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Abstract. We describe several Markov models derived from the behaviour patterns of
many users, which predict which documents a user is likely to request next. We then present
comparative results of the predictive accuracy of the different models, and, based on these
results, build hybrid models which combine the individual models in different ways. These
hybrid models generally have a greater predictive accuracy than the individual models. The
best models will be incorporated in a system for pre-sending WWW documents.

1 Introduction

Users typically have to wait for information they require from the World Wide Web (WWW).
The eventual aim of this project is to develop a system that reduces a user’s expected waiting
time by pre-sending documents s/he is likely to request (Nicholson et al., 1998,Albrecht et al.,
1999). This requires the development of models which can anticipate a user’s requests on the
WWW. In this paper, we consider several such models (Sections 4 and 5), and compare their
predictive power and their efficiency in terms of time and space consumption (Section 6). Our
models are based on observing the behaviour patterns of many users, rather than modeling the
requirements of an individual user. This is due to the constantly changing population of casual
visitors to most WWW sites, in particular the site from which we gather our data (the School of
Computer Science and Software Engineering at Monash University). Our models are generated
by considering different combinations of two main features of our observations: the order in
which documents are requested and the structure of the server site. These combinations yield four
basic Markov models: Time, Space, Second-order Time, and Linked Space-Time (Section 4). The
best of these models are then combined to yield hybrid models (Section 5).

In the next section we describe related research. We then describe the features of our domain,
followed by our prediction models. Finally, we discuss our results, which motivate our hybrid
models, and present concluding remarks.

2 Redated Work

The recent growth in the WWW and on-line information sources has inspired research on agents
that help users derive the most benefit from the vast quantities of available information. These
agents may be broadly classified into recommender systems, which recommend information
items that are likely to be of interest to the user, and action systems, which go one step further,
performing actions on the user’s behalf. Examples of recommender systems are WebWatcher
(Joachims et al., 1997) and Letizia (Lieberman, 1995); examples of action systems are those
described in (Bestavros, 1996,Balabanovi¢, 1998). Both types of systems require a prediction
model which anticipates a user’s preferences, including documents a user may find interesting,



or his/her future actions. These models are generally obtained by applying machine learning
techniques to identify these preferences or future actions based on the preferences or actions of
(1) the users themselves (Davison and Hirsch, 1998,Joachims et al., 1997,Lieberman, 1995), (2) a
group of similarly-minded users (Alspector et al., 1997), or (3) the general population (Bestavros,
1996,Albrecht et al., 1998).

Our system, which predicts web pages of interest to a user based on behaviour patterns of the
general population, is most closely related to Bestavros’. However, Bestavros’ system features
one prediction model only — a Time-Markov model that predicts the probability of a future doc-
ument request. In contrast, we are interested in comparing the accuracy of different predictive
models. The prediction of the next request, rather than a future request, is the simplest basis for
this comparison. The most accurate model will then be used to predict future requests.

3 TheDomain

Analysis of information obtained from our WWW server yields the following features. (1) We
can observe only one type of action performed by a user, namely a document request in the
WWW (and our aim is to predict the user’s next request). (2) It is extremely difficult to obtain
a perspicuous representation of the domain. Typically there are huge numbers of documents
located on a server and many links between them (there are also links to and from pages in
external locations); the existence, location and size of documents are subject to continual change,
as are the links between documents. (3) There is no obvious clear objective that applies to all
users — some users may be browsing, others may be seeking specific information; also, there
may be many ways to achieve an objective, since there may be many paths from a document to the
desired information. (4) The sequence of requests from a user observed by the server providing
the documents is only a partial record of the user’s movements through the internet, since not all
the user’s movements to external locations are observed. (5) Finally, most WWW browsers and
proxy servers cache documents received by a user. Thus, a user’s requests for previously supplied
documents that are still in the cache will not be observed.

The server logs the document requests which were satisfied, where a request takes the form
{client referer requestedDoc time size}. Theclient is the internet server site that
made the request. The r ef er er is the current internet location of the user requesting the docu-
ment, which may have one of the following values: (1) the http address of a local location, i.e.,
a (previously requested) web page on our server site; (2) the http address of an external location,
i.e., a web page on another internet site; or (3) empty (represented by ‘ - ' ), because the infor-
mation has not been provided. The r equest edDoc is the http address of the document being
requested by the client. The t i me indicates when the request was received (measured in seconds
elapsed since the startup of the system). The si ze is the number of bytes in the requested docu-
ment. The requests are grouped into sessions, so that each session contains the temporal sequence
of requests from a single client. This grouping supports the development of request models based
on the temporal sequence of requested documents, i.e., Markov models (Section 4).

