
ological neural systems. Kohonen Self-Organizing Maps
(SOMs) are well-recognized and much researched tools for
mapping multidimensional stimuli onto a low dimensional-
ity (typically 2) neuronal lattice, for an introduction anda
review, see [27]. In this paper we will employ a network of
interconnected modules, referred to as a Multimodal Self-
Organizing Network (MuSON), see [23, 24, 25], consisting
of SOMs and SumSOMs (Summing Self-Organized Maps).
The SumSOM is introduced in this paper to enable the Mu-
SON to fuse signals from different modules while taking
their adherent activity levels (i.e. intensities) into account.

We first consider our previous feedforward Multi-
modal Self-Organizing Network (MuSON) as depicted in
Figure 1. The pre-processed, sensory stimuli,xlt and
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Figure 1. A two-level feedfoward-only Multimodal Self-
Organizing Network (MuSON) processing auditory and vi-
sual stimuli consisting of Kohonen maps (SOMs). The
auditory stimuli are processed inSOMph, and the visual
stimuli in SOMlt. Bimodal integration then takes place in
SOMbm.

xph form the inputs to their respective unisensory maps,
SOMlt and SOMph. Two-dimensional outputs from these
maps,ylt andyph, are combined together to form a four-
dimensional stimulus for the higher-level bimodal map,
SOMbm. The training of these maps is done in sequen-
tial order with the sensory maps being trained first where-
upon the bimodal map is trained with concatenations of the
winner neuron positions, in the two former maps, for cor-
responding sensory inputs. All maps are trained according
to the well-known Kohonen learning law, see [23, 24] for
details. After self-organizations each map performs a map-
ping of the form:y(k) = F (x(k); W, V ), wherex(k) rep-
resents thekth stimulus for a given map,W is the weight
map, andV describes the structure of the neuronal grid.
The 2-D output signaly(k) gives the 2-D position of the

winner.
We will now extend this MuSON with the intention

of incorporating feedback, from the bimodal to the audi-
tory processing unit, and enhancing its ability to exchange
information between different processing units. This lat-
ter enhancement makes use of the activity levels generated
by the processing units. Since the activity level of a neu-
ron reflects how well its input agrees with previous training
data, the response grading thus correlates with how well
the submitting unit recognizes its input. Thus, as a con-
sequence of this enhancement the units can communicate
graded responses and these gradings can then be used to
perform weighted response fusion. To carry out this fusion
while also taking the degree of congruency between the re-
sponses into account, relations between the signals pending
fusion have to exist, and these relations must be exploited
using a technique that yields a fused signal that is meaning-
ful.

3 A MuSON with SumSOMs

In this extended architecture we utilize SOMs whose out-
put signals do not merely consist of the positionv of a win-
ner neuron, resolved via the structural descriptionV as be-
fore, but also the activity levela of this neuron. To fuse
two outputs of this kind in the desired way we employ sig-
nal transformation and postsynaptic activity combination.
More specifically, we introduce a neuronal network con-
figuration SumSOM which, using the two mentioned con-
cepts, integrates a pair of outputs coming from Kohonen
SOMs and/or SumSOMs and classifies this integrated sig-
nal. The transformation is applied to at least one of the
SumSOMs incoming signals, prior to integration, to permit
the integration step to be straight-forward.

The SumSOM produces an output of the same kind
that the standard SOMs do; a classification coded as a 2-
D position of maximum activity and the activity level at
that location. Therefore, the output from a SumSOM can
be interpreted the same way as the output of the standard
SOM. Our intention is for these SumSOMs to be seen as
extensions to Kohonen’s SOMs, allowing the processing
of more than one input signal while replicating the SOMs
behaviour during its application phase.

We employ this configuration with two variations; one
in which the output from one SOM is transformed in or-
der to enable modulation of the postsynaptic activity field
of another, and one in which the output signals from two
SOMs are both transformed so that the fused response may
lie in a space that differs from both of the SOMs output
spaces. We call the former variation a SumSOM of type 1
and the latter a SumSOM of type 2.

An outline of the extended architecture, using the de-
scribed configurations as building blocks, is depicted in
Figure 2. Initializing this architecture requires that thethree
maps discussed in section 2 are already organized as de-
scribed. The initialization essentially consists of automati-
cally arranging the neuron weights in the SumSOMs, using



data from the three self-organized maps, in such a way that
congruent inputs to them produce correctly fused outputs.
More detailed accounts of how this is done are presented in
section 4. What is important to note is that the additional
initialization steps needed here does not alter the organiza-
tions produced by the previous training. Nor does it need
any manual interventions if the network is reset and the
training process restarted.

