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Abstract—We have derived a novel rotation-invariant feature
vector, or signature, for two-variable functions like images.
The feature vector is calculated as an angular integral of the
Radon transform of the function. Three such feature vectors
are calculated for each colour image. Subsequently, these feature
vectors are used to categorize colour images in a network of
3+1 self-organizing modules. The 3-D ‘labels’ produced by the
first level modules are used by the second level modules and
can be thought of as a “universal neuronal code”. The network
is trained for un-rotated images and then tested for rotated
images. It has been demonstrated that rotation of images by the
angles included in calculation of the Radon transform results
in the perfect categorization. For the angles in between, that
is, those not included in the Radon transform, a small shift in
categorization might occur, keeping, however, the objects well
inside their clusters. Since calculation of the rotation-invariant
feature vectors is very simple and involves only summations of
signals (pixel values), hence very fast, it is postulated that such
a mechanism might be included in the biological vision systems.

Index Terms—Computer vision, Rotation invariance, Radon
transform, Image categorization, Self-organizing networks, Sig-
nature function

I. INTRODUCTION

This paper is continuation and generalization of considera-

tions presented in [1] where we investigated the problem of ro-

tational invariance of binary images of characters. Rotation and

scale invariance, a special case of the affine transformation, is

the central issue of object recognition in computer vision. The

current most popular and dominating directions in invariant

visual recognition are based on a variety of local descriptors

(e.g. [3], [4], [5]). Three groups of methods, namely, the Scale

Invariant Feature Transform [6] (SIFT), PCA-SIFT [7] and the

“Speeded Up Robust Features” (SURF) [8], seem to dominate

the field. A comparison between the three methods is given

in [9]. In [10] a rotation-invariant kernels are discussed in

application to shape analysis. All the above methods deliver

impressive results in object recognition. Although the speed

of the methods has improved significantly, by their nature,

the algorithms used are multistep recursive procedures and

as such, are difficult to be considered as good candidates for

models of human vision, where the speed is a survival issue.

In our work we concentrate on the problem of categorization

of objects. The key to object categorization is the problem of

identifying the image features that are used to classify the

objects into categories using some learning technique. At the

sensory, or receptive field level, we use features based on the

Radon transform that seem to work very well in the problem

of rotation invariant categorization of object.

The Radon transform has a long history of application in

computer tomography, and relatively recently has been applied

in a variety of image processing problems. The first to our

knowledge such an application is presented in [2] where the

Radon transform and SVD is used to create features used

by the classifier. Subsequently, the Radon transform is used

in conjunction with other transforms, wavelet and Fourier

included. Magli et al. [11] and Warrick and Delaney [12] seem

to initiate the use of the Radon transform in combination with

the wavelet transform. More recently, a similar combination of

transforms has been used in rotation invariant texture analysis

[13], [14], and in shape representation [15]. Other approach

to rotation invariant texture analysis uses the Radon transform

in combination with the Fourier transform [16]. Chen and

Kégl [17] consider feature extraction using combination of

three transforms: Radon, wavelet and Fourier. In [18], texture

classification is performed by using a feature descriptor based

on the Radon transform and an affine invariant transform.

Miciak [19] describes a character recognition system based

on the Radon transform and the Principal Component Analysis

(PCA). Hejazi et al. [20] present the discrete Radon transform

in rotation invariant image analysis. Close to our considera-

tions are object identification problems discussed by Hjouj and

Kammler in [21].

In the above papers the reader can find many variants of

detailed description of the Radon transform and its properties.

Here, we can only reiterate the basic fact that Radon transform,

Rf(θ, s), is composed of sums of pixels along the line that

crosses the visual object under the angle θ at the distance s

from the origin. It can be noted that the Radon transform of

the image rotated by a known angle, α, can be easily inferred

from the transform of the un-rotated image (see below). This

property makes the Radon transform attractive in rotation

invariant vision systems.