During pre-processing we perform the following actions to reduce the distortion of prediction
models due to server traffic generated by certain WWW phenomena, the existing client-server
protocol, or the configuration of the WWW at the server site. (1) We remove data generated by
search engines and sessions identified as originating from a web-crawler client. (2) We remove
instances of self-referring documents, since the requested document is already in the client’s
cache. (3) We infer implicit document requests within our server site; these are requests which
were not logged by our current data-logging protocol (since the requested document is already



in the client’s cache), but must have occurred to enable a particular sequence of events to take
place. Inferred requests can be incorporated into our document prediction model (see Section 4.2
for an example), but not into our time prediction model (Section 4.1), since we do not know
when an inferred request was made. (4) Finally, we take into account documents embedded in
a main document, e.g., images embedded in text. These embedded documents are automatically
requested by the main document within a few seconds after the main document is requested. Em-
bedded documents must be identified when building a prediction model, since on one hand, they
can almost never be pre-sent before they are requested (hence their incorporation in prediction
models does not enhance these models, while slowing down the computations), and on the other
hand, these documents must be pre-sent when pre-sending any document which contains them.
Our web site has over 200 personal pages plus hundreds of pages which contain coursework,
research and administration information. These documents are organized in a complex lattice
with many links connecting between pages of different types. The results presented in this paper
are based on logs of web-page requests recorded by our server over a 50-day time window. After
pre-processing, the following data were obtained: 1,095,730 document requests, where 59,486
clients requested 17,332 documents from 21,692 referer locations. The data include 14,023 ref-
erers which are also requested documents, and 103,972 different referer/document combinations.

4 Prediction Modds

The models described in this section predict the document requested next. That is, they esti-
mate P(Dg, ,Tr, |previous requests), where Dpg, is the next document requested, and T'g, is
the time Dg, is requested. In order to make the prediction problem computationally tractable,
we assume that the distribution of the time for requesting a document is independent of the ac-
tual document that is requested, that the next document requested depends only on the previous
documents requested, and that the time of the next request depends only on the time of the last
request, T'g. This last assumption over-simplifies our domain, since the size of a document af-
fects both its transmission time and the user’s reading time, thereby influencing the time of the
next request. In the future, we intend to factor the size of a document into the estimation of the
time of the next request. According to our assumptions

P(Dg,,Tr, |previous requests) = P(Dg, |previous documents) x P(Tg, |Tr) .
The estimation of P(T'g, |Tr) is described in Section 4.1 and that of P(D g, |previous documents)
in Section 4.2.

4.1 Next document isrequested at a particular time

For our current database (based on 50 days of data), the time between successive requests from
a client ranges from 0 to 4,100,910 seconds (~ 47 days): 0 < Tr, — Tr < 4,100, 910.

Figure 1(a) shows the cumulative frequency distribution of the inter-arrival time between
consecutive requests (plotted against a log scale). This distribution indicates that approximately
90% of document requests from a client are made within 122 seconds of the previous request,
95% are made within 874 seconds, and 99% within 343,412 seconds. As shown in Figure 1(a), a
combination of three functions provides a good fit for the data (these functions were found using
a weighted least-squares method). Therefore, we use the probability function in Figure 1(b) to
estimate the probability of receiving a request at a particular time.
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Figure 1. Document requests at a particular time: (a) the cumulative frequency distribution plotted against
a log scale of the inter-arrival time between requests (i.e., Tr, — Tr) and fitted with three functions; and
(b) the fitted probability function for Tr, — Tr.

4.2 A particular document isrequested next

In our earlier work, we considered a Time Markov model, which predicts a user’s next request
based only on the document that was requested last (Nicholson et al., 1998). Further analysis of
the data logs of access to our site points to the importance of the structure of the site for building
accurate prediction models. In this section, we introduce three additional prediction models,
Space Markov, Second-order Time Markov and Linked Space-Time Markov (also called Linked
Markov), and give a graphical representation for all four models. The Time and Second-order
Time Markov models consider temporal information only; the Space Markov model considers
structural information; and the Linked model combines temporal and structural information.

The Space Markov model was motivated by the observation that normally people follow
links on web pages. Hence, in this model, the probability of a client requesting a document
depends only on the referring document, which has a link to the requested document. In the
Second-order Time Markov model, the probability of a client requesting a document depends
on both the last requested document and the document requested before that. Finally, in the
Linked Space-Time Markov model, the probability of a client requesting a document depends
on hoth the last visited document and the referring document of the last visited document. Like
the Second-order Time Markov model, this model considers two information items, but these
items may be obtained from a single request record.