The same sensory stimuli as previously are input to
the sensory processing units here, viaxlt andxph. The
feedback signals,vbm andabm, going from the bimodal
to the auditory processing unit are undefined from the out-
set resulting inxph being fused with a weak noise signal.
The two sensory units output the positions of their respec-
tive maximum activities, onvlt andvph, along with the
magnitude of these activities, onalt andaph. The bimodal
processing area then fuses these signals and feeds its clas-
sification contained invbm back to the auditory SumSOM
together with the activity levelabm. Processing in the audi-
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Figure 2. A two-level MuSON with feedback process-
ing auditory and visual stimuli. The MuSON consists of
SOMs and SumSOMs. SumSOMs combine signals that
may come from SOMs and/or SumSOMs.

tory unit is modulated by this feedback, resulting in a new
output, and this recurrent process continues until it either
converges or reaches a maximum number of allowed itera-
tions.

4 SumSOM details

Figure 3 shows a schematic of a type 1 SumSOM which
thus integrates the output of a SOM, coming in onv1 in

anda1 in (as a 2-D position of a neuron and its activity),
with the postsynaptic activity field of the other SOM, la-
belledSOM0. The main prerequisite for initializing the
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Figure 3. Outline ofSumSOMType1 which fuses the in-
put,(v1 in, a1 in), coming from a SOM/SumSOM together
with SOM0’s response.

neuron networkTM1 in a way that enables the SumSOM to
achieve a meaningful integration of its training data is that
there is a one-to-one correspondence between thexSOM0

training data set and training data set of the SOM that gen-
erates the signals coming in onv1 in. Assuming this pre-
requisite is fulfilled and that both SOMs are already orga-
nized the initialization ofTM1 aims at enabling it to be-
come a transformation map that transforms its inputs into
SOM0’s output space. The initialization begins by letting
the neural lattice inTM1 be of the exact same type as in
SOM0. The weights ofTM1’s neuronsW1 are then mod-
ified in such a way that the winner in this network has the
same position as the winner inSOM0 for each correspond-
ing pair< xSOM0

; v1 in > in the training data. A neuron
that did not get its weights modified by the previous pro-
cedure gets assigned with a varied version of the weight
vector of its closest neighbouring neuron that did. This
variation depends on the distance between the two neurons
and the angle of the straight line connecting them. The
aim is to create patches in the transformation network that
become highly active for the training samples ofv1 in, as
well as for small variations of those samples, that coincide
with the patch of maximum activity that appears inSOM0

for the corresponding training samples ofxSOM0
. When

all neurons have been assigned weights, the initialization
phase is completed by nullifying the weights of all those
neurons that are located on patch peripheries. This last step
is merely done to ease visual interpretations of the map’s
postsynaptic activity surfaces.

Having trained and initializedSOM0 andTM1 re-



spectively, SumSOMType1 fuses its input pairs together by
transforming and superposing the induced activity fields of
its neuron networks, treats the result as an integrated re-
sponse field, and forms the fused output as location and in-
tensity of the maximum activity in this field. In detail, the
respective activity fields inSOM0 andTM1, caused by in-
puts on< xSOM0

; v1 in >, are forwarded asΦSOM0
and

Φ1. To bring about a combination of these fields that re-
flects how well the stimuli are recognized,ΦSOM0

is multi-
plied with g(aSOM0

) while Φ1 is multiplied withg(a1 in),
where the functiong rescales activity levels in a way that
adequately amplifies the difference between high and low
activities. Prior to these multiplications the activity field Φ1

is transformed using the functionf which subtracts the min-
imal positive activity level from the field and then rescales
all levels equally with the factor needed to restore the peak
activity to its original magnitude. One way of viewing this
operation is to interpret it as a kind of lateral inhibition,and
it is aiming to make the maximal activities in the transfor-
mation map more prominent. Once these operations have
been performed the activity fields are superimposed and
rescaled with the constant1

2
, forming a new fieldΦfused

that is functionally comparable to those created by the two
dimensional neuronal lattices that our Kohonen maps con-
sist of, and the same methods of determining the maximum
activity’s position and the activity intensity can be used,
thereby forming the unit’s output(vout, aout).

The other variation of our SumSOM allows us to per-
form weighted signal fusion of outputs coming from two
SOMs (and/or SumSOMs) while replicating the responses
of a third (a template SOM). A schematic is shown in fig-
ure 4. As withSumSOMType1, setting up meaningful in-
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Figure 4. Outline ofSumSOMType2 which fuses to-
gether the outputs,(v1 in, a1 in) and(v2 in, a2 in), of two
SOMs/SumSOMs.

tegration of the inputs of aSumSOMType2 requires a one-
to-one correspondence of the training data set that gener-
ates the signals onv1 in andv2 in. Additionally, the setup
phase of a type 2 SumSOM also needs an external tem-

plate that dictates the resolution of the SumSOM’s response
field and supplies a predetermined winner position for each
corresponding pair in the training data. Here, the template
consists of a Kohonen SOM that has been trained with the
concatenations of the SOMs’ signalsv1 in andv2 in gener-
ated when these are presented with corresponding samples
of the training data (i.e. as described in section 2). Set up
thus begins with letting the neuron lattices in bothTM1 and
TM2 be of the exact same type as in the template SOM.
The weights of these networks are then assigned so that
corresponding training signals onv1 in andv2 in yield the
same positions of winner neurons in both networks and that
these positions agree with the winner positions generated
by the template SOM. Initialization of the both maps con-
cludes as withTM1 in the type 1 SumSOM as described
earlier.

