Bayesian Models for Keyhole Plan Recognition in
an Adventure Game

DAVID W. ALBRECHT, INGRID ZUKERMAN and ANN E. NICHOLSON
School of Computer Science and Software Engineering, Monash University

Clayton, VICTORIA 3168, AUSTRALIA

{dwa,ingrid,annn}@cs.monash.edu.au

Abstract. We present an approach to keyhole plan recognition which uses a dynamic belief (Bayesian)
network to represent features of the domain that are needed to identify users’ plans and goals. The
application domain is a Multi-User Dungeon adventure game with thousands of possible actions
and locations. We propose several network structures which represent the relations in the domain to
varying extents, and compare their predictive power for predicting a user’s current goal, next action
and next location. The conditional probability distributions for each network are learned during a
training phase, which dynamically builds these probabilities from observations of user behaviour.
This approach allows the use of incomplete, sparse and noisy data during both training and testing.
We then apply simple abstraction and learning techniques in order to speed up the performance of
the most promising dynamic belief networks without a significant change in the accuracy of goal
predictions. Our experimental results in the application domain show a high degree of predictive
accuracy. This indicates that dynamic belief networks in general show promise for predicting a
variety of behaviours in domains which have similar features to those of our domain, while reduced
models, obtained by means of learning and abstraction, show promise for efficient goal prediction in
such domains.

Key words: Plan recognition, Bayesian Belief Networks, language learning, abstraction, performance
evaluation.

1. Introduction

To date, research in plan recognition has focused on three main areas: (1) inferring
plans during cooperative interactions, (2) understanding stories, and (3) recogniz-
ing the plans of an agent who is unaware that his or her plans are being inferred
(Raskutti, 1993). In the first two areas, the plan recognition process is intended,
since a user/writer is attempting to convey his or her plan to the system. In addition,
during cooperative interactions, a plan recognition system can interrogate the user
when confronted with ambiguous or incomplete information, e.g., (Allen and Per-
rault, 1980; Litman and Allen, 1987; Raskutti and Zukerman, 1991). The third area
is called keyhole plan recognition because the information available to the plan rec-
ognizer is gleaned from non-interactive and often incomplete observations of a user
(as though one was looking into a room through a keyhole). In the past, the use of
hand-crafted plan libraries in systems that perform plan recognition imposed heavy
restrictions on the size of their application domain, and hence on their usefulness
(Charniak, 1997; Charniak, 1993, Preface). However, recently several researchers

2 ALBRECHT ETAL.

have applied machine learning techniques to the acquisition of information about
planning in an effort to overcome this problem, e.g., (Lesh and Etzioni, 1995;
Forbes et al., 1995) (Section 2).

The mechanism described in this paper is part of this trend. Our approach
to keyhole plan recognition uses a Dynamic Belief Network (DBN) to represent
features of the domain needed to identify users’ plans and goals. Our current domain
is the “Shattered Worlds” Multi-User Dungeon (MUD), an adventure game which
resembles real world applications in its complexity and size (Section 3). The MUD
is a text-based virtual reality game where players compete for limited resources
in an attempt to achieve various goals. The MUD has over 4,700 locations and
20 different quests (goals); over 7,200 actions were performed by players. The
objective of the plan recognition mechanism is to determine, as early as possible,
which quest a player is attempting, and to predict which action a player will
perform in the next move and which location a player will visit next. To achieve
this, the system must first learn which actions and locations or sequences of actions
and locations tend to lead to a particular quest, and which actions and locations
normally follow each other. This information is obtained from previous instances
of completed quests during a training phase and modeled by means of several
DBNs (Section 4). During the testing phase, the different DBNs are used to predict
a player’s quest, next action and next location. To this effect, for each DBN,
every time a player performs an action, the system updates the probability that
the player is trying to achieve each of the quests, perform each of the actions and
move to each of the locations. The empirical results obtained for each DBN are
described in Section 5. Section 6 discusses the application of simple abstraction
and learning techniques to speed up the performance of the most promising of the
DBNs described in Section 5 without a significant change in the accuracy of goal
predictions. These enhancements are performed along two dimensions: (1) learning
significant actions in the domain; and (2) abstracting the locations visited by MUD
players. Finally, Section 7 discusses the implications of the results presented in this
paper, and Section 8 presents ideas for future work.

2. Related Work

In recent times there has been a shift from systems that rely heavily on hand
coded domain knowledge for plan recognition towards systems that apply machine
learning techniques to automatically acquire domain knowledge. This has allowed
a shift in domain size, where later systems deal with hundreds of actions in realistic
domains.