We use a graphical representation for each document prediction model, where the graph
represents the probability that a document D; is requested after an event E;_;. The graph cor-
responding to each model contains a vertex for each event E;_; and each requested document
D; observed in the training data. If a client’s request for D; was preceded by event F;_; dur-
ing a session, then there is an arc in the graph from E;_; to D;. In this case, we say that D; is
a successor of E; 1 (D; € succ(E;_1)). For the Time Markov model, the event of interest is
the last document requested (D;_1), with an arc from D; _; to D; indicating that document D;
was requested after D;_;. For the Space Markov model, E;_; is the referring document of D;
(Dret,), With an arc from Dre, to D; indicating that D; was reached through a link from Drf, .
For the Second-order Time Markov model, E; 1 is a tuple which contains the last two docu-



ments requested ({D;_2, D;_1 }), with an arc from {D;_», D;_1 } to D; indicating that a request
for document D; was preceded by a request for D;_, which in turn was preceded by a request
for D;_». Finally, for the Linked Space-Time Markov model, E;_; is a tuple that contains the
last document requested and its referer ({ Drer,_,, D;1}), with an arc from {Dre, _,,D; 1} t0
D; indicating that a referral from Dge, | to D;_; was followed by a request for D;.

Each arc from event E;_; to D; has an associated weight, w(E;_1, D;), which is the fre-
quency of an event-document pair across all sessions. Thus, after observing an event E, the
probability that the next requested document is D can be ((:omp))uted as follows.

w(E,D
Pr(Dg, = D|E) ZDJ.GWC(E) w(ED)

To illustrate these models and the manner in which they are built, consider a fragment of
training data from a client who visits the documents in the WWW site shown in Figure 2(a) in the
order indicated in Figure 2(b). The document to the left of each arrow is the referring document,
the document to the right of the arrow is the next document, and the time stamp indicates when
the requests were made. Note that the first and last requests have no referring documents, because
the client’s browser has not supplied this information to the server. For this example, we assume
that D6 and D7 were always visited whenever D3 was visited, and these visits were performed
shortly after visiting D3. Hence, D6 and D7 are considered embedded documents of D3, forming
one document with D3. This is not the case for D8, which is visited sometime after D3, and not
every time D3 is visited. After applying the pre-processing operations described in Section 3 to
this sequence of requests, we obtain the extended log in Figure 2(c), where the steps inferred
from those actually logged appear in boldface, i.e., the referrals D2 —+ D1 and D8 — D1, and the
embedded documents, i.e., D3;D6;D7, appear in italics. This extended log is used to build the
graphs corresponding to our four models as follows.

The graph corresponding to the Time Markov model (Figure 2(d)) is built by following
the sequence of documents to the right of the arrow, viz D1, D2, D1, [D3;D6;D7], D8, D1,
D4, D5.1:2 The graph that represents the Space Markov model (Figure 2(e)) is built using the
{referer, document} pairs in each line, viz — —D1, D1-D2, D2—D1, D1—[D3;D6;D7],
[D3;D6;D7]—D8, D8— D1, D1—D4, — —D5. This graph, which represents structural in-
formation in the WWW server site, is the same as the graph in Figure 2(d) when the links in the
current site are followed; the graphs differ when there is no referral log for a requested docu-
ment, as in the first and last lines in Figure 2(c), or when the referer is an external location. The
graph that represents the Second-order Time Markov model (Figure 2(f)) is built using event-
document pairs, where the events are composed of two consecutive documents to the right of the
arrow, which in turn precede the next document, i.e., {D1, D2} D1, {D2, D1} [D3;D6;D7], {D1,
[D3;D6;D7]} D8, {[D3;D6;D7], D8} D1, {D8, D1} D4, {D1, D4} D5. Finally, the graph that
represents the Linked Markov model (Figure 2(g)) is built from {preceding-referer, preceding-
request} events, which precede the next requested document, viz {— — D1} D2, {D1—D2}
D1, {D2—D1} [D3;D6;D7],{D1—-[D3;D6;D7]} D8, {[D3;D6;D7]—D8} D1, {D8—D1} D4,
{D1 — D4} D5.

To illustrate the calculation of the probability of requesting a particular document after ob-
serving an event, let us reconsider the Time Markov model in Figure 2(d), and assume that

! This graph also contains weights for the arcs, which are obtained from frequency counts of pairs of
consecutively requested documents in the training data. Similar frequency counts may be obtained for
the other models, but are not required for this exposition.

