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Abstract
We present a probabilistic, salience-based mechanism for the
interpretation of pointing gestures together with spoken utter-
ances. Our formulation models dependencies between spatial
and temporal aspects of gestures and features of objects. The
results from our corpus-based evaluation show that the incorpo-
ration of pointing information improves interpretation accuracy.
Index Terms: understanding spoken language and gesture,
probabilistic approach

1. Introduction
In [1], we described Scusi? — a spoken language interpretation
module which considers multiple interpretations, and employs a
probabilistic formalism to estimate their goodness (Section 2).
This module is part of a system called DORIS (Dialogue Ori-
ented Roaming Interactive System) — a spoken dialogue sys-
tem designed to be mounted on a household robot. In this paper,
we extend Scusi?’s probabilistic formalism to integrate pointing
gestures with spoken language. We adopt a salience-based ap-
proach where we take into account spatial and temporal infor-
mation to estimate the probability that a pointing gesture refers
to an object. Specifically, we consider (1) the location of each
object relative to the spatial range of the pointing gesture, and
(2) the timing of the gesture relative to the timing of the terms
in a user’s utterance.

To evaluate our formalism, we collected a corpus of re-
quests where people were allowed to point (Section 4). Our
results show that when people point, our mechanism yields sig-
nificant improvements in interpretation performance. However,
when pointing was artificially added to utterances where people
did not point, it had a modest effect on performance.

This paper is organized as follows. Section 2 outlines the
interpretation process for a spoken request. Section 3 describes
the estimation of the probability of a pointing gesture. Our eval-
uation is detailed in Section 4. Related research and concluding
remarks are given in Section 5 and 6 respectively.

2. Interpreting Spoken Requests
This section summarizes our previous work on the interpreta-
tion of single-sentence utterances [1]. Scusi? processes spo-
ken input in three stages: speech recognition, parsing and se-
mantic interpretation. First, it runs Automatic Speech Recog-
nition (ASR) software (Microsoft Speech SDK 5.3) to generate
candidate hypotheses (texts) from a speech signal, where each
text is associated with a probability. In the second stage, Char-
niak’s probabilistic parser (ftp://ftp.cs.brown.edu/pub/
nlparser/) is applied to the texts in descending order of prob-
ability, associating each resultant parse tree with a probability.

During semantic interpretation, parse trees are successively
mapped into two representations based on Concept Graphs [2].
First Uninstantiated Concept Graphs (UCGs), and then Instan-
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Figure 1: UCG and ICG for a sample utterance

tiated Concept Graphs (ICGs). UCGs, which represent syntac-
tic information, are obtained from parse trees deterministically
— one parse tree generates one UCG. Each UCG can generate
many ICGs. This is done by nominating different instantiated
concepts and relations from the system’s knowledge base as po-
tential realizations for each concept and relation in a UCG. In-
stantiated concepts are objects and actions in the domain (e.g.,
mug01, mug02 and cup01 are possible instantiations of the
uninstantiated concept “mug”). The interpretation process con-
tinues until a preset number of sub-interpretations (including
texts, parse trees, UCGs and ICGs) has been generated or all
options have been exhausted.

Figure 1 illustrates a UCG and an ICG for the request “get
the large red folder on the table”. The intrinsic features of an
object (lexical item, colour and size) are stored in the UCG node
for this object. Structural features, which involve two objects
(e.g., “folder on the table”), are represented as sub-graphs of
the UCG (and the ICG).

2.1. Estimating the probability of an ICG
Scusi? ranks candidate ICGs according to their probability of
being the intended meaning of a spoken utterance. Given a
speech signal W and a context C, the probability of an ICG
I , Pr(I|W, C), is proportional toX

Λ

Pr(T |W )·Pr(P |T )·Pr(U |P )·Pr(I|U, C) (1)

where T , P andU denote text, parse tree and UCG respectively.
The summation is taken over all possible paths Λ = {T, P, U}
from a speech wave to the ICG, because a UCG and an ICG can
have more than one ancestor. As mentioned above, the ASR and
the parser return an estimate of Pr(T |W ) and Pr(P |T ) respec-
tively; and Pr(U |P )=1, since the process of generating a UCG
from a parse tree is deterministic. The estimation of Pr(I|U, C)
is described in [1]. Here we present the final equation obtained
for Pr(I|U, C), and outline the ideas involved in its calculation.