The systems described in (Cafiamero et al., 1992) and (Wern and Stenborg,
1995) rely on domain knowledge for keyhole plan recognition. Cafiamero et al.
use an abstraction/specialization plan hierarchy to perform plan recognition from
noisy input representing sequences of observations of an evolving situation in
traffic monitoring. In particular, their system aims to recognize a driver’s plan,

paper.tex; 16/12/1997; 19:15; no v.; p.2

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 3

the manner in which the plan is being executed and the possible motivation for a
particular plan from observations regarding the speed of the car, its acceleration,
the distance from the car in front, etc. Weern and Stenborg use a hierarchy of actions
in conjunction with “compiled” plans in order to anticipate a user’s intentions in
domains where users exhibit reactive rather than plan-based behaviour, e.g., news
reading. They perform simple probabilistic calculations to match a user’s actions
in a particular time window to those in the domain plans.

The system described in (Bauer, 1996) uses a plan hierarchy to represent the
actions in the domain, and it applies decision trees (Quinlan, 1983) in combina-
tion with the Dempster-Shafer theory of evidential reasoning to assess hypothe-
ses regarding a user’s plans in the context of a user’s actions. In particular, the
Dempster-Shafer theory takes into account the reliability of the data obtained so
far in order to moderate the probability mass assigned to the hypotheses postulated
by means of the decision trees. The Dempster-Shafer theory is also applied in
(Carberry, 1990), where a threshold plausibility and different levels of belief are
used to distinguish among competing hypotheses.

The plan recognition mechanism described in (Lesh and Etzioni, 1995) works
on a graph which represents the relations between the actions and possible goals
of the domain. The system iteratively applies pruning rules which remove from
the graph goals that are not in any consistent plan. In later work, Lesh and Etzioni
use plan and goal biases — assumptions about what types of plans and goals people
have — to automatically construct a plan library from primitive actions and goal
predicates (Lesh and Etzioni, 1996). There are three important differences between
the operating assumptions of our plan recognition system and those of the system
developed by Lesh and Etzioni (in addition to the fact that our system reasons
under uncertainty): (1) they assume that any action performed by a user pertains
to one of the goals in their plan library, while our mechanism admits extraneous
actions; (2) they assume that the actions in a plan must be executed in a particular
order, while we place no restrictions on the order of actions; and (3) they assume
that every action is known to the system during plan recognition, while we admit
previously unseen actions. In addition, at present, a user’s goals in our system
(MUD quests) correspond to single predicates, while Lesh and Etzioni’s system
admits conjunctive goals. The extension of our mechanism to such goals is the
subject of future research (Section 8).

Belief (or Bayesian) networks (BNs) (Pearl, 1988) have become a popular
representation for reasoning under uncertainty as they integrate a graphical repre-
sentation of causal relationships with a sound Bayesian foundation. In particular,
BNs have been applied in several areas of User Modeling, such as knowledge
assessment, plan recognition and prediction of user responses (for an overview of
these applications see (Jameson, 1996)).

Belief networks — a brief overview. BNs are directed acyclic graphs where nodes
correspond to random variables. The relationship between any set of state variables
can be specified by a joint probability distribution. The nodes in the network are

paper.tex; 16/12/1997; 19:15; no v.; p.3

4 ALBRECHT ETAL.

connected by directed arcs, which may be thought of as causal or influence links;
a node is influenced by its parents. The connections also specify independence
assumptions between nodes, which allow the joint probability distribution of all
the state variables to be specified by exponentially fewer probability values than
the full joint distribution. A conditional probability distribution (CPD) is associ-
ated with each node. The CPD gives the probability of each node value for all
combinations of the values of its parent nodes. The probability distribution for
a node with no predecessors is its prior distribution. Given these priors and the
CPDs, we can compute posterior probability distributions for all the nodes in a
network, which represent beliefs about the values of these nodes. The observation
of specific values for nodes is called evidence. Beliefs are updated by re-computing
the posterior probability distributions given the evidence. Belief propagation for
singly-connected networks can be done efficiently using a message passing algo-
rithm (Pearl, 1988). When networks are multiply-connected (i.e., when there is a
loop in the underlying undirected graph), simple belief propagation is not possible;
informally, this is because we can no longer be sure that evidence has not already
been counted at a node having arrived via another route. In such cases, inference
algorithms based on clustering, conditioning or stochastic simulation may be used
(Pearl, 1988).

Belief networks have been used both in static and dynamic applications. In
static applications the nodes and links in a BN do not change over time. Hence, in
principle, hand-crafting BNs for these applications is possible. However, in order to
increase the flexibility and extensibility of the resulting system, the automatic con-
struction of BNs from other knowledge representations is preferred, e.g., (Charniak
and Goldman, 1993; Conati et al., 1997). Charniak and Goldman (1993) use BNs
for plan recognition in the framework of story understanding. They automatically
generate a BN from a sequence of observations by applying rules which use plan
knowledge to instantiate the network. The incorporation of prior probabilities into
this network supports the selection of plausible explanations of observed actions.
Similarly, Conati et al. (1997) apply the mechanism described in (Huber et al.,
1994) to automatically construct a BN from the output of a rule-based physics
problem solver that generates all the possible solutions to a given physics problem.
This BN is then used to identify a student’s problem-solving strategy and predict
his or her next step.

