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Between graph theory and complex networks

For analyzing complex networks, most of the tools focus on

dense parts (= communities). We propose to look at some

non-dense parts - "holes" - and the way they are organized in the
network.

Sociological concept -> "structural holes" of R.S. Burt (1982)
which are places with a low density of links and that an individual

must hold to increase his influence.
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For analyzing complex networks, most of the tools focus on

dense parts (= communities). We propose to look at some

non-dense parts - "holes" - and the way they are organized in the
network.

Sociological concept -> "structural holes" of R.S. Burt (1982)
which are places with a low density of links and that an individual

must hold to increase his influence.

The idea is to peel the graph, vertex after vertex, to reduce the
network to the skeleton of its holes. A vertex will be "peelable" if its

neighborhood verify some given properties.

The aim of this talk is to explore several mathematical ways

of pealing.
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Notations

G denote a finite undirected graph without loop.

The open neighborhood of a vertex i in G : NG(i) = {j; j ∼ i}

The closed neighborhood of a vertex i in G : NG[i] = NG(i) ∪ {i}

Definition

A vertex i is dominated in G if there exists j 6= i such that

NG[i] ⊆ NG[j]. We note i ⊢ j.

Example :
We have NG[4] = {2, 3, 4} ⊂ NG[2] = V (G)

and then 4 ⊢ 2. Note for example that 1 0 3

Let us now explore some examples of peeling and their relations

to cycles in graphs...
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From simplicial to 1-dismantlable graph

Simplicial vertex

Definition

A vertex i is simplicial if NG[i] is complete.

A graph G is simplicial if there is a linear ordering 1, 2, · · · , n of
its vertices st. i < n is simplicial in G − {1, 2, · · · , i − 1}.

A graph G is chordal if it contains no induced cycle of length ≥ 4

Theorem (Dirac, 1961)

A finite graph is chordal iff it is simplicial.

Idea of the proof : by induction on the number of vertices of G since if G is chordal then G − v is

also chordal. �

Example :
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From simplicial to 1-dismantlable graph

Isometric vertex

Definition

A vertex i is isometric if the distances between the vertices of
G − i are equal to those between corresponding vertices in G.

A graph G is isometric if there is a linear ordering 1, 2, · · · , n of
its vertices st. i < n is isometric in G − {1, 2, · · · , i − 1}.

A graph G is bridged if any cycle C of length ≥ 4 has a shortcut (ie. a
pair of vertices whose distance in G is strictly smaller than in C)

Theorem (Anstee and Farber, 1988)

A finite graph is bridged iff it is isometric and has no induced C4 or C5.

Remark : Chordal ⇒ Bridged

since there is no induced cycles

of length ≥ 4 in a chordal graph.
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From simplicial to 1-dismantlable graph

Dismantlable vertex

Definition

A vertex i is dismantlable in G if it is dominated in G.

A graph G is dismantlable if there is a linear ordering 1, 2, · · · , n
of its vertices st. i < n is dismantlable in G − {1, 2, · · · , i − 1}.

The Cop-Rob game : The players begin the game by selecting their initial

positions in the graph (the cop must choose his vertex first). They then move

alternatively, according to the following rule : a player at vertex i can either

remain at i or move to any neighbour of i . The cop wins when the cop and

robber occupy the same vertex.

Theorem (Quillot, 1983 ; Nowakowski and Winkler, 1983)

A finite graph is dismantlable iff it is cop-win.

Remark : Bridged ⇒ Dismantlable

(Anstee and Farber, 1988)
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From simplicial to 1-dismantlable graph

1-dismantlable vertex

Definition (Boulet Fieux J., 2008, 2010)

A vertex i is 1-dismantlable if NG(i) is dismantlable.

A graph G is 1-dismantlable if there is an ordering 1, 2, · · · , n of
its vertices st. i < n is 1-dismantlable in G − {1, 2, · · · , i − 1}

Example :

G : simplicial ⇒ isometric ⇒ dismantlable ⇒ 1-dismantlable

chordal ⇒ bridge ⇒ cop-win ⇒ ? ? ?