II. GENERAL OBJECTIVE

We consider rotated colour images represented by three

matrices in the RGB colour space. The meaning of the images

is insignificant in our considerations, and only their visual

appearance is taken into account. For the ease of labeling,

the images contain animals. We use 64×64 images, although

their size influences only the total learning time. An example
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of an image ‘baboon’ and its version rotated by 30o is given

in Fig. 1. The icons derived from all other images used can

Fig. 1. The ‘baboon’ image and its version rotated by 30
o

be seen in Fig. 4.

The network of self-organizing modules is trained to cate-

gorize the un-rotated images. The training vectors are based

on the Radon transform of the images. The Radon transform

is performed for a number of angles, θi. After the training

is completed, the network will be excited with the rotated

copies of the images. We show that if images are rotated by the

angles θi used in calculation of the Radon transform, then the

categorization is perfect, exactly the same as for the un-rotated

images. For all other angles, there is a small categorization

error that does not imperil recognition in any way. In addition,

the process is very fast, hence might be applicable in human

vision. This is really an encouraging result.

Another problem indirectly considered here is related to

our quest for a universal “neuronal code”. Following our

other works, e.g. [22], [23], we demonstrate that for the

categorization purposes, the images are internally represented

by a set of 3-D values, or labels, conceptually representing

the positions of the winners in the first level maps and related

post-synaptic excitations. These labels are then used by the

second level module producing the final mapping. Although

we do not claim biological fidelity of such representation, we

nonetheless consider it as a viable conceptual possibility.

III. RADON TRANSFORM AND ROTATION INVARIANCE

The Radon transform [24] of a continuous function of two

real (or one complex) variables f(z), where z = x+jy, is the

integral transform Rf(θ, s) consisting of an integral of f(z)
over straight lines z(t) = ejθ(s+ jt) (see Fig. 2a).

Rf(θ, s) =

∫ +∞

−∞

f(ejθ(s+ jt))dt (1)

where θ is the slope of the line (or ray), s is the distance

of the line from the origin, and t ∈ (−∞,+∞) is the line

parameter, such that for t = 0 the line goes through the point

z(0) = sejθ as indicated in Fig. 2a.

Now, assume that the function f(z) is rotated around the

origin by the angle α and calculate the Radon transform of

such a rotated function. In the complex domain the rotated
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Fig. 2. The Radon Transform in the continuous (a) and discrete (b) space.

function is f(zejα) and the Radon transform of the rotated

function is:

Rf(θ, s;α) =

∫ +∞

−∞

f(ej(θ+α)(s+ jt))dt = Rf(θ + α, s)

(2)

This simple, but a very powerful relationship says that the

Radon transform at the point (θ, s) of a function rotated by

the angle α is equal to the Radon transform of the original,

un-rotated function calculated at the point (θ + α, s). From

(2) we can derive some practical methods of calculating

the Radon transform specifically suited for discrete space

functions like images. With reference to Fig. 2b, where we

consider a rotated image-like function in the discrete space,

we can note that it might be more accurate to rotate the image

(locations of its pixels) rather than the summation lines in

the Radon transform. In other words, according to (2), in

order to get Rf(θ, s) we rotate the image by the angle −θ
and calculate the Radon transform for the vertical lines, since,

Rf(θ−θ, s) = Rf(0o, s). Hence, in the discrete case, we just

sum the values of the pixels located in the strip (s−0.5, s+0.5]
without any need for image interpolation.

Now we can consider the central for our considerations

problem of forming from the Radon transform Rf(θ, s) a

feature (or signature) function, say, h(s) that can be used

to categorize the function f(x, y) in general, and images in

particular, in a rotation-invariant fashion. An obvious solution

to create such a signature is to integrate the Radon transform

Rf(θ, s) over all angles. This gives the following angle

independent result:

h(s) =

∫ 2π

0

Rf(θ, s)dθ (3)

Such a feature (signature) function h(s) retains some char-

acteristics of the original function f(x, y), but the angular

dependency is removed. That is exactly what we need to

achieve the rotational invariance.