Dynamic applications are characterized by a constantly changing world. In
order to model this change, temporal reasoning must be incorporated into BNs
(Dean and Wellman, 1991; Dagum et al., 1992; Nicholson and Brady, 1994).
This is done by allowing a BN to grow over time, and representing the state of
each domain variable at different times by a series of nodes. Typically, for these
Dynamic Belief Networks (DBNS), the connections over time are Markovian, and
a temporal ‘window’ is imposed to reduce the state space. Such DBNs provide a
more compact representation than the equivalent Hidden Markov Model (Russell
et al., 1995). Two applications of DBNs are described in (Forbes et al., 1995;

paper.tex; 16/12/1997; 19:15; no v.; p.4

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 5

Pynadath and Wellman, 1995). Pynadath and Wellman (1995) use a DBN for plan
recognition in traffic monitoring. Their DBN is composed of loosely connected sub-
networks, where each sub-network captures an intermediate structure based on one
of the following factors: the context in which a plan was generated, the mental state
and planning process of the agent, and the consequences of the agent’s actions in
the world. Like Conati, they also apply the mechanism described in (Huber et al.,
1994) to map planning actions to a DBN. Forbes et al. (1995) emphasize issues that
pertain to sensor noise or failure, and to uncertainty about the behaviour of other
vehicles and about the effects of drivers’ actions. Finally, Russell et al. (1995) use
a gradient-descent algorithm to learn the conditional probability tables for BNs
and DBNs with hidden variables, i.e., variables whose values are not observable
(surveys of research on learning belief networks appear in (Heckerman, 1995;
Buntine, 1996)).

The mechanism described in this paper resembles most closely the system
described in (Forbes et al., 1995), but there are several important differences:
(1) we infer a user’s longer term goals, i.e., quests, in addition to the locations and
actions inferred by Forbes et al.; (2) our data was collected prior to the undertaking
of this project, hence we have had no choice in the view of the world that we
are modeling, rather than being allowed to select the observations we wish to
make; (3) we observe the world only from the perspective of a single user (without
knowing whether observed changes in the world are caused by the user’s actions or
by other agents’ actions); and (4) we have no information regarding the quality of
our observations, while they have information about sensor uncertainty and hence
are able to model it.

3. The Domain

The domain of our implementation is the “Shattered Worlds” Multi-User Dungeon
(MUD), which is a text-based virtual reality game where players compete for
limited resources in an attempt to achieve various goals. As stated in Section 1, the
MUD has over 4,700 locations and 20 different quests (goals); more than 7,200
actions were observed. The plan recognition problem is further exacerbated by
the presence of spelling mistakes, typographical errors, snippets of conversations
between players, newly defined commands and abbreviations of commands.*

The MUD also has reactive agents controlled by the system (non-player charac-
ters), and contains a number of items which may be acquired and used by characters
in order to achieve some effect within the game. Despite the fact that the MUD is
a game, only a minority of the players log-in to play. Many users log-in with other
goals, such as socializing with other players, crashing the MUD, or engaging in

* There is a class of users (wizards) who can add new commands and new locations to the MUD
at any time. In addition, users can define “aliases” which represent sequences of commands. The
command definitions and aliases are handled in a pre-processing step of the DBN-training procedure,
and will not be discussed further in this paper. Spelling mistakes, typographical errors and snippets
of conversations are handled as described in Section 6.1.

paper.tex; 16/12/1997; 19:15; no v.; p.5

6 ALBRECHT ETAL.

socially aberrant behaviour. However, at this stage of our project, we are interested
in recognizing only one type of goal, namely quests. Examples of the simplest
quests in the MUD are the “Teddy-bear rescue”, which involves locating and
retrieving a teddy bear lost by a non-player character called Jane, and the “Wood
chop”, where a player must chop wood in the market place, after first acquiring
an axe and eating food to obtain enough energy to carry out the wood-chopping
task. More complex quests may involve solving non-trivial puzzles, interacting
with various non-player characters, e.g., monsters, shopkeepers or mercenaries,
or achieving a number of sub-goals, e.g., obtaining potions. Players usually know
which quest or quests they wish to achieve, but they don’t always know which
actions are required to complete a quest. In addition, they often engage in activities
that are not related to the completion of a specific quest, such as chatting with
other players or fighting with MUD agents. As a result, players typically perform
between 25 and 500 actions until they complete a quest, even though only a fraction
of these actions may actually be required to achieve this quest.

