

k -dismantlability in graphs

Bertrand Jouve

joint work with Etienne Fieux

CNRS - Toulouse - France

Discrete Maths Research Group - MONASH University
26/03/2018

Plan

1

Introduction

- Between graph theory and complex networks
- Notations

2

1-dismantlability

- From simplicial to 1-dismantlable graph
- 1-dismantlability and simplicial complexes

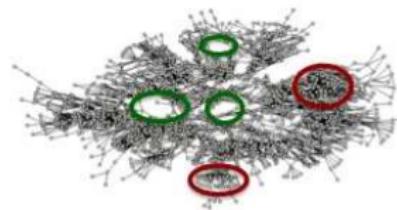
3

 k -dismantlability

- Definitions and some properties
- k -dismantlability and transitivity
- k -dismantlability and evasiveness

Between graph theory and complex networks

- For analyzing complex networks, most of the tools focus on dense parts (= communities). We propose to look at some non-dense parts - "holes" - and the way they are organized in the network.
- Sociological concept -> "structural holes" of R.S. Burt (1982) which are places with a low density of links and that an individual must hold to increase his influence.



Between graph theory and complex networks

- For analyzing complex networks, most of the tools focus on dense parts (= communities). We propose to look at some non-dense parts - "holes" - and the way they are organized in the network.
- Sociological concept -> "structural holes" of R.S. Burt (1982) which are places with a low density of links and that an individual must hold to increase his influence.
- The idea is to peel the graph, vertex after vertex, to reduce the network to the skeleton of its holes. A vertex will be "peelable" if its neighborhood verify some given properties.

The aim of this talk is to explore several mathematical ways of pealing.

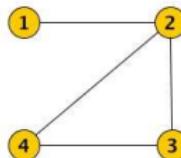
Notations

- G denote a finite undirected graph without loop.
- The open neighborhood of a vertex i in G : $N_G(i) = \{j; j \sim i\}$
- The closed neighborhood of a vertex i in G : $N_G[i] = N_G(i) \cup \{i\}$

Definition

A vertex i is **dominated** in G if there exists $j \neq i$ such that $N_G[i] \subseteq N_G[j]$. We note $i \vdash j$.

Example :



We have $N_G[4] = \{2, 3, 4\} \subset N_G[2] = V(G)$ and then $4 \vdash 2$. Note for example that $1 \not\vdash 3$

Let us now explore some examples of peeling and their relations to cycles in graphs...

From simplicial to 1-dismantlable graph

Simplicial vertex

Definition

- A vertex i is **simplicial** if $N_G[i]$ is complete.
- A graph G is **simplicial** if there is a linear ordering $1, 2, \dots, n$ of its vertices st. $i < n$ is simplicial in $G - \{1, 2, \dots, i-1\}$.

A graph G is **chordal** if it contains no induced cycle of length ≥ 4

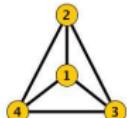
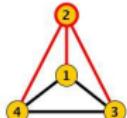
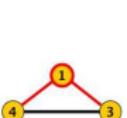
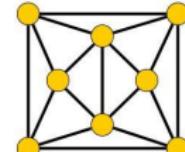
Theorem (Dirac, 1961)

A finite graph is chordal iff it is simplicial.

Idea of the proof : by induction on the number of vertices of G since if G is chordal then $G - v$ is also chordal. ■

no simplicial vertex

Example :



From simplicial to 1-dismantlable graph

Isometric vertex

Definition

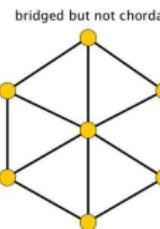
- A vertex i is **isometric** if the distances between the vertices of $G - i$ are equal to those between corresponding vertices in G .
- A graph G is **isometric** if there is a linear ordering $1, 2, \dots, n$ of its vertices st. $i < n$ is isometric in $G - \{1, 2, \dots, i - 1\}$.

A graph G is **bridged** if any cycle C of length ≥ 4 has a shortcut (ie. a pair of vertices whose distance in G is strictly smaller than in C)

Theorem (Anstee and Farber, 1988)

A finite graph is bridged iff it is isometric and has no induced C_4 or C_5 .

Remark : Chordal \Rightarrow Bridged since there is no induced cycles of length ≥ 4 in a chordal graph.



From simplicial to 1-dismantlable graph

Dismantlable vertex

Definition

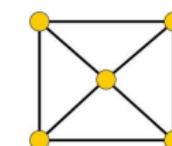
- A vertex i is **dismantlable** in G if it is dominated in G .
- A graph G is **dismantlable** if there is a linear ordering $1, 2, \dots, n$ of its vertices st. $i < n$ is dismantlable in $G - \{1, 2, \dots, i-1\}$.