2 The inferred links are drawn in thick lines in the graphs representing the Time and Space Markov models.
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Figure 2. Sample Time, Space, Second-order Time and Linked Space-Time Markov models.

document D1 has just been requested. The model would then assign a zero probability to the
next requested document being D8, D5 or a document not seen in training, and it would predict

Pr(Dg, = D2|D1) = tgri3+53 = 0.12, Pr(Dg, = {D3; D6; D7}|D1) = 155555 = 049,
and Pr(Dg, = D4|D1) = 558 = = 0.39.
5 Results

The results presented in this section were obtained from 50 days of data logged by our server. All
the models were tested using 80% of the sessions for training and 20% for testing, with results
showing averages from 10 runs. Differences noted in the results for the various prediction models
are significant at the 5% level.
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Figure3. Comparison of the prediction probabilities obtained with: (a) the basic Markov models, and (b) the
naive Markov models.

The prediction models were assessed in terms of the probability with which they predict
the actual next request. Figure 3(a) compares the prediction probabilities obtained with our four
Markov models. The x-axis shows the probability with which a model predicts the next request
made by the user. The y-axis shows the average percentage of predictions whose probability is
greater than or equal to the probability shown on the x-axis. For example, the Linked Markov
model predicts the actual next request with probability greater than or equal to 0.5 32.9% of
the time, while the Second-order Time Markov model predicts the next request with probability
greater than or equal to 0.5 29.0% of the time.

The results in Figure 3(a) indicate that the predictive performance of the Time Markov model
is better than that of the other models when the probability of this prediction is low (< 0.06).
When the prediction probability is between 0.06 and 0.77, the Linked model has the highest
predictive accuracy. The relative performance of the Space Markov model improves from a pre-
diction probability of 0.06 to 0.77, at which point it overtakes the Linked Markov model. This
means that the Space Markov model is more accurate than the other models when its predictions
have a high probability (> 0.77). Still, the overall performance of the Linked Markov model is
better than that of the other models.

Since the predicted probabilities shown in Figure 3(a) seem quite low, we validate our mod-
els by comparing these probabilities with the predictions made by the naive counterparts of our
models. The naive version of a model predicts the request which follows an event using a uniform
distribution; that is, each of the n successors of a vertex which represents this event is predicted
with a probability of 1/n. This probability differs for each vertex, since each vertex may have
a different number of successors. Figure 3(b) compares these naive predictions with those ob-
tained using the Space Markov model, which generally gives the lowest predictions of all the
basic Markov models.® For probabilities greater than 0.08, the Space Markov model is clearly a

8 The variation in the predictive performance of the naive models is due to differences in the number of
vertex successors typically found in the graph corresponding to each model. For instance, 92% of the
vertices have 5 or less successors in the Second-order model, 6 or less successors in the Linked model, 9
or less in the Space model, and 15 or less in the Time Markov model. Although these branching factors
seem low, each graph has many vertices with hundreds of successors.



better predictor than all the naive models, indicating that our models, which incorporate request
frequency information into the arc weights, improve upon the naive predictions.

Hybrid Prediction Models Each prediction model is sometimes unable to make a prediction
because the current situation was unseen during training (“% seen” column in Figure 4(b)). This
adversely affects its predictive performance. We have designed two hybrid models, maxHybri d
and or der edHybr i d, to address this problem.

The maxHybr i d model consults all the Markov prediction models, and makes its own predic-
tion using the model which made a prediction with the highest probability, i.e., the model which
has the most confidence in its most likely prediction.

The or der edHybr i d model consults the Markov models in the following order, which was
determined based on the relative performance of these models: Linked, Second-order, Time and
Space. The first model which can make a prediction is selected.

Finally, as seen in Figure 3(a), when the Space Markov model predicts the actual next request
with a high probability, its predictive performance is better than that of the other Markov models.
This is the basis for the spaceLi nkedHybr i d model, which combines the Space and Linked
Markov models as follows:

If the maximum prediction made by the Space Markov model is > 0.77, then use its pre-

dictions, otherwise use those of the Linked Markov model.

The results obtained with these hybrid models are shown in Figure 4(a) compared to the
overall best of the individual prediction models, the Linked Space-Time Markov model. The
predictive accuracy of the or der edHybr i d model is higher than that of the other models until
the probability reaches 0.39, at which point the maxHybr i d model starts performing better than
the other models. For probabilities greater than 0.5 all the hybrid models perform significantly
better than the Linked Markov model.