Analysis of the MUD yields the following features.* (1) it is extremely difficult
to obtain a perspicuous representation of the domain (for example in the MUD there
is a vast number of actions whose effects and preconditions are not fully known);
(2) there may be more than one way to achieve a goal; (3) some sequences of
actions may lead to more than one eventual goal; (4) some actions leading to a goal
may need to be performed in sequence, while other actions are order-independent;
(5) users may interleave actions performed to achieve two or more goals or may
perform actions that are unrelated to any domain goal (e.g., socializing) while
trying to achieve a goal; (6) the states of the MUD are only partially observable:
the only information available at present is a user’s actions (obtained from the
user’s keyboard commands), a user’s locations (obtained from the system), and
a few system messages, e.g., notification that a quest was completed and that a
user has entered the MUD (the first and last “actions” in Table I respectively); and
(7) the outcome of a user’s actions is uncertain, i.e., the performance of an action is
not a sufficient condition for the achievement of the action’s intended effect (e.g.,
due to the presence of other agents who affect the state of the system).

The MUD software collects the actions performed by each player and the quest
instance each player completed. In the current implementation, each data point is
composed of: (1) a time stamp, (2) the name of the player, (3) the number of the
log-in session, (4) the location where the action was executed, and (5) the name
of the action.** A DBN is then constructed on the basis of the collected data as
described in Section 4. Table | illustrates some of the 62 actions performed by a
player to achieve the Avatar quest (the number of the log-in session is not shown).
Without domain knowledge, it is extremely difficult to determine by inspection

* Other domains which we intend to investigate, viz WWW and Unix, have most of these features.

** At present, the MUD software does not record keyboard commands regarding an agent’s move-

ments on the horizontal plane, i.e., North, South, East and West. In addition, only the first word of
each command is considered during training and testing.

paper.tex; 16/12/1997; 19:15; no v.; p.6

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 7

Table I. Sample data for the Avatar quest.

Action Time Player L ocation Action
No.
1 773335156 spillage room/city/inn ENTERS
12 773335264 spillage players/paladin/room/trading post buy
17 773335291 spillage players/paladin/room/western_gate bribe
28 773335343 spillage players/paladin/room/abbey/guardhouse kill
37 773335435 spillage players/paladin/room/abbey/stores search
40 773335451 spillage players/paladin/room/shrine/Billy worship
54 773335558 spillage players/paladin/room/brooksmith give
60 773335593 spillage players/paladin/room/shrine/Dredd avenger

62 773335596 spillage players/paladin/room/abbey/chamber Avatar quest

which of these actions (if any) are necessary to complete the quest, the order of the
necessary actions, or whether an action had the intended outcome.

4. Dynamic Bayesian Networks

In the next four subsections, we develop DBN models for the MUD domain. To
this effect, we perform the following actions: (1) identify the interesting domain
variables which become the network nodes (Section 4.1); (2) consider dependencies
between the domain variables and the manner in which the domain variables change
over time (these dependencies correspond to several alternative network structures,
which we investigate experimentally) (Section 4.2); (3) describe how the CPDs are
constructed from the collected MUD data and how we handle actions, locations
and quests which do not occur in the training data (Section 4.3); and (4) present
the data processing algorithm and belief update equations (Section 4.4).

4.1. NETWORK NODES

Based on the data we have for the MUD domain, the domain variables, which are
represented as nodes in the DBNs, are as follows:

Action (A): This variable represents the possible actions a player may perform
in the MUD, which we take to be the first string of non-blank characters entered by
a user, plus the special ot her action, which includes all previously unseen actions.
The results given in Section 5 were obtained with a state space size, |A|, of 4,904
actions. This state space is reduced from the original space of 7,259 actions, since
this research takes into account only those runs where a quest was completed. In
Section 6.1 we consider the effect of taking into account only significant actions.

paper.tex; 16/12/1997; 19:15; no v.; p.7

8 ALBRECHT ETAL.

Location (L): This variable represents the possible locations of a player, plus the
special ot her location, which includes all previously unseen locations. The results
given in Section 5 were obtained with a state space size, |L|, of 3,369 locations. As
for actions, this state space is reduced from the original space of 4,722 locations.
In Section 6.2, we consider the effect of abstracting location information using the
hierarchical structure of the locations in the MUD.

Quest (Q): This variable represents the 20 different quests a player may under-
take, plus the ot her quest, which includes all quests not seen in the training data,
and the nul | quest. The variable representing the previous quest achieved is set to
nul | if the user has just started a session.