The Cop-Rob game : The players begin the game by selecting their initial positions in the graph (the cop must choose his vertex first). They then move alternatively, according to the following rule : a player at vertex i can either remain at i or move to any neighbour of i . The cop wins when the cop and robber occupy the same vertex.

Theorem (Quillot, 1983 ; Nowakowski and Winkler, 1983)

A finite graph is dismantlable iff it is cop-win.

dismantlable but not bridged



Remark : Bridged \Rightarrow Dismantlable
(Anstee and Farber, 1988)

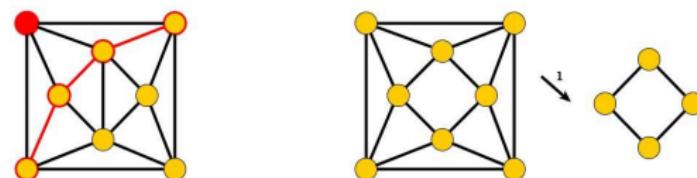
From simplicial to 1-dismantlable graph

1-dismantlable vertex

Definition (Boulet Fieux J., 2008, 2010)

- A vertex i is **1-dismantlable** if $N_G(i)$ is dismantlable.
- A graph G is **1-dismantlable** if there is an ordering $1, 2, \dots, n$ of its vertices st. $i < n$ is 1-dismantlable in $G - \{1, 2, \dots, i-1\}$

1-dismantlable but not dismantlable

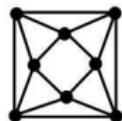
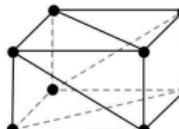
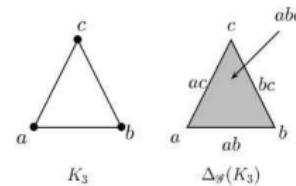
Example : G : simplicial \Rightarrow isometric \Rightarrow dismantlable \Rightarrow 1-dismantlablechordal \Rightarrow bridge \Rightarrow cop-win \Rightarrow ??? $N(i)$: complete \Rightarrow convex \Leftarrow cone \Rightarrow dismantlable**Remark :** A subgraph H is convex if H includes every shortest path with end-vertices in H

1-dismantlability and simplicial complexes

- A simplicial complex K , with vertex set V , is a collection of finite non empty subsets σ of V (the simplices) s.t. :

$$V = \bigcup_{\sigma \in K} \sigma$$
 and if $(\sigma \in K, x \in \sigma)$ then $\sigma - \{x\} \in K$.
- $\Delta(G)$ denote the simplicial complex whose k -simplices are the complete subgraphs with k vertices (flag complexes)
- An **elementary reduction** in $\Delta(G)$ is the suppression of a pair of simplices (σ, τ) with τ a proper maximal face of σ and τ is not a face of another simplex.

Example :

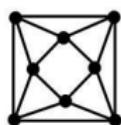
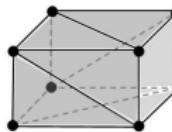
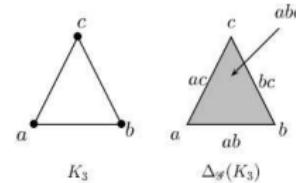


1-dismantlability and simplicial complexes

- A simplicial complex K , with vertex set V , is a collection of finite non empty subsets σ of V (the simplices) s.t. :

$$V = \bigcup_{\sigma \in K} \sigma$$
 and if $(\sigma \in K, x \in \sigma)$ then $\sigma - \{x\} \in K$.
- $\Delta(G)$ denote the simplicial complex whose k -simplices are the complete subgraphs with k vertices (flag complexes)
- An **elementary reduction** in $\Delta(G)$ is the suppression of a pair of simplices (σ, τ) with τ a proper maximal face of σ and τ is not a face of another simplex.

Example :

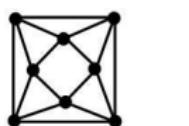
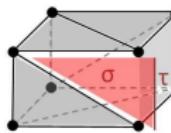
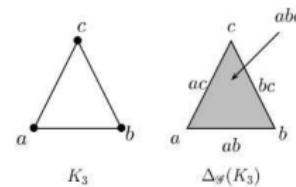


1-dismantlability and simplicial complexes

- A simplicial complex K , with vertex set V , is a collection of finite non empty subsets σ of V (the simplices) s.t. :

$$V = \bigcup_{\sigma \in K} \sigma$$
 and if $(\sigma \in K, x \in \sigma)$ then $\sigma - \{x\} \in K$.
- $\Delta(G)$ denote the simplicial complex whose k -simplices are the complete subgraphs with k vertices (flag complexes)
- An **elementary reduction** in $\Delta(G)$ is the suppression of a pair of simplices (σ, τ) with τ a proper maximal face of σ and τ is not a face of another simplex.