In the discrete case, with reference to Fig. 2b, we can

observe that the size of the feature vector h will be equal

to the diagonal of the image grid. In the examples that follow,

we use 64×64 images, hence the size of the feature vector h

is equal to n = ⌈64
√
2⌉ = 91.
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Fig. 3. The structure of the network for rotation invariant categorization of colour visual objects

To conclude the general considerations of this section

we observe that general definition of the Radon Transform

specifies integration along the set any continuous line. In

particular, we could consider a set of circles. This gives an

interesting relationship to polar coordinates that needs to be

fully investigated. The reader could start with [25] where

rotation and scale invariant texture classification based on log-

polar wavelet signatures was considered.

IV. THE STRUCTURE OF THE NETWORK FOR ROTATION

INVARIANT CATEGORIZATION OF COLOUR IMAGES

The structure of the network for the rotation invariant

categorization of colour image is presented in Fig. 3. At the

entry to the network there are three receptive fields marked R,

G an B in Fig. 3. The three planes of the rotated, in general,

colour images are presented at their respective receptive fields.

The second part of the network are summing dendrites webbed

over the receptive fields that calculate the Radon transform

for each image colour plane. The dendrites are equivalent to

the Radon transform rays summing the values of the pixels

located at the rays and at their proximity as in (2) and Fig. 2.

In the example presented in Fig. 3, for each receptive field we

calculate the Radon transform for m = 6 angles θ and n = 8
lines located at s. In the computational example with images

that follows, we use m = 60 angles:

θ ∈ [0o, 6o, 12o, . . . , 354o] (4)

and n = 91 lines located at the integer values of s

−45 ≤ s ≤ +45 (5)

The next part of the network, above the receptive fields,

are circular summing dendrites calculating the feature vectors

hR,hG,hB as in (3). It is important to note that these two

parts of the network are fundamentally simple, performing

only signal aggregation (summation) which is the most basic

biological operation. Therefore, for each image presented at

the receptive fields, the three feature vectors are calculated

“instantaneously”.

The categorization part of the network consists of two-

level self-organizing modules. Each colour self-organizing

module, e.g. ‘ImgR’, contains a randomly generated number

of neurons, approximately 1000, proportional to the number

of images being classified which is 24. The number of neu-

rons is not critical and has not been optimized in any way.

Each module, e.g. red, produces a 3-dimensional output yR

calculated as:

yR = g(WR · hR) (6)

where yR represents output signals from the module, and g(·)
describes the Winner-Takes-All function of WR ·hR, which

produces a 2-D positional vector v and related postsynaptic

activity d forming the output yR = [v d]. Such 3-D outputs

can be thought of as low dimensional signatures, or labels,

and can be used in the next hierarchical levels of modules.

We postulate that conceptually yR is a good candidate for

the internal “universal neuronal code”. In our specific case,

those 3-D labels form a 9-dimensional input vector to the final

module ‘ImgRGB’ that performs the final categorization of

images according to:

yRGB = g(WRGB · xRGB) (7)

where xRGB = [yR yG yB ] is a 9-D concatenation of the

first level outputs.

V. WORKING OF THE NETWORK

A. Training

For training we use a set of 24 colour images of the size

64×64 pixels in the RGB space. An example of such an



image is given in Fig. 1. Each image is then represented by its

rotation-invariant feature vectors hR,hG,hB , which are used

as afferent signals to the respective self-organizing modules.

Since the feature vectors are already rotation-invariant, for

training we can use either rotated or un-rotated images. Re-

using existing software, we normalise the data (images) and

the neuronal grid, and project them on the respective unity

spheres. This makes it possible to use a simplified ‘dot-

product’ Kohonen learning law [26]. In this case the update

of a weight vector wi for the ith neuron is described by the

following expression:

∆wi = η · Λi · (xT − di ·wi) ; di = wi · x (8)

where Λi is the neighbourhood function, Gaussian in our case,

centered at the position of the winning neuron, and di is the

post-synaptic activity of the ith neuron. The computational

simplification is that the distances between vectors are cal-

culated by their dot-product, which is equal to the cosine

of the angle between them. The result of learning are four

Red Module
ADec03h1454

Green Module
ADec03h1454

Blue Module
ADec03h1454

Final Module
ADec03h1454

Fig. 4. Three first-level R, G, B maps and the final map representing
categorization of colour visual object

maps describing locations of images on a neuronal grid as

in Fig. 4. There are three first level maps, for the R, G

and B components of the colour images, and the final map

incorporating information from the constituent maps as in (7).