4.2. NETWORK STRUCTURE

Several DBN models involving these nodes were investigated (Figure 1). These
models are not pure DBNs; the changes in actions and locations over time are
represented, but we have made the simplifying assumption that a player’s current
quest, Q’, does not change during a run and depends on the previous quest, @ (the
relaxation of this assumption will be addressed in the future (Section 8)).*

Figure 1(a) shows the most complex of these models (called nai nMbdel). This
model stipulates that the location L; at time step 7 depends on the current quest, @',
and the previous location at time step ¢ — 1, and that the action A; depends on the
previous action, the current quest and the current location. These dependencies are
based on the following observations and assumptions. The dependence of a location
on the previous location reflects the physical limitations of the domain, whereby
most movement is to a topologically adjacent location (although teleporting is
also possible). The dependence of an action on the previous action reflects the
assumption that there is some correlation between pairs of actions; clearly, there
may be longer sequences of actions which are connected, but including these
dependencies in the model would defeat the Markovian assumption inherent in
DBNSs, which in turn would cause an explosion in the state space of the problem.
The dependence of an action on a location reflects the observation that certain
actions are mainly performed in certain locations, e.g., objects are usually bought
at the market and food consumed at the inn.** The dependence of both location and
action on the current quest reflects the assumption that most quests are completed
in a particular subset of locations by undertaking particular actions.

*In practice, we always have evidence as to the previous quest, so we could fold node @ into the
network, but it is clearer for expository purposes to maintain a separate node and the CPD for the
Q — Q' link.

** Clearly, there are actions that change locations, hence in principle one may consider models
where locations depend on actions. However, in BNs it is not possible to have both action-location
and location—action links. Thus, when choosing one of these options, we preferred a model which
features a dependence of actions on locations, because, as stated above, the MUD software keeps
only partial records of actions which cause changes in locations.

paper.tex; 16/12/1997; 19:15; no v.; p.8

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 9

A A A A % A A A
O T ? O O—=0O——=0C0——=0
© L G| @—=(
|
O——0O—0—=0 O—0O—=0
Lo Ll L2 L3 L0 Ll L2 L3
(@ mai nvodel (b) i ndepMbdel
A A A (Q—=
= Q - /A%
e) '
-
(C) acti onModel (d) I ocationMbdel

Figure 1. Dynamic Belief Networks for the MUD: (a) mai nModel ; (b) i ndepMbdel ;
(c) acti onMvbdel ; (d) | ocati onModel .

The model in Figure 1(b) (called i ndepMbdel) relaxes the direct dependence
between actions and locations, assuming that given the current quest, the current
action and location are independent. Finally, the models in Figure 1(c) and 1(d)
(called acti onMbdel and | ocati onModel respectively) are simpler still; they
take into consideration either actions or locations in relation to quests (but not
both).

4.3. PROBABILITIES

The CPDs are constructed from the collected MUD data as follows. The data is
pre-processed to take the following form:

Previous Current Current Current Next Next
Quest Quest Action Location Action Location
nul | teddy scream room/sewer/sewer20 u room/city/alleyl

A frequency count is maintained for each entry in the CPDs that was observed
during training. These entries represent action, location and quest combinations
that are relevant to the belief update formulas presented in Section 4.4 and were
seen during training. In order to account for the possible actions, locations and
guests that do not occur in the training data, we adjust the frequencies so that
the resulting CPDs include some probability that the ot her value may occur. This
adjustment consists of adding a small number that corresponds to Good’s flattening

paper.tex; 16/12/1997; 19:15; no v.; p.9

10 ALBRECHT ET AL.

constant (Good, 1965) or Heckerman’s fractional updating (Heckerman, 1995) to
the non-zero frequencies. A factor of 0.5, which is computed by the Minimum
Message Length theory (Wallace and Boulton, 1968; Wallace, 1990) assuming the
prior is constant on seen events, was used for the results obtained in this paper
(other flattening constants are briefly discussed in Section 5.4). The frequencies
are then converted into CPDs.*

Thus, unseen actions, locations and quests are treated differently from unseen
combinations of actions, locations and quests. That is, values of the domain vari-
ables that were not seen during training are put in the ot her category, while com-
binations of values of the domain variables that were not seen during training are
assigned a probability of 0, i.e., they will not be predicted during testing. For exam-
ple, if action a; was seen in training, but was never performed at location [; after
action ay, then during testing, action a; will be predicted with probability 0 at loca-
tion/; if the previous action was ay. This distinction was introduced mainly to make
the belief updating process computationally feasible, especially for mai nivbdel ,
which is the most computationally expensive among our models.** The introduc-
tion of the ot her category for unseen values of domain variables is essential for
the operation of the system, since without it, if an action, location or quest unseen
during training is reached during testing, our DBNs will assign a probability of O
to all the values of next action, next location and current quest (since the unseen
value is not represented in the CPDs). In contrast, as seen in the above example,
if a particular combination of domain variables was unseen during training, then
during testing a predicted domain variable will have a particular value, e.g., a;,
with O probability, but most other values will have non-zero probabilities, hence
the DBNs can continue making predictions.

4.4, BELIEF UPDATING

Once a DBN is constructed, new data from a user is added to the network as
evidence, and belief is updated regarding that user’s next action and next location
and the current quest being undertaken.

