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Abstract. The automated prediction of a user’s interests and requirements is an
area of interest to the Artificial Intelligence community. However, current pre-
dictive statistical approaches are subject to theoretical and practical limitations
which restrict their ability to make useful predictions in domains such as the
WWW and computer games that have vast numbers of values for variables of
interest. In this paper, we describe an automated abstraction technique which ad-
dresses this problem in the context of Dynamic Bayesian Networks. \We compare
the performance and computational requirements of fine-grained models built
with precise variable values with the performance and requirements of a coarse-
grained model built with abstracted values. Our results indicate that complex,
coarse-grained models offer performance and computational advantages com-
pared to simpler, fine-grained models.

1 Introduction

It has long been recognized in the Artificial Intelligence community that problem refor-
mulations are central to the ability of systems to reason effectively in complex domains.
A commonly used type of reformulation is abstraction, which involves ignoring or com-
bining parts of the state space to overcome computational intractability. Of course, this
reduction in complexity comes at a cost; using an abstraction, rather than the com-
plete state-space, usually means that the computed solution is less accurate than the
solution obtained with the complete state space. However, good abstractions achieve
a state space reduction without significantly compromising the quality of the solution.
Abstraction techniques have been used in a variety of problem-solving settings, such as
automatic programming, design, diagnosis, planning and theorem proving [6].

In this paper, we focus on the use of abstraction techniques in Bayesian Networks
(BNs) [11]. In particular, we utilize BNs in predictive statistical models for plan recog-
nition — the area of user modeling which endeavours to predict a user’s plans and goals
from observations of the user’s state. The recent application of predictive statistical
models to realistic application domains, such as the WWW, computer games or interac-
tive systems, has placed increased demands on these models to handle vast numbers of
values for the variables of interest. For instance, the WWW has millions of locations,
and computer games may have thousands of possible actions and locations. However,
BNs cannot handle efficiently such application domains. This may be due to theoretical



boundaries or restrictions imposed by currently available systems and operating con-
ditions. For instance, a theoretical limitation of statistical prediction models in general
and BNs in particular pertains to the amount of data that needs to be collected in order
to perform meaningful predictions when there is a large number of variables or vari-
able values. Further, the belief-update algorithms of BNs are exponential in their state
space (Section 2). Current BN software packages, such a Netica [10] and Hugin [8], are
subject to memory restrictions that limit the number of variables and variable values
they can handle. This problem is exacerbated in Java-based WWW applications, where
executing programs must reside in the client’s site.

In this paper, we describe an automated abstraction technique to address the “large
state space” problem in the context of Dynamic Bayesian Networks (DBNs) [4] — a
variant of BNs used in a variety of applications, e.g., [7,12]. We use DBNs to predict
a user’s quest (goal) in a Multi-User Dungeon (MUD) adventure game with 2140 lo-
cations where 1311 actions were performed by players when attempting to achieve 24
different quests (Section 3). In our previous work, we addressed the large state space
problem by removing low-probability values from the state space and taking advantage
of domain features [1]. This involved deleting from the state space events that were not
found during training, ignoring commands that contain typographical errors, and taking
advantage of the hierarchical structure of the domain to merge specific locations into re-
gions. While these approaches to abstraction often yield good results, they frequently do
not generalize across domains with different features. In this paper, we offer a general
clustering approach to abstraction which uses automatically learned categories, instead
of precise variable values, to reduce the size of the state space (Section 5).

In the next section, we review abstraction methods applied to prediction models
similar to ours. We then describe the features of our domain, our basic (fine-grained)
prediction models and our abstraction process. In Section 6, we compare the perfor-
mance and computational requirements of a coarse-grained prediction model with the
performance and requirements of our fine-grained models. We then present concluding
remarks and outline our plans for future work.

2 Redated Research

DBNs have been used for knowledge representation and reasoning in domains where
the world changes and the focus is reasoning over time. In these domains, the DBN
grows over time, and the state of each domain variable at different times is represented
by a series of nodes. In addition to having the same computational problems as those
experienced by ordinary BNs during belief updating (both exact and approximate in-
ference are NP-hard [2, 3]), DBNs incur additional complexity as the number of time-
slices increases. In order to constrain the state space, the DBN connections over time
are typically Markovian, and a temporal ‘window’ is imposed. For example, our DBN
for predicting a user’s goals in the MUD is limited to a two-time-slice window [1].