The operation of aSumSOMType2 after it has been
initialized is similar to that of aSumSOMType1. Input
signals received via< v1 in; v2 in > induces activity
fields in the two transformation mapsTM1 andTM2. Be-
fore these activity fields are superposed they are both trans-
formed, through the application of the functionf , to in-
crease the numerical significance of the maximum activity
levels. The altered fieldsf(Φ1) andf(Φ2) are also rescaled
with g(a1 in) andg(a2 in), respectively, whereg has the
same purpose as previously described. After superposition
the combined field is element-wise multiplied with the con-
stant 1

2
and the resultΦfused is the unit’s response field.

The position of the peak activity and its magnitude are re-
spectively output viavout andaout.

5 The maps for letters, phonemes and bi-
modal percepts

The pre-processed stimuli inputsxlt andxph to the letter
and auditory processing maps consist 22- and 36-element
vectors respectively. The pre-processing of stimuli is de-
scribed in [24]. Resulting self-organized maps for letters
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Figure 5. Patches of highest activity for labelled letters and
phonemes after self-organization. In the letter map the re-
sponse field consist of the output signals of36 × 36 neu-
rons. The phoneme map’s response field is composed of
2 × (36 × 36) fused neuron signals.



and phonemes are shown in Figure 5. For a discussion of
these maps and the phonetic typewriter from 1988 by Ko-
honen, see [24, 25, 28, 27].

The patches in Figure 5 cover populations of neurons
which show the highest activity for their respective stimuli.
These neuronal populations constitute the detectors of the
respective stimuli.

The bimodal map integrates letters and phonemes as
shown in Figure 6. The similarity characteristics of this

Bimodal map
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Figure 6. Bimodal map. Patches of highest activity for la-
belled letter/phoneme combinations after self-organization.
Response field consists of2 × (36 × 36) fused neuron sig-
nals.

map are derived from the placement of the patches in the
letter and phoneme maps and thus only indirectly reflect
the features of the letters and phonemes.

The maps in Figures 5 and 6 have been obtained
through self-organization of the original MuSON summa-
rized in section 2 and have been retained in the extended
MuSON by initialization in the expanded MuSON of Fig-
ure 2.

6 Robustness of the bimodal percepts and
the recoded phoneme map against uni-
modal disturbances

When uncorrupted letters and corrupted phonemes are pre-
sented to the extended MuSON, the resulting bimodal per-
cepts are very stable against the corruption of the phonemes
as are the auditory processing results due to feedback from
the bimodal map. As stated in the introduction, this is an
important advantage of sensory integration.

We choose to illustrate this with the uncorrupted let-
ter p and the corrupted phonemep in Figure 7. It is seen
that the auditory processing at first yields a borderlinet.
But after only one loop through feedback the classification
changes to ap, and after six loops the activity peak has
reached the ideal position; the position for an uncorrupted
phonemep. The initial bimodal percept is within the neu-
ronal patch forp and reaches the ideal position forp after
five loops. This very powerful corrective action against cor-
ruption is typical for all letter and phoneme pairs.
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Figure 7. The peak activities through loops are shown
as dots and symbols on the progression curves. The
◦-symbols show the initial positions of these activities.
Phoneme corruption consists of mixing the uncorrupted
versionsp andt together.

7 Activation of auditory cortex by visual
speech alone

As stated in the Introduction there is activation of parts of
auditory cortex during silent lip reading [5]. We will here
show how this effect of sensory integration, based on the
model given in [18], is also manifest when visual speech
consists of letter reading. Silence in our experiment is char-
acterized by very low initial activity in the auditory pro-
cessing; this level has been chosen to be approximately
10% of the activity caused by an uncorrupted phoneme. Si-
lence will have an initial winner position in the auditory
processing map, but the coordinates of this position be-
comes unimportant in the subsequent processing since the
adherent activity level is low. Figure 8 depicts the results
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Figure 8. The MuSON received “silence” and the letteri.
Initial peak activity in the auditory unit is indicated by the
symbol◦.

from a simulation run of our extended MuSON when it has
been presented with the letteri together with “silence”: The
maximum activity in the auditory processing unit is located
at the ideal position after only one feedback loop, whereas
the bimodal percept immediately manages to dampen the



weak auditory signal sufficiently for it to not have an in-
fluence. The peak activity levels generated by both units
are somewhat lower compared to the levels attained when
the MuSON is presented with the uncorrupted phonemei

instead of silence.

8 Conclusion

We have shown that modelling bimodal integration of au-
diovisual speech consisting of phonemes and letters with
our extended Multimodal Self-Organizing Network yields
results that agree with known results from psychology and
neuroscience.
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[14] R. Möttönen, G. A. Calvert, I. Jääskeläinen, P. M.
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