Arun isasequence of action-location pairs, beginning either after a player enters
the MUD or after a player completes the previous quest, and ending when a new
quest is achieved. The belief update algorithm applied for processing a run is given
in Figure 2. If the run begins when a player enters the MUD, Pr evi ousQuest,
Pr evi ousAct i onand Previ ousLocat i on are setto nul | . In this case, a value
of nul | is added as evidence for time-step 0 to nodes @), Ag and Lg. Otherwise
(the run begins upon completion of a quest), the last quest completed, last action
performed and last location visited are used. The evidence nodes for the domain at

* Since we are dealing with nodes with very large state spaces, we use hash tables of hash tables
to store the CPD entries, and do not explicitly store zero probabilities.

** One of the reviewers suggested the investigation of canonical models of multi-causal interactions
(Pearl, 1988) to address this problem. This investigation is left for future research.

paper.tex; 16/12/1997; 19:15; no v.; p.10

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 11

1. Receive initial data:
Previ ousQuest, Previ ousActi on, Previ ousLocat i on.
2. Add data as evidence for nodes @, Ao and Lo.
3. Update belief on nodes @', A; and L.
4. Loop from n=1 until quest is achieved
4.1 Receive new data: Act i on, Locat i on.
4.2 Add data as evidence for nodes A,, and L,,.
4.3 Update belief on nodes Q’, Ap+1 and Ly,.1.
44 n=n+ 1.

Figure 2. Belief update algorithm for processing a run.

time-step n + 1 are: the last completed quest, @, the previous actions, Ao, . .., Ay,
and the previous locations, Lo, ..., Ly,.

There are underlying loops in the network structures shown in Figure 1, such as
the loop between A;, A;+1 and Q' in Figures 1(a), 1(b) and 1(c) and the loop between
L;, L+, and Q' in Figures 1(a), 1(b) and 1(d). This would seem to indicate that
we must use an inference algorithm based on clustering, conditioning or stochastic
simulation (Pearl, 1988). However, further analysis of these structures, together
with the location of the evidence nodes, identifies d-separations (Pearl, 1988), indi-
cating that certain nodes are conditionally independent (see Appendix A for details
of this analysis). Using these independence relations, we obtain the following belief
update equations for mai nMbdel corresponding to Steps 3 and 4.3 in the belief
update algorithm (the simplified update equations resulting from the analysis of
the d-separations for i ndepMbdel , acti onMbdel and | ocat i onModel appear
in Appendix A; the actual analyses may be found in (Albrecht et al., 1997)).

Step 3 (time-step 0):
Pr(Q'=q'|q, ao, lo)
Pr(L1=l1lg, ao, lo)

Pr(Q'=¢'|q) ,

> Pr(Li=la|lo, ¢') Pr(q'lg, ao, lo) ,
ql

Pr(Ai=ailg, a0,lo) =) Pr(A1=ailao,l1,q") Pr(lallo,q') Pr(q'|g, a0, lo) -
ql’ll

Step 4.3 (time-step n+1):
Pr(Q'=q'|q, a0, lo, ..., ans1,lns1) =
aPr(ln+1|lna ql) Pr(an+1|ana ln+1, q,) Pr(Q,:qI|Qa a0, loy ...y an,lyn) ,
Pr(Ly+1=lp+1lq, a0, los - - -y apyly) =

Z Pr(Ln+l:ln+l|lna q,) Pr(q,|Qa ao, l07 <eey O, ln))
q

paper.tex; 16/12/1997; 19:15; no v.; p.11

12 ALBRECHT ETAL.

Pr(Ap+1=an+1|q, ao,lo, ..., an,ly) =
z Pr(An+l:a'n+l|a'n7 ln+l; ql) Pr(ln+l|ln7 CI’) Pr(ql|q7 ao, lOa <y Qny, ln) 3

q'

where « is a normalizing constant.

The update equations for time-step n + 1 show that the new belief for the current
quest (Q"), the next action (A,.1) and the next location (L,.1) can be computed
from the previous beliefs in the values for the current quest and the CPD entries
for the latest evidence received. The evidence before this, i.e., the evidence for
action nodes Ao, ..., A,_1 and location nodes Ly, ..., L,_1, does not have to be
considered explicitly, having been “folded” into the beliefs for A,, and L,.

5. Experimental Results for DBN Models

In this section we present empirical results showing how the DBN models described
in Section 4 predict current quest, next action and next location. We begin by
showing the quest, action and location predictions for a single test run for a single
character, and a selection of single runs showing typical quest predictions (Sec-
tion 5.1). In Section 5.2, we present two quantitative methods which compare the
different models in terms of their quest, action and location predictions: the average
predicted probability, and the average of a scoring function based on the ranking
of the actual quest, action and location. In Section 5.3 we consider the effect of
varying the size of the training set on quest predictions, and in Section 5.4 we
consider the effect of different flattening constants on quest predictions.