In this paper, we focus on the use of abstraction to reduce the size of the state space
when the DBN nodes represent domain variables that have vast numbers of values. Ab-
straction encompasses a number of techniques: (1) ignoring variables of low relevance;
(2) ignoring some of the less relevant values a variable may take; and (3) modulating
the precision (or granularity) of the variables by combining values.



In a BN framework, ignoring a variable of low relevance is equivalent to pruning
it from the network. An example of this is the work of Jitnah [9], who uses a rele-
vance measure based on mutual information to prune past nodes from a DBN. In the
related area of decision-theoretic planning using Markov Decision Processes, Dearden
and Boutilier [5] remove completely variables of low relevance in terms of their impact
on utilities of actions. Merging or ignoring individual values, as proposed in this paper,
is not an option for the problems considered by these researchers, as the variables are
either Boolean propositions or have very few values.

An example of the second form of abstraction — ignoring some of the less relevant
values a variable may take — is the removal of low-probability values from the action
state space, as described in [1].

An example of the third approach is Wellman and Liu’s use of abstraction for the
approximate evaluation of BNs when the state space is prohibitive or when a real-time
response is required [14]. They trade off accuracy in the result for computational effi-
ciency by varying the granularity of the variable state spaces. This is done by merging
values that are adjacent in the enumeration of the variable’s state space. This approach
can be effective when such values are “similar”, but is not suitable for many domains.
Jitnah [9] investigates measures for choosing which values to merge based on similar-
ities of their entries in the network’s Conditional Probability Tables (CPTs). Another
example of this clustering form of abstraction is our previous exploitation of hierarchi-
cal aspects of the domain to merge individual locations into regions [1]. As mentioned
in the previous section, although this method gives reasonable results, it is not gen-
eralizable across domains with different features. In this paper, we describe a machine
learning classification method for abstraction that automatically groups values that have
similar features.

3 Domain

Our application domain is the “Shattered Worlds” Multi-User Dungeon (MUD) — a text-
based virtual reality game where players compete for limited resources in an attempt
to achieve various quests. As stated in Section 1, the MUD has 24 different quests,
and 2140 locations where 1311 actions were observed. As shown in [1], the MUD is
a complex domain whose features challenge traditional plan recognition systems. This
motivated our use of DBNs to develop models that predict users’ actions, locations and
goals. In this paper, we extend our previous results by providing a generally applicable
abstraction method that supports the development of DBNs in complex domains.

The MUD software collects information about the runs performed by each player.
Each run is composed of a sequence of data points collected from the time a player
enters the MUD or completes a quest until s/he achieves a new quest. Each data point
contains information regarding the state of the player when an event happens (either an
action is performed or a quest is achieved). Table 1 shows the following information for
a subset of the data points collected during a sample run; a time stamp, the name of the
player, the location where the action was executed, and the name of the action (or quest
achieved). This is the information used to build our DBNs (Section 4).



Table 1. Sample data for the Avatar quest.

Action Time Player L ocation Action
No.
1 773335156 spillage room/city/inn ENTERS

12 773335264 spillage players/paladin/room/trading_post buy

17 773335291 spillage players/paladin/room/western_gate bribe

28 773335343 spillage players/paladin/room/abbey/guardhouse Kkill

37 773335435 spillage players/paladin/room/abbey/stores search

40 773335451 spillage players/paladin/room/shrine/Billy worship

54 773335558 spillage players/paladin/room/brooksmith give

60 773335593 spillage players/paladin/room/shrine/Dredd avenger

62 773335596 spillage players/paladin/room/abbey/chamber  Avatar quest

4 Knowledge Representation

In this section, we discuss briefly three simple DBNs developed for the MUD domain
[1]. These models, whose predictive power was investigated in our previous research,
were selected since they enable us to compare the predictive performance and compu-
tational requirements of our fine- and coarse-grained modeling techniques under other-
wise equivalent conditions.

The domain variables represented as DBN nodes are actions, locations and quests.

Action (A) - represents the possible actions a player may perform in the MUD while
trying to achieve a quest (| 4|=1311 actions in our current trials), plus the special
ot her action, which includes all previously unseen actions. In our current imple-
mentation, we take an action to be the first string of non-blank characters entered
by a user.