Pr(I|U, C)≈
Y
k∈I

Pr(u|k, C) Pr(k|kp, kgp) Pr(k|C) (2)

where u is a node in UCG U , k is the corresponding instanti-
ated node in ICG I , kp is k’s parent node, and kgp is k’s grand-



parent node. For example, On is the parent of table01, and
folder02 the grandparent in the ICG in Figure 1.
• Pr(u|k) is the “match probability” between the specifica-

tions for node u in UCG U and the intrinsic features of the
corresponding node k in ICG I , i.e., the probability that
a speaker who intended a particular object k (e.g., mug01)
gave the specifications in u (e.g., “the big red mug”).

• Pr(k|kp, kgp) represents the structural probability of ICG I ,
where structural information is simplified to node trigrams,
e.g., whether folder02 is On table01.

• Pr(k|C) is the probability of a concept given the context.

Scusi? handles three intrinsic features: lexical item, colour
and size; and two structural features: ownership and several
locative relations (e.g., on, under, near). The match probabil-
ity Pr(u|k) and the structural probability Pr(k|kp, kgp) are esti-
mated using distance functions between the requirements spec-
ified by the user and what is found in reality [1]).

3. Incorporating Pointing Gestures
Pointing affects the salience of objects and the language used to
refer to objects: objects in the temporal and spatial vicinity of
a pointing gesture are more salient than objects that are farther
away, and pointing is often associated with demonstrative deter-
miners. Here we focus on the effect of pointing on salience, i.e.,
its effect on Pr(k|C) in Equation 2. Our calculations are based
on information returned by Li and Jarvis’s gesture recognition
system [3]: gesture type, time, probability and relevant param-
eters (e.g., a vector for a pointing gesture). Owing to our focus
on pointing gestures, we convert the probabilities expected from
Li and Jarvis’s system into the probability of Pointing and that
of Not Pointing, which comprises all other gestures and no ges-
ture (all these hypotheses are returned at the same time).1 This
yields the following probability for object k

Pr(k|C) = Pr(k|P, C) · Pr(P|C) + (3)
Pr(k|¬P, C) · Pr(¬P|C)

where P designates Pointing, Pr(P|C) and its complement are
returned by the gesture system, and Pr(k|¬P, C) = 1

N
(N is the

number of objects in the room, i.e., in the absence of pointing,
we assume that all the objects in the room are equiprobable).

Pointing is spatially correlated with objects, and temporally
correlated with words that refer to objects. Hence, we separate a
pointing gesture P into two components, spatial (Ps) and tem-
poral (Pt).

Pr(k|P, C) = Pr(k|Ps,Pt, C)
The influence of each component on the probability of ob-

ject k is modeled by a sigmoid function, yielding the following
formulation.

Pr(k|Ps,Pt, C) (4)

=
N − 1

N

1

1 + e−
Pr(k|Ps,C)−µ

ν

1

1 + e−
Pr(k|Pt,C)−µ

ν

+
1

N

where µ and ν are parameters that ensure that a sigmoid func-
tions yields a value close to 0 when the probability of k given
Ps (or Pt) is 0, and a value of 0.99 when this probability is 1
(µ = 0.5 and ν = − 0.5

ln(1/0.99−1)
= 0.1088). Pr(k|Ps, C) and

Pr(Pt|k, C) are estimated as described in Section 3.1 and 3.2
respectively.

1Owing to timing limitations of the gesture recognition system, we
simulate its output (Section 4).
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Figure 2: Spatial pointing and occlusion

The combination of sigmoids yields a high probability of
intending an object k only when k is both spatially and tempo-
rally salient. The scaling factor N

N−1
and the offset 1

N
ensure

that Pr(k|P, C)≈ 1
N

when the pointing gesture yields probabil-
ities below the uninformed prior ( 1

N
).

3.1. Estimating Pr(k|Ps, C)
Pr(k|Ps, C), the probability that the user intended object k
when pointing to a location in space, is estimated using a conic
Gaussian density function around PLine, the Pointing Line cre-
ated by extending the pointing vector returned by the gesture
identification system (Figure 2(a)).