As stated in Section 3, in the current research we are interested in users’ plans
and goals while trying to achieve a quest. Thus, all the results presented in this
section were obtained by choosing randomly a certain percentage of the 3,017
quest-achieving runs in our corpus as training data, and using the remaining runs
as test data.* During each test run, we used the belief update algorithm shown in
Figure 2.

5.1. SINGLE RUNS

The output of i ndepModel (trained on 80% of the data) for the sample run where
the character spi | | age achievesthe Avat ar quest (Table 1) is shown in the graphs
in Figure 3(a-c). The x-axes for these graphs show the number of time steps in the
DBN, which correspond to the number of actions performed by the user. The y-axes
show the current beliefs for the user’s current quest (Q’), next location (L,.1) and
next action (A1) respectively.**

Figure 3(a) shows that initially the system predicts a nearly zero probability that
the Avat ar quest is being attempted. This reflects the prior probability that the

* During the testing phase, a value which was not seen in the training data gets classified as ot her .
** Graphs of similar shape are obtained for individual runs with the other models.

paper.tex; 16/12/1997; 19:15; no v.; p.12

Predicted probability of Achieved Quest

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 13

1 1 1

0.8 0.8 0.8

0.6 0.6 0.6

04 04 04

Predicted probability of next action

0.2 0.2 0.2

Predicted probability of next location

0 0 0
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40

Number of Steps Number of Steps Number of Steps
(@) quest (b) location (c) action

Figure 3. Predictions for spi | | age (80% training with i ndepModel): (a) quest, (b) loca-
tion, and (c) action.

Avat ar questfollowsthenul I quest; the CPD entry for Pr(@Q'=Avat ar |@Q=nul |)
is 0.04985. The predicted probability begins to rise after about 7 steps, reaching a
value close to 1 around step 20, and remaining there until the quest is completed
in step 62. The shape of this graph is typical of the more successful predictions
performed for individual runs. Less successful runs take longer for the prediction
to increase (Figure 4(a,d)), exhibit more fluctuations (Figure 4(b,c,f)), and a small
percentage of the runs fail to predict the quest being attempted (Figure 4(e)). Such
failures reflect the difficulties with quest prediction in this domain: a character may
be performing actions that are unrelated to any quest (e.g., socializing), or for a
while may be attempting a quest other than the quest that was actually completed.

The absolute probabilities of the actual next location and next action (Fig-
ure 3(b,c)) are not as high as those of the current quest. This is to be expected in
light of the large number of possible actions and locations. Nonetheless, the proba-
bilities of the actual location and actual action predicted by our models are generally
among the highest predicted probabilities (see Section 5.2.1 for descriptions of two
measures for the evaluation of the predictive ability of our models).

5.2. MODEL COMPARISON

In this section we compare the performance of the four models using two measures:
average prediction and average score. These measures provide different views of
the behaviour of our models (an intuitive interpretation of these measures is given
in Section 5.2.4 together with the considerations for selecting the best model). Each
measure is used to evaluate each model when trained on 80% of the data and tested
on 20% with cross-validation using 20 different splits of the data (Sections 5.2.2
and 5.2.3).

paper.tex; 16/12/1997; 19:15; no v.; p.13

50

60

Predicted Probability of Achieved Quest

Predicted Probability of Achieved Quest

14

ALBRECHT ET AL.

0.8

0.6

Figure 4. Typical quest prediction curves based on 80% training.

5.2.1. Comparison measures: average prediction and average score

— Average prediction is the average across all test runs of the predicted proba-

bility of a domain variable, i.e., the actual quest, next action or next location,
at each point during the performance of a quest:

T . .
average prediction=— E Pr(actual value of variable in the i-th test run) ,
n -
=1

where variable may be either current quest, next action or next location, and
n is the number of test runs performed.

Average score consists of using the following function to compute the score
of a prediction, and then computing the average of the scores at each point
during the performance of a quest:

1
score={ [top predicted values|
0 otherwise

1 & .
average score=— Z score in the 7-th test run.
n <
i=1
The score function measures the percentage of times where the probability of
the actual value of a domain variable is the highest, while taking into account
the possibility that other values for this variable may have been assigned an

paper.tex; 16/12/1997; 19:15; no v.; p.14

(a) Go quest - Ambermane character. . (b) Smurf quest - Valcor character. . (c) Training quest - Whitefang character.
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0
0 20 40 60 80 100 120 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300
(d) Lucincia quest - Killtaker character. . (e) Orc slayer quest - Krystalla character. q) Valley of the wind quest - Warbuck characte
v
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
50 100 150 200 250 300 350 0 20 40 60 80 100 120 140 160 180 0 50 100 150 200 250 300
Number of Steps Number of Steps Number of Steps

if Pr(actual value of variable)=Pr(top prediction)