Location (L) — represents the possible locations visited by a quest-achieving player
(|L|=2140 locations), plus the special ot her location, which includes all previ-
ously unseen locations.

Quest (@) — represents the 24 different quests a player may undertake.

Figure 1 shows our three DBNs: (a) acti onModel , (b) | ocati onMbdel , and
(c) i ndepMbdel . acti onMbdel infers a user’s quest from his/her observed ac-
tions only; | ocat i onMbdel infers a user’s quest from observed locations only; and
i ndepModel considers both actions and locations. The arcs in the DBNs reflect the
different influences between the domain variables. For example, the next action in
acti onModel depends on the previous action and the quest being undertaken. Each
node in a DBN is associated with a CPT that quantifies its relationship with its par-
ents. For example, the CPT associated with node A;,; in acti onModel represents the
conditional probability Pr(A4;41|A4;, Q).

The main CPT used by act i onMbdel has (|A4|+1)% x Q entries (= (1311+1)% x 24
= 41 x 10°); the main CPT used by | ocat i onModel has (|L| + 1)% x @Q entries (=
(2140 +1)? x 24 = 110 x 10°); and i ndepModel requires both of these CPTs, which
have a total size of = 41 x 10% + 110 x 10% (151 x 108). In our previous work, the
size of the CPTs was substantially reduced by not storing zero-probability events, e.g.,
for i ndepMbdel , this yielded CPTs whose total size was 1.1 x 10° on average [1]. As
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Fig. 1. Dynamic Belief Networks for the MUD: (a) act i onMbdel ; (b) | ocat i onModel ;
(c¢) i ndepMbdel .

a result, the real-time belief updating process was computationally feasible. However,
this approach is effective only if the CPTs are sparse.

5 Automated Abstraction

The primary purpose of the models considered in this paper is to predict which quest
a user is doing. Consequently the abstractions we considered involve using features of
the state space which are quest related. These abstractions are based on the observation
that the locations/actions which are more frequently visited/performed in the process of
doing a quest are more important for that quest.

The abstraction of the locations involves clustering the locations into regions. To do
this we first calculated for each location L; 24 attributes, a;; for j = 1,...,24, one
attribute for each quest, where each attribute counts the number of times location L;
was visited by all users while trying to accomplish quest @ ;. For each location L;:*

aij=» > [#oftimes each user moved from Ly to L; (Ly, # L;) while doing Q]
all users Ly,

Once all the attributes were calculated, we applied the classifier Snob [13] to these
attributes in order to automatically determine the regions. The classifier identified 116
regions consisting of locations with similar attributes. One region consisted of all the
locations which were never visited and hence were not important for the prediction of
any quest. The other regions consisted of groups of locations, such that each group
comprised locations with similar hierarchical descriptions. However, not all locations
with a similar hierarchical description were found in the same region.

The abstraction of actions into action classes was learned in a manner similar to
the learning of regions for locations:? 24 attributes were calculated for each action, one
for each quest, representing how often an action was performed by all users doing a
particular quest. Once all the attributes were calculated, we used the Snob classifier to
automatically cluster the actions into classes. Snob found 85 actions classes, including
one with all the unused actions.

! Note that the attribute value is not incremented when a user stays in the same location over
several actions.

2 However, repeated action occurrences were counted, since several actions may be performed
in the same location.



Having obtained the abstractions of the locations and actions, we investigated
abstract Mbdel —a DBN which has the same structure as i ndepModel , but with
regions instead of locations, and action classes instead of actions. The total size of the
main CPTs in abst r act Model is (116 + 1)% x 24 + (85 + 1)% x 24 (= 50 x 10%),
compared with 151 x 10° for i ndepModel . This corresponds to a reduction by 99.7%
in the size of the models. Further, the size of abst r act Model is 99.6% smaller than
that of | ocat i onModel and 98.8% smaller than that of act i onModel .

In the future, we intend to investigate using other attributes to classify locations
and actions, such as the number of users who visited a location or performed an ac-
tion. This would enable the classifier to distinguish between locations/actions which
are visited/performed often by one user and those which are visited/performed only a
few times by many different users.