N(i) : complete ⇒ convex ⇐ cone ⇒ dismantlable

Remark : A subgraph H is convex if H includes every shortest path

with end-vertices in H
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1-dismantlability and simplicial complexes

A simplicial complex K , with vertex set V , is a collection of finite

non empty subsets σ of V (the simplices) s.t. :

V =
⋃

σ∈K σ and if (σ ∈ K , x ∈ σ) then σ − {x} ∈ K .

∆(G) denote the simplicial complex whose k -simplices are the

complete subgraphs with k vertices (flag complexes)

An elementary reduction in ∆(G) is the suppression of a pair of

simplices (σ, τ) with τ a proper maximal face of σ and τ is not a

face of another simplex.

Example :
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1-dismantlability

Proposition [2008]

G ց1 H ⇒ ∆(G) ց1 ∆(H).

Consequence

A necessary condition for G to be 1-dismantlable is that ∆(G) is

collapsible.

Example :

The converse implication is false :
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1-dismantlability

Proposition [2008]

G ց1 H ⇒ ∆(G) ց1 ∆(H).

We say that G et H have the same 1-homotopy type if there exists a

sequence of graphs G = J1, J2, · · · , Jk−1, Jk = H from G to H such that

G = J1
1
→ J2

1
→ . . .

1
→ Jk−1

1
→ Jk = H where

1
→ is the addition or the deletion

of a 1-dismantlable vertex. We note [G]1 the 1-homotopy type of G. In the

same way we define the 1-homotopy type of ∆(G) also called

simple-homotopy type in topology.

Proposition [2010]

[G]1 = [H]1 ⇐⇒ [∆(G)]1 = [∆(H)]1.

Example : The Cn≥4 have the 1-homotopy type of C4.
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k -dismantlability

Even if we don’t have a good characterization of the graphs that are
1-dismantlable, the link with topology of flag complexes is interesting.

So, we have explored the case where we have weakened the
condition of 1-dismantlability by a condition of k -dismantlablity.

Definition

A vertex i is k -dismantlable if NG(i) is (k − 1)-dismantlable.

A graph G is k -dismantlable if there is an ordering 1, 2, · · · , n of
its vertices st. i < n is k -dismantlable in G − {1, 2, · · · , i − 1}

We denote Dk (G) the set of vertices of G which are k -dismantlable in

G, Dk the set of the k -dismantlable graphs and D∞ =
⋃

k≥0 Dk .

Proposition

The sequence (Dk )k≥1 is strictly increasing :

D0 ( D1 ( D2 ( . . . ... ( Dk ( Dk+1 ( . . . ...
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k -dismantlability

Proof :

By induction on k , we have Dk (G) ⊆ Dk+1(G) for all k ≥ 0 and so a
k -dismantlable ordering of G is also a (k + 1)-dismantlable ordering.

For the strict inclusion, we construct a sequence of graphs (Qn)n≥0, the
n-cubions, with the property that ∀n ≥ 2,Qn ∈ Dn−1 \ Dn−2 .
V (Qn) = {αi,ǫ, i = 1, · · · , n and ǫ = 0, 1} ∪ {x = (x1, · · · , xn), xi = 0, 1}
E(Qn) defined by :
• ∀i 6= j , αi,ǫ ∼ αj,ǫ′

• ∀x 6= x ′, x ∼ x ′

• ∀i , αi,1 ∼ (x1, · · · , xi−1, 1, xi+1, · · · , xn), αi,0 ∼ (x1, · · · , xi−1, 0, xi+1, · · · , xn).