We postulate that the maxHybr i d model performs better when the prediction probability is
relatively high (> 0.39), because such a probability indicates that the basic Markov model which
was selected has some information about the user’s behaviour. In contrast, a “highest” prediction
probability that is relatively low indicates that all the candidate models are rather uninformed. In
this case, the or der edHybr i d model performs better because it primarily relies on the Linked
Markov model, which is the best of the basic models (other models are consulted only when
the Linked Markov model cannot make a prediction). As expected, the relative performance of
the spaceLi nkedHybri d model improves as the prediction probabilities increase. Still, even
for high probabilities, its performance falls below the performance of the maxHybri d model.
In summary, due to the improved predictive accuracy of the maxHybri d model in the higher
probability ranges, we consider it the best prediction model for a document pre-sending system.

6 Discussion

The two main features of our domain are the spatial structure of the server site and the order in
which documents are requested. The results in the previous section show that the Linked Markov
model, which combines these two features, gives better predictions overall than the Markov
models which incorporate only one of these features. The inability of the basic models to make a
prediction some of the time motivated the development of the or der edHybr i d and maxHybri d
models, while the good performance of the Space Markov model when its predictions have a
high probability motivated the spaceLi nkedHybr i d model. As shown in the previous section,
the maxHybr i d model is the most suitable for a document pre-sending system.
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Figure 4. (a) Comparison of the prediction probabilities obtained with hybrid models. (b) Features of the
prediction models: maximum number of vertices and arcs, and average percentage of test data for which a
model is able to make a prediction.

We now examine how the following factors affect the predictive performance of our models:
time and space resources required, coverage of the test data, and model selection policy (for the
hybrid models).

The computation time required by the prediction models is as follows. The training time for
each of the four basic Markov models is about 700 seconds of CPU time on a SGI Indy R5000.
All the prediction models make fast predictions in the testing phase, from 1.6 to 2.0 ms/request.*

We measure the size of the prediction models by the number of vertices and arcs in their
graphical representations (Figure 4(b)). While the larger models tend to have a better predictive
performance than the smaller ones, size is not the only determining factor. For instance, the
Linked Markov model is the best of the basic Markov models, even though it is not the largest.

The average percentages of the “seen” test data, i.e., the data for which the models are able to
make a prediction, are shown in Figure 4(b). Increasing this percentage can improve predictive
performance, e.g., the maxHybr i d model compared to the Linked Markov model. However, as
shown by the relatively poor performance of the Time Markov model, a high proportion of seen
data does not in itself improve the predictive accuracy of a model.

The maxHybri d model and the or der edHybr i d model, which have the same number of
vertices and arcs and the same percentage of seen data, have the best predictive performance un-
der different circumstances. The dynamic model selection performed by the maxHybr i d model
yields better results for higher prediction probabilities, while the static selection performed by
the or der edHybr i d model (based on the previous relative performance of the basic models)
yields better results for lower probabilities.

In summary, the predictive performance of the models is affected by the following inter-
related factors: (1) domain features — temporal order and spatial structure; (2) size — number
of vertices and arcs in the models’ graphical representations; and (3) coverage of test data —
percentage of seen data. The model selection policies applied by the hybrid models also affect
the performance of these models.

4 We would expect the models with the lowest branching factor to be the fastest, however the Second-order
model is the slowest due to the way in which the database lookup was implemented.



7 Conclusion and Future Work

We have compared prediction models that take into account two factors in isolation or in combi-
nation: (1) the order in which documents are requested, and (2) the structure of the server site. We
have shown that the combination of these factors in the Linked Markov model yields the greatest
predictive power among the basic prediction models. Further, combining more than one predic-
tion model in a hybrid model overcomes the problem of unseen data to some extent, resulting in
models that are better than the individual models. This improvement is achieved through the use
of more space and time resources, however the space requirements are not prohibitive and the
predictions can still be made in milliseconds.

We are currently investigating the incorporation of our best prediction model, the maxHybr i d
model, into a document pre-sending system (Albrecht et al., 1999). In the future, we intend to
extend the best models to predict a user’s future requests (rather than the next request). Such
predictions are required to pre-send documents that are not immediately needed by a user, but
may be required later on.

Finally, we plan to identify user profiles based on a classification developed using unsuper-
vised learning techniques (such as those used by Albrecht et al. (1998) to classify actions). To
this effect, we will consider attributes such as inter-request time, type of document requested,
whether the referer is internal or external to our site, time of day, and depth of the document in
the server site document hierarchy. The resulting classification will support the tailoring of pre-
diction models to different types of user, which should yield improved predictive performance.
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