Pr(k|Ps, C) =
αθk√

2πσPs(pd)
e
− d(k,PLine)2

2σ2
Ps

(pd) (5)

where α is a scaling constant;2 σ2
Ps(pd) is the variance of the

Gaussian cone as a function of pd(k,PLine), the projected dis-
tance between the user’s pointing hand and the projection of
object k on PLine; d(k,PLine) is the shortest distance between
the center of object k and PLine; and θk is a factor that reduces
the probability of object k if it is (partially) occluded.

The projected distance pd is employed to take into account
the imprecision of pointing — a problem that is exacerbated by
the uncertainty associated with sensing the pointing vector. A
small angular error in the detected pointing vector yields a dis-
crepancy in the distance between the pointing line and candidate
objects. This discrepancy increases as pd(k,PLine) increases.
To compensate for this situation, we increase the variance of
the Gaussian distribution linearly with the projected distance
from the user’s hand (we start with a small standard deviation
of σ0 = 5 mm at the user’s fingers, attributed to sensor er-
ror). This allows farther objects with a relatively high displace-
ment from the pointing vector to be encompassed in a pointing
gesture (e.g., the larger mug in Figure 2(a)), while closer ob-
jects with the same displacement are excluded (e.g., the smaller
mug). This yields the following equation for the variance.

σ2
Ps(pd) = σ2

0 +K · pd(k,PLine)

where K = 2.5 mm is an empirically determined increase rate.
The occlusion factor θk reduces the probability of objects

as they become more occluded. We approximate θk by consid-
ering the objects that are closer to the user than k, and estimat-
ing the extent to which these objects occlude k (Figure 2(b)).
This estimate is a function of the position of these objects and
their size — the larger an intervening object, the lower the prob-
ability that the user is pointing at k. These factors are taken into
account as follows.

Prθ(j|k)=
γ√

2πσθ(pd)
e
−

(d(j,OLine)− 1
2 dimmin(j))2

2σ2
θ
(pd) (6)

2Since this is a continuous density function, it does not directly yield
a point probability. Hence, it is scaled on the basis of the largest possible
returned value.



where γ is a scaling constant; the numerator of the exponent
is the maximum distance from the edge of object j to the line
between the user’s hand and object k, denoted Object Line
(OLine); and

σ2
θ(pd) =

1

2

`
σ2

0 +K · pd(j,OLine)
´

is the variance of a cone from the user’s hand to object k as a
function of distance. We employ a thin “occlusion cone” (Fig-
ure 2(b)), which has half the variance of that used for the “point-
ing cone”, to represent the idea that object j must be close to
OLine in order to occlude object k. θk is then estimated as 1
minus the maximum occlusion caused by the objects that are
closer to the user than k.

θk=1− max
∀j d(j,hand)<d(k,hand)

{Prθ(j|k)} (7)

3.2. Estimating Pr(k|Pt, C)
Pr(k|Pt, C), the probability that the user intended object k
when pointing at a particular time, is estimated on the basis
of T (ulex(k)), the start time of the word designating k in the
parent UCG node of the ICG node containing k. That is,

Pr(k|Pt, C) = Pr(T (ulex(k))|Pt, C)
Pr(T (ulex(k))|Pt, C) is obtained from a Gaussian time dis-

tribution for pointing.

Pr(T (ulex(k))|Pt, C) =
β√

2πσPt

e
− (T(ulex(k))−Pt)

2

2σ2
Pt (8)

where β is a scaling constant, and σPt is the standard deviation
of the Gaussian density function, which is currently set to 647
msec (based on our corpus).

4. Evaluation
To obtain a corpus, we conducted a user study where we set
up a room with labeled objects (Figure 3), and asked trial par-
ticipants to ask DORIS for 12 specific items. The room con-
tained 33 items in total, including distractors, and one of the
authors pretended to be DORIS. We designated the items to be
requested using labels, and the participants chose the wording
and gestures (if any) for their requests. The objects in the room
were selected and laid out in the room to reflect a variety of
conditions, e.g., common and rare objects (e.g., vacuum tube);
unique, non-unique and similar objects (e.g., white cups); and
objects placed near each other and far from each other.