6 Results

In this section, we present empirical results showing how the predictive performance
of the DBN models described in Section 4 compares with that of abst ract Model
(Section 5). The measure of performance used to compare these models is average
prediction, which assesses how well a model predicts the actual quest [1]. This measure
computes the average across all test runs of the predicted probability of the actual quest
at a particular point ¢ during the performance of a quest:

- 1« o
average prediction, = — E Pr(actual value of quest at point ¢ in the 4-th test run) ,
n
i=1

where n is the number of test runs. Our results were obtained by training each model
on 80% of the data and testing on 20% with cross-validation using 5 different splits of
the data.

In order to determine whether the length of a run (in terms of number of actions
performed and locations visited) affects the relative performance of the different mod-
els, we divided the test runs into four categories as follows: short — between 11 and
124 locations and actions; short-medium— between 125 and 349 locations and actions;
medium-long — between 350 and 749 locations and actions; and long — more than 750
locations and actions. Each of these categories contained approximately 300 runs.

Figure 2 shows the average predicted probability of the actual quest for each of the
four DBNs considered in this paper (acti onhodel , | ocat i onMbdel , i ndepMdel
and abst r act Model ) for each of the four categories of runs. In order to compare the
performance of the different models across runs where the number of recorded actions
varies, the x-axis was chosen to represent the percentage of the actions in a run that
have been performed. Specifically, the plots in Figure 2 show the average prediction
after 5%, 10%, 15%, . .., 100% of the actions in a run have been performed.

The general trends emerging from the results shown in Figure 2 are: (1) the perfor-
mance of all the models improves as quest completion draws near; (2) i ndepMbdel
has the best performance overall, followed by abst r act Model , | ocat i onMbdel and
acti onModel ; (3) abst r act Model outperforms the other models during some time
span (often at the beginning of a quest); and (4) the performance of act i onModel
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Fig. 2. Predictive performance of precise versus abstracted models.

is substantially worse than that of the other models.? This last (seemingly counter-
intuitive) result may be explained by the observation that MUD players often interleave
quest-related actions with other actions that do not contribute to quest achievement. We
now consider the first three of these trends in turn.

The performance of all the models improves as quest completion draws near. At first
glance, it appears that in the initial stages of a run, the predictive accuracy of all the
models is low in absolute terms. However, even after only 10% of the actions in a run
have been performed, the average predictive accuracy of the best performing model
(which is either i ndepMbdel or abst ract Model ) is approximately 16%. This is sig-
nificantly better than randomly selecting a quest from 24 uniformly distributed quests
(which has an average predictive accuracy of 4%). When 70% of the actions in a run
have been performed, the average predictive accuracy of i ndepModel , which has the
best performance at that stage, is 40% for short runs, 49% for short-medium runs, 53%
for medium-long runs and 33% for long runs. These probabilities indicate that the ac-
tual quest is often assigned the highest probability mass among the candidate quests
(indeed, at this point in a runi ndepModel assigns the highest probability to the actual

3 T-tests performed for each set of predictions and each pair of models confirmed these results
at the 5% significance level.



quest 35% of the time for short runs, 51% for short-medium runs, 48% for medium-
long runs and 32% for long runs). The predictive accuracy of the three best models,
i ndepModel , abst ract Model and | ocat i onMbdel , climbs sharply from that point,
withi ndepMbdel reaching an average predictive accuracy of approximately 90% upon
quest completion for all run categories.

i ndepMbdel has the best performance overall, followed by abstract Model ,
| ocati onModel and actionModel. The superior overall performance of
i ndepModel is expected, as it is both complex and precise. The fact that
abst ract Model outperforms | ocati onModel and acti onMbdel indicates that it
is worth trading off simple but fine-grained DBN models against more complex but
coarse-grained DBN models. This trade off yields both substantial computational sav-
ings as well as improved performance.

abst ract Model outperforms the other models during some time span. As seen in
Figure 2, for the three shorter run categories this time span occurs at the beginning of a
run: the first 60% of a run for short runs, the first 25% for short-medium runs, and the
first 10% for medium-long runs. In contrast, for the long runs, abst r act Model has the
best performance between 45% and 65% of the actions in arun (while | ocat i onModel
outperforms the other models between 25% and 40% of the actions in a run).

The superior performance of abstract Model during the initial stages of the
shorter runs may be attributed to the following factors.