Example :



1-dismantlability

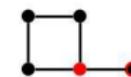
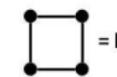
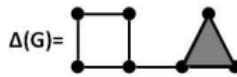
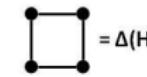
Proposition [2008]

$$G \searrow^1 H \Rightarrow \Delta(G) \searrow^1 \Delta(H).$$

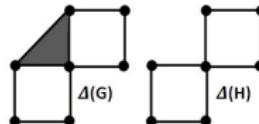
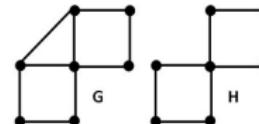
Consequence

A necessary condition for G to be 1-dismantlable is that $\Delta(G)$ is collapsible.

Example :



The converse implication is false :



1-dismantlability

Proposition [2008]

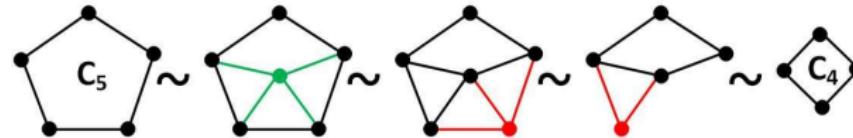
$$G \setminus H \Rightarrow \Delta(G) \setminus \Delta(H).$$

We say that G et H have the same 1-homotopy type if there exists a sequence of graphs $G = J_1, J_2, \dots, J_{k-1}, J_k = H$ from G to H such that $G = J_1 \xrightarrow{1} J_2 \xrightarrow{1} \dots \xrightarrow{1} J_{k-1} \xrightarrow{1} J_k = H$ where $\xrightarrow{1}$ is the addition or the deletion of a 1-dismantlable vertex. We note $[G]_1$ the 1-homotopy type of G . In the same way we define the 1-homotopy type of $\Delta(G)$ also called simple-homotopy type in topology.

Proposition [2010]

$$[G]_1 = [H]_1 \iff [\Delta(G)]_1 = [\Delta(H)]_1.$$

Example : The $C_{n \geq 4}$ have the 1-homotopy type of C_4 .



k -dismantlability

Even if we don't have a good characterization of the graphs that are 1-dismantlable, the link with topology of flag complexes is interesting. So, we have explored the case where we have weakened the condition of 1-dismantlability by a condition of k -dismantlability.

Definition

- A vertex i is **k -dismantlable** if $N_G(i)$ is $(k - 1)$ -dismantlable.
- A graph G is **k -dismantlable** if there is an ordering $1, 2, \dots, n$ of its vertices st. $i < n$ is k -dismantlable in $G - \{1, 2, \dots, i - 1\}$

We denote $D_k(G)$ the set of vertices of G which are k -dismantlable in G , D_k the set of the k -dismantlable graphs and $D_\infty = \bigcup_{k \geq 0} D_k$.

Proposition

The sequence $(D_k)_{k \geq 1}$ is strictly increasing :

$$D_0 \subsetneq D_1 \subsetneq D_2 \subsetneq \dots \subsetneq D_k \subsetneq D_{k+1} \subsetneq \dots$$

k -dismantlability

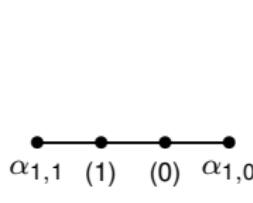
Proof :

- By induction on k , we have $D_k(G) \subseteq D_{k+1}(G)$ for all $k \geq 0$ and so a k -dismantlable ordering of G is also a $(k+1)$ -dismantlable ordering.
- For the strict inclusion, we construct a sequence of graphs $(\mathfrak{Q}_n)_{n \geq 0}$, the n -cubions, with the property that $\forall n \geq 2, \mathfrak{Q}_n \in D_{n-1} \setminus D_{n-2}$.

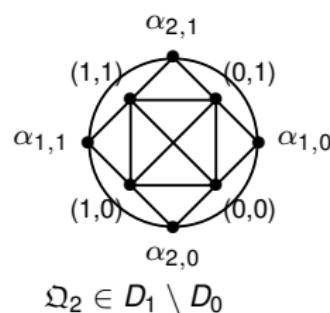
$V(\mathfrak{Q}_n) = \{\alpha_{i,\epsilon}, i = 1, \dots, n \text{ and } \epsilon = 0, 1\} \cup \{x = (x_1, \dots, x_n), x_i = 0, 1\}$

$E(\mathfrak{Q}_n)$ defined by :

- $\forall i \neq j, \alpha_{i,\epsilon} \sim \alpha_{j,\epsilon'}$
- $\forall x \neq x', x \sim x'$
- $\forall i, \alpha_{i,1} \sim (x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n), \alpha_{i,0} \sim (x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$.



$$\mathfrak{Q}_1 \in D_0$$



$$\mathfrak{Q}_2 \in D_1 \setminus D_0$$

Properties :