• • • •
α1,1 α1,0(1) (0)

α1,0

α2,1

α1,1

α2,0

(0,0)

(0,1)(1,1)

(1,0)

•

•

•

•

•

•

•

•

Q1 ∈ D0 Q2 ∈ D1 \ D0

Properties :
- Qn has 2n + 2n vertices
- Qn[α1,0, α1,1, · · · , αn,0, αn,1] ∼= nK2

- Qn[x, y , · · · ] ∼= K2n

Elements of the proof :
By induction, we note that
- NQn

(αi,ǫ) ∼= Qn−1 /∈ Dn−3

- NQn
(x) ց0 (n − 1)K2 /∈ D∞
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k -dismantlability

Some properties :

The previous example of a "quasi"-wheel shows that the order of
k -dismantling is important for k ≥ 1 at least when the graph G is

not k -dismantlable.

if Dk (G) \ Dk−1(G) 6= ∅ with k ≥ 1 then ω(G) ≥ k + 2 where ω(G)
is the number of vertices of a maximal clique of G.

Proof : X contains at least one complete subgraph Kk+2. �

∀k ≥ 2, G ∈ Dk ⇒ [G]k−1 = [pt]k−1

Proof : We proved in BFJ(2010) that if x ∈ D2(G) then [G]1 = [G − x]1.

By iterating the process we prove that the proposition is true for k = 2

and by induction on k for k ≥ 2. �

The converse is false : Bing’s House.
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k -dismantlability and transitivity

Definition

A graph G is vertex-transitive if

∀ v ,w ∈ V (G), ∃ g ∈ Aut(G), g.v = w

Theorem

If G is a 0-dismantlable and vertex-transitive, then G is a complete
graph.

Proof : Given an order {1, · · · , n} of 0-dismantlings, using the transitivity of G

we prove by induction on i that NG−{1,··· ,i−1}(i) ⊂ NG−{1,··· ,i−1}(j) implies

that NG(i) ⊂ NG(j) with j > i . So, V (G) =
⋃

i NG(i) ⊂ NG(n) and then

V (G) = NG(n). By vertex transitivity V (G) = NG(i) for all i . �
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k -dismantlability and transitivity

Definition

A graph G is vertex-transitive if
∀ v ,w ∈ V (G), ∃ g ∈ Aut(G), g.v = w

A graph G is ≤ i-transitive if

∀ ({a1, a2, . . . , ai}, {b1, b2, . . . , bi}) ∈ Ci(G)× Ci(G),
∃ g ∈ Aut(G), ∀u ∈ {1, · · · , i}, g(au) = bu where Ci(X) is the set

of the i-complete subgraphs of G.

conjecture

For all k ≥ 0, if G is a k -dismantlable and ≤ k -transitive, then G is a
complete graph.

idea of the proof : the conjecture is true for k = 1. For k = 2 we prove there exist i1
such that V (G) =

⋃
1≤i<j≤n NG(i) ∩ NG(j) ⊂ NG(1) ∩ NG(i1). Then NG(1) = V (G)

and by vertex transitivity V (G) is a complete. It is a bit long to write for k ≥ 3 but the
idea would be the same considering V (G) =

⋃
1≤i1<···<ij≤n NG(i1) ∩ · · ·NG(ij ) �

Remarks :

The Kneser graphs and the Johnson graphs are ≤ i-transitive.
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k -dismantlability and evasiveness

A graph G is non-evasive if for any A ⊂ V (G) = {x1, x2, . . . , xn}
one can guess if A is a clique of G in at most n − 1 questions of
the form “is xi in A ?"

Evasiveness conjecture for graphs

A non-evasive, vertex-transitive and non empty finite graph is a

complete graph.

Following a remark due to Lovász, Rivest & Vuillemin (76)

pointed out that a positive answer to the evasiveness conjecture

implies that a finite vertex-transitive graph with a maximal clique
which intersects all other maximal cliques (Payan property) is a

complete graph.
Suppose G has the Payan property and the maximal transversal

clique has cardinality equal to n then G ∈ Dn−2.

Question :

Is it possible to solve the particular case of evasiveness conjecture for
graphs in Dn ?
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Thank you !

Sorry, I cannot be with you today !
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