Vague predictions are better at ruling out unlikely quests. This is a result of the
relative sparseness of the CPTs for the fine-grained DBNs. Many entries in the
L x L x @ CPT orthe A x A x Q CPT contain a rather low probability or 0.
Thus, the distinction between events seen in training and those not seen in training
is quite low, resulting in a low discrimination between likely and unlikely quests.
In contrast, each entry in the CPTs of the coarse-grained model collates informa-
tion from several locations (which are grouped according to the quests achieved
while visiting these locations) or several actions (which are also grouped in this
manner). Thus, the differences between the various entries in these CPTs are more
pronounced than the differences between the entries of the fine-grained CPTs, lead-
ing to a greater ability to rule out unlikely quests, and assigning a higher probability
mass to the remaining quests.

Precise predictions may be miseading at the beginning, but are useful at the end.
This follows from the observation that the precise information with the most dis-
criminatory power is often collected close to quest completion. In the MUD, as in
many other domains, a particular event (e.g., action or location) observed at the be-
ginning of a quest may not be particularly indicative of the quest being attempted,
but the same event observed later on may be a powerful indicator of the quest under
consideration. Since the frequency counts for the CPTs are collected throughout the
performance of a quest (without distinguishing between its beginning or its end),
the information in CPT entries with higher conditional probabilities may be more
representative of the later stages of a run, rather than its earlier stages. Nonetheless,
these CPTs are used to make predictions at all stages of a run, thereby yielding
lower quality predictions at the beginning of a run.



The superior performance of abst r act Model around the middle of the long runs
may be explained by the observation that initially players may not be attempting the
quest they end up doing. Thus, one could argue that they are actually starting this quest
only later in a run. Further, in long runs players perform more actions that do not con-
tribute to quest completion than in shorter runs. These two observations account for
the lower predictive accuracy of all the DBNs for the long runs, compared to their per-
formance in the shorter runs (as indicated above, after 70% of the actions have been
performed, i ndepModel - the best performing model — predicts the actual quest with
an average probability of 0.35 for the long runs, compared 0.4, 0.48 and 0.53 for the
other run categories).

7 Conclusions and Future Work

We have offered an automated abstraction technique which addresses the large state
space problem in the context of DBNs. The comparison of the predictive performance
and computational requirements of fine-grained models with the performance and re-
quirements of the coarse-grained model built with our abstraction technique leads to the
following conclusions: (1) fine-grained DBN models generally have a higher predictive
accuracy than coarse-grained models with the same structure (this is corroborated by
our experiments with coarse-grained versions of act i onModel and | ocat i onModel );
(2) coarse-grained DBN models perform better than fine-grained models with a simpler
structure; (3) coarse-grained DBN models generally perform better than fine-grained
models with the same structure during the initial stages of a task; (4) the space re-
quirements of the coarse-grained DBN model built with our abstraction technique are
approximately 1/100 of the space requirements of the fine-grained models; and (5) the
space savings achieved by coarse-grained DBN models are twice as large as the savings
achieved by ignoring zero-probability events.

These conclusions clearly point towards complex, coarse-grained models as a vi-
able alternative to fine-grained, simpler models for domains with large data spaces. The
coarse-grained complex models not only perform better than their simpler fine-grained
counterparts, but also incur very large savings in space. In the future, we intend to ex-
tend this idea to include additional variables, e.g., MUD players, who may be classified
according to the length of their sessions and their quest completions. This will enable us
to determine whether the insights obtained from this research regarding the granularity-
complexity trade-off extend to models of a higher complexity than those investigated
here.

As indicated in Section 5, the results presented in this paper were obtained by per-
forming abstractions with respect to one type of variable, i.e., quests. In the future,
we intend to investigate using other attributes to classify locations and actions, such
as the number of users who visited a location or performed an action. In addition, we
propose to study the computational and performance implications of an abstract DBN
that relies on the joint classification of actions and locations (rather than their separate
classification, as done in this paper), and the computational implications of combining
coarse-grained models with sparse CPTs that do not represent zero-probability events.

Finally, an interesting result of our work pertains to the good performance of the
coarse-grained DBN during the initial stages of a quest. This points to the need to



investigate a dynamic model selection policy, which can change from a coarse-grained
model to a fine-grained model at some point during task performance.
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