- \mathfrak{Q}_n has $2^n + 2n$ vertices
- $\mathfrak{Q}_n[\alpha_{1,0}, \alpha_{1,1}, \dots, \alpha_{n,0}, \alpha_{n,1}] \cong \overline{nK_2}$
- $\mathfrak{Q}_n[x, y, \dots] \cong K_{2^n}$

Elements of the proof :

By induction, we note that

- $N_{\mathfrak{Q}_n}(\alpha_{i,\epsilon}) \cong \mathfrak{Q}_{n-1} \notin D_{n-3}$
- $N_{\mathfrak{Q}_n}(x) \ncong (n-1)K_2 \notin D_\infty$

k -dismantlability

Some properties :

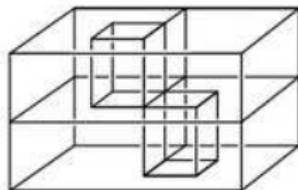
- The previous example of a "quasi"-wheel shows that the order of k -dismantling is important for $k \geq 1$ at least when the graph G is not k -dismantlable.
- if $D_k(G) \setminus D_{k-1}(G) \neq \emptyset$ with $k \geq 1$ then $\omega(G) \geq k + 2$ where $\omega(G)$ is the number of vertices of a maximal clique of G .

Proof : X contains at least one complete subgraph K_{k+2} . ■

- $\forall k \geq 2, G \in D_k \Rightarrow [G]_{k-1} = [pt]_{k-1}$

Proof : We proved in BFJ(2010) that if $x \in D_2(G)$ then $[G]_1 = [G - x]_1$. By iterating the process we prove that the proposition is true for $k = 2$ and by induction on k for $k \geq 2$. ■

The converse is false : Bing's House.



k -dismantlability and transitivity

Definition

- A graph G is **vertex-transitive** if $\forall v, w \in V(G), \exists g \in \text{Aut}(G), g.v = w$

Theorem

If G is a 0-dismantlable and vertex-transitive, then G is a complete graph.

Proof : Given an order $\{1, \dots, n\}$ of 0-dismantlings, using the transitivity of G we prove by induction on i that $N_{G-\{1, \dots, i-1\}}(i) \subset N_{G-\{1, \dots, i-1\}}(j)$ implies that $N_G(i) \subset N_G(j)$ with $j > i$. So, $V(G) = \bigcup_i N_G(i) \subset N_G(n)$ and then $V(G) = N_G(n)$. By vertex transitivity $V(G) = N_G(i)$ for all i . ■

k -dismantlability and transitivity

Definition

- A graph G is **vertex-transitive** if $\forall v, w \in V(G), \exists g \in \text{Aut}(G), g.v = w$
- A graph G is **$\leq i$ -transitive** if $\forall (\{a_1, a_2, \dots, a_i\}, \{b_1, b_2, \dots, b_i\}) \in \mathcal{C}_i(G) \times \mathcal{C}_i(G), \exists g \in \text{Aut}(G), \forall u \in \{1, \dots, i\}, g(a_u) = b_u$ where $\mathcal{C}_i(X)$ is the set of the i -complete subgraphs of G .

conjecture

For all $k \geq 0$, if G is a k -dismantlable and $\leq k$ -transitive, then G is a complete graph.

idea of the proof : the conjecture is true for $k = 1$. For $k = 2$ we prove there exist i_1 such that $V(G) = \bigcup_{1 \leq i < j \leq n} N_G(i) \cap N_G(j) \subset N_G(1) \cap N_G(i_1)$. Then $N_G(1) = V(G)$ and by vertex transitivity $V(G)$ is a complete. It is a bit long to write for $k \geq 3$ but the idea would be the same considering $V(G) = \bigcup_{1 \leq i_1 < \dots < i_j \leq n} N_G(i_1) \cap \dots \cap N_G(i_j)$ ■

Remarks :

The Kneser graphs and the Johnson graphs are $\leq i$ -transitive.

k -dismantlability and evasiveness

- A graph G is *non-evasive* if for any $A \subset V(G) = \{x_1, x_2, \dots, x_n\}$ one can guess if A is a **clique** of G in at most $n - 1$ questions of the form “is x_i in A ?”

Evasiveness conjecture for graphs

A non-evasive, vertex-transitive and non empty finite graph is a complete graph.

- Following a remark due to Lovász, Rivest & Vuillemin (76) pointed out that a positive answer to the evasiveness conjecture implies that a finite vertex-transitive graph with a maximal clique which intersects all other maximal cliques (Payan property) is a complete graph.
- Suppose G has the Payan property and the maximal transversal clique has cardinality equal to n then $G \in D_{n-2}$.

Question :

Is it possible to solve the particular case of evasiveness conjecture for graphs in D_n ?

Thank you !

Sorry, I cannot be with you today !