We divided our corpus into two parts: with and without
pointing gestures. Scusi?’s performance was tested on input ob-
tained from the ASR and on text (perfect ASR). We considered
two scenarios for each sub-corpus: Scusi?-Pointing, where our
pointing mechanism was activated on the basis of a simulated
pointing gesture,3 and Scusi?-NoPointing, where our pointing
mechanism was not activated. This was done in order to test
two hypotheses: (1) when people point, pointing information
improves interpretation performance; and (2) when people do
not point, even perfect pointing has little effect on performance.

Scusi? was set to generate at most 300 sub-interpretations
in total (including texts, parse trees, UCGs and ICGs) for each
spoken request, and at most 200 sub-interpretations for each
textual request. An interpretation was deemed successful if
it correctly represented the speaker’s intention, which was en-
coded in one or more Gold ICGs. These ICGs were manually
constructed on the basis of the requested objects and the partic-
ipants’ utterances. Multiple Gold ICGs were allowed if there
were several suitable actions in the knowledge base.

3At present we assume accurate pointing. In the near future, we will
study the sensitivity of our mechanism by incorporating pointing error.

Figure 3: Experimental Setup

4.1. The Corpus
19 people participated in the trial, generating a total of 267 re-
quests, of which 136 involved pointing gestures. We filtered
out 64 requests, which included concepts our system cannot yet
handle, e.g., projective modifiers (e.g., “behind/left”), ordinals
(“first/second”), references to groups of things (e.g., “the six
blue pens”), and zero- and one-anaphora. This yielded 212 re-
quests, of which 105 involved pointing gestures.

In addition, the software we used has the following limita-
tions: the gesture recognition system [3] requires users to hold a
gesture for 2 seconds, and the ASR system is speaker dependent
and cannot recognize certain words (e.g., “mug”, “bowl” and
“pen”). To circumvent these problems, each pointing gesture
was manually encoded into a time-stamped vector on the basis
of video recordings of the participants; and one of the authors
read slightly sanitized versions of participants’ utterances into
the ASR, specifically “can you”, “please” and “DORIS” were
omitted, and words that were problematic for the ASR were re-
placed (e.g., “pencil” was used instead of “pen”).

Requests with a pointing gesture were somewhat shorter
than those without pointing (5.84 versus 6.27 words on aver-
age). ASR performance was worse for requests with pointing:
the top ASR interpretation was correct for 72% of (sanitized)
requests with pointing, compared to 79.5% for requests with-
out pointing. This difference may be attributed to the language
model of the ASR not coping well with constructs associated
with pointing. Overall the ASR returned the correct interpreta-
tion, at any rank, for 90.6% of the requests.

4.2. Results
Table 1 summarizes our results. Column 1 displays the test
condition (sub-corpus with/without pointing gesture, Text/ASR,
and Scusi? with/without pointing module). Columns 2-3 show
the percentage of utterances that had Gold ICGs whose prob-
ability was among the top 1 and top 3, e.g., in the sub-corpus
with pointing, when Scusi?-Pointing was run on Text, it yielded
Gold ICGs with the highest probability (top 1) 87.6% of the
time, and within the top 3 probabilities 91.4% of the time. The
average adjusted rank (AR) and rank of the Gold ICG appear in
Column 4. The rank of an ICG I is its position in a list sorted
in descending order of probability (starting from position 0),
such that all equiprobable ICGs are deemed to have the same
position. The AR of an ICG I is the mean of the positions of
all ICGs that have the same probability as I , e.g., if we have 4
equiprobable ICGs in positions 0-3, each has a rank of 0, but an
adjusted rank of rbest+rworst

2
= 1.5. Column 5 shows the percent-

age of utterances that didn’t yield a Gold ICG (% Not Found).
Our results confirm that the main role of pointing is in ref-