B. Testing 1

After training we test the working of the network when

rotated images are applied to the receptive fields. Firstly, we

rotate images by the subset of 10 angles from (4), namely,

α ∈ 30o, 60o, . . . , 330o. The results of categorization of these

rotated images are perfect, as presented in Fig. 5. Instead of

icons as in Fig. 4, for clarity we use the names of the visual
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Fig. 5. The result of testing categorization of visual objects rotated by a
subset of angles used in the Radon transform

objects located at the position of the winner. What we see in

Fig. 5 are names superimposed on each other 11 times. This

is really an amazingly “boring” result, as predicted by (3) and

subsequent considerations. The rotated objects are categorized

exactly as un-rotated ones.

We note, that we can set up the number of the Radon

Transform angles used in training to the required accuracy.

C. Testing 2

It is interesting to test the behaviour of the network when

it ‘sees’ images rotated by angles different than those used

to calculate the Radon transform and the resulting feature

vectors hR,hG,hB . In this test we use rotation angles

α = −18o,−16o, . . . , 16o, 18o. The results of applying such

images to the network are presented in Fig. 6a,b,c. Inspecting

the mapping in Fig. 6a we can see that for some images there

is a shift in position of the winner. This mapping error is

shown in Fig. 6b. The numbers show the average shift of

the position of the winner for the rotated images. It can be

seen, that “perceptually”, the rotated images are well inside

the clusters related to a specific stimulus, see Fig. 4. To put

some measure against the perception, in Fig. 6c we show

the confidence level measured by the postsynaptic activity in

module ‘ImgRGB’ (see Fig. 3). For the perfect “perception”,

the postsynaptic activity, measured by the inner product of the

stimulus and the respective weight vector, is equal to unity. It

drops a bit for the angles that were not included in the Radon

transform as shown in Fig. 6c. The maximum equivalent

angular error between the stimulus and the respective weight

vector is arccos(0.9999) < 1o. The result demonstrates that

the network can easily generalized for the angles not included

in the Radon transform.

VI. CONCLUSION

We have presented a network of self-organized modules that

can correctly categorize colour objects in a rotation invariant
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Fig. 6. The result of testing categorization of images rotated by angles not
included in the Radon transform: (a) The mapping of the rotated images, (b)
an average mapping error, (c) The confidence level

fashion. At the foundation of the solution is a novel rotation

invariant feature vector, which in the continuous space is

formed as the angular integral of the Radon transform of a

function of two variables as in (3). In the case of colour

images three Radon transforms and related feature vectors are

calculated. These feature vectors are used to categorize colour

images in a network of 3+1 self-organizing modules. The 3-D

outputs from the first layer modules are considered to be labels

used by the higher-level self-organizing modules and can be

thought of as a “universal neuronal code”. In our specific case

three 3-D labels from the first layer form the 9-D afferent

vector for the second layer. The network is trained for un-

rotated images and then tested for rotated images. It has been

demonstrated that rotation of images by the angles included

in calculation of the Radon transform results in the perfect

categorization. For the angles in between, that is, those not

included in the Radon transform a small shift in categorization

might occur, keeping the objects, however, well inside their

respective clusters. Since calculation of the rotation-invariant

feature vectors is very simple and involves only summations

of signals (pixel values), hence very fast, it is postulated that

such a mechanism might be included in the biological vision

systems.
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neural network architecture for sensory integration with applications
to letter–phoneme integration,” Neural Computation, pp. 1–39, 2011,
doi:10.1162/NECO a 00149.

[24] “Radon transform,” http://en.wikipedia.org/wiki/Radon transform.
[25] C.-M. Pun and M.-C. Lee, “Log-polar wavelet energy signatures for

rotation and scale invariant texture classification,” IEEE Trans. PAMI,
vol. 25, no. 5, pp. 590–603, 2003.

[26] T. Kohonen, Self-Organising Maps, 3rd ed. Berlin: Springer-Verlag,
2001.