Table 1: Scusi?’s interpretation performance

% Gold ICGs Avg adjusted % Not
top 1 top 3 rank (rank) found

Sub-corpus without pointing gesture
Text, Scusi?-NoPointing 86.9 95.3 1.56 (0.48) 1.9
Text, Scusi?-Pointing 86.0 93.5 0.99 (0.74) 0.9
ASR, Scusi?-NoPointing 82.2 91.6 4.73 (0.68) 4.7
ASR, Scusi?-Pointing 81.3 88.8 3.12 (1.06) 4.7
Sub-corpus with pointing gesture
Text, Scusi?-NoPointing 86.7 94.3 3.31 (0.26) 1.9
Text, Scusi?-Pointing 87.6 91.4 1.90 (0.43) 1.0
ASR, Scusi?-NoPointing 74.3 86.7 10.01 (0.56) 8.6
ASR, Scusi?-Pointing 76.2 81.9 7.45 (1.09) 6.7

erent disambiguation. This is evident from the reduction in AR
(Column 4) for the sub-corpus with pointing gesture, which for
ASR goes from 10.01 under Scusi?-NoPointing to 7.45 under
Scusi?-Pointing, and for Text goes from 3.31 to 1.90. Both
differences are statistically significant with p < 0.01.4 As
expected, the improvements obtained by artificially introduc-
ing pointing gestures in the sub-corpus without pointing are
smaller: from 4.73 to 3.12 for ASR (p < 0.05), and from 1.56
to 0.99 for Text (p<0.01). Comparing across language modal-
ities, the impact of pointing on Scusi?’s performance with ASR
input is larger than its impact on Scusi?’s performance with
Text. We posit that this happens because the information ob-
tained from pointing overcomes ASR error.

As seen in Columns 1-2, Scusi?-Pointing yields an appar-
ent reduction in the percentage of interpretations with top ranks.
This is because under Scusi?-NoPointing, there are often sev-
eral equiprobable interpretations, which have the same rank.
This happens less often under Scusi?-Pointing, owing to the dis-
ambiguating effect of pointing. It is worth noting that normally
there is a trade-off between the number of Not Found Gold ICGs
and average AR. ICGs that are not found by one approach but
are found by another approach typically have a high (bad) rank
when they are eventually found [1]. Thus, an approach that fails
to find such “difficult” ICGs yields artificially lower ranks than
an approach that finds these ICGs. An increase in the number
of found Gold ICGs coupled with a reduction in average AR
therefore demonstrate substantial performance improvements.

Finally, the rank of the request at the 75%-ile is 0 under all
conditions, which indicates creditable performance. The larger
number of Not Found Gold ICGs for the ASR condition, in par-
ticular for the pointing sub-corpus, is consistent with the above-
mentioned ASR performance, which was significantly worse
for the pointing sub-corpus. Other Not Found Gold ICGs were
mainly due to parsing errors.

5. Related Research
Researchers in gesture and speech integration tend to favour
one main modality, employing the other one for disambigua-
tion. For instance, speech is the main input modality in [4, 5],
while gesture is the main modality in [6, 7]. Different ap-
proaches are used for gesture detection, e.g., vision [4, 5] and
sensor glove [6, 7, 8]; and for language interpretation, e.g., ded-
icated grammars [5], context-free grammars [4, 6], and key-
words [7, 9]. Semantic fusion is often used to combine spo-
ken input with pointing gestures, and is variously implemented

4Statistical significance was calculated using a paired t-test for the
Gold ICGs that were found by Scusi?-Pointing and Scusi?-NoPointing.

using heuristics based on temporal overlap [10], or unification
to determine which elements can be merged [4, 6, 8]. These
are sometimes combined with search techniques coupled with
penalties [5, 9]. With the exception of Bolt’s system [10], these
systems were tested on utterances that were quite short and con-
strained, whereas we can handle more complex utterances.

Like Scusi?, the systems described in [4, 6, 8] consider sev-
eral hypotheses, but they do so using n-best lists. Cones have
been used to model pointing gestures in [4, 6]. The system de-
scribed in [6] is the most similar to Scusi? in its use of cones
and its multiplication of probabilities obtained from speech and
gesture. However, the cones are obtained using sensor gloves,
and the probability of being “in the cone” is estimated using
heuristics that combine different types of rankings.

Salience-based approaches are described in [9, 11]. They
use salience to weigh the importance of factors pertaining to
gesture-speech alignment, but they do not consider the uncer-
tainty associated with pointing.

6. Conclusion
We have offered a formalism that takes into account relation-
ships between spoken language and spatial and temporal aspects
of gesture to integrate information about pointing gestures into
the estimation of the probability of candidate interpretations of
an utterance. Our empirical evaluation shows that our formal-
ism significantly improves interpretation accuracy.
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