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 15

equally high probability. For example, this happens when the actual action
is assigned a probability of 0.3, and there are two other actions with the
same probability. In this case, a single action cannot be selected among these
equiprobable ones. Thus, in order to measure accurately the predictive ability
of a model, we must divide the score of 1, which indicates a successful
prediction, by the number of equally successful candidates (3 in our example).
An interesting situation presents itself when we have a prediction of ot her,
and the actual action, location or quest is indeed ot her . We cannot count this as
a correct prediction, since in this case, a model that is untrained and constantly
predicts ot her will always be correct. However, we also cannot say that this
is an incorrect prediction, since if we only have a few variable values that were
unseen during training, we know that a prediction of ot her must be one of
these values. Thus, a top prediction of ot her that matches an actual occurrence
of ot her, i.e., an action that was not seen during training, is divided by the
number of unseen actions prior to applying the scoring function. For example,
if during testing we find & actions that were not seen during training, and ot her
is predicted with probability p, we assign to the prediction a probability of 2,
and then apply the scoring function. If this modified probability is still the
highest, then our prediction receives a positive score (equal to the reciprocal
of the number of actions predicted with probability p/k). Otherwise, our
prediction is wrong, and it receives a score of 0.

For both measures, in order to compare across runs where the number of record-
ed actions varies, we use the percentage of actions taken to complete a quest. That
is, we apply our measures of performance at 0.1%, 0.2%, 0.3%, ..., 1%, 1.1%, ...,
2%, 2.1%, ..., 100% of quest completion. These percentages are computed so that
there is at least one data point for the quest with the largest number of actions; the
quests with only a few actions will have a single action that corresponds to several
data points.

We believe that these measures are more informative regarding the performance
of a plan recognizer than a measure such as that used in (Lesh, 1997), which gives
the average percentage of quest completion when the following conditions are
satisfied: (1) the top-predicted quest is the current quest, and (2) the probability
of this prediction reaches some probability threshold. Lesh’s measure requires the
pre-selection of thresholds, which may vary between different domains. Further, it
assumes that once a threshold is reached, the plan recognizer will not change its
mind (as seen in Figure 4 this is not so in our domain). Finally, this measure is not
applicable to the prediction of actions and locations, since it implicitly assumes
that there will be a single top-predicted event only.

5.2.2. Average prediction results

Figure 5(a-c) shows the average predictions for actual actions, locations and quests
for the four models. Figure 5(a) shows that given the previous quest, current action

paper.tex; 16/12/1997; 19:15; no v.; p.15

16

0.8 r

0.6

0.4

Average Prediction

0.8 r

Average Prediction

0.8 r

Average Prediction

ALBRECHT ET AL.

AVERAGE PREDICTION

actionModel
indepModel
mainModel — 1

20 40 60 80
Percentage of actions until quest completion

(a) Action prediction

100

locationModel
indepModel
mainModel —

20 40 60 80 100

Percentage of actions until quest completion

(b) Location prediction
actionModel
locationModel
indepModel ——
mainModel —

20 40 60 80 100

Percentage of actions until quest completion

(c) Quest prediction

Figure 5. Performance comparison of models. Average prediction for (a) actions, (b) locations,

and (c) quests.

paper.tex; 16/12/1997; 19:15; no

V.

p. 16

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 17

and current location, we can predict the next action with an average probabili-
ty around 0.2. Thus the average odds for predicting the next action, which are
computed using the following formula:

P(actual next action|evidence)
P(—actual next action|evidence) ’

have improved from about 1 : 4,900 to 1 : 4.* Figure 5(a) also shows that the
average predictions of i ndepModel are virtually indistinguishable from those of
acti onModel until about 46% of the actions have been completed, and that both
of these models perform better than mai nMbdel until 52% of the actions have been
done. The null hypothesis that there is no significant difference between the models’
predictions was tested using a T-test with 38 d.f. for each set of predictions and
each pair of models.** For action predictions, the T-test confirmed our observations
at the 0.5% significance level. In addition, when between 52% and 60% of the
actions have been performed, there is no significant difference between the average
predictions of act i onMbdel and mai nModel (at the 5% significance level), while
i ndepMbdel gives better predictions than both of these models (at the 0.5%
significance level). After 60% of the actions have been performed, act i onMbdel

gives worse predictions than the other two models at the 0.5% significance level.
Finally, after 92% of the actions for any quest have been performed, the average
action predictions of mai nMbdel are higher than those of the other models at the
0.5% significance level.

In Figure 5(b) we see that given the previous quest and current location, we can
predict the next location with an average probability of about 0.6 (so the average
odds of predicting the next location have improved from about 1 : 3,370 t0 3 : 2).
The best predictions are produced by mai nivbdel , with the predictions produced
by i ndepMbdel being marginally lower, and those produced by | ocat i onMbdel
being slightly lower again. The T-tests show at the 0.5% significance level that
after 50% of the actions have been performed, the average location predictions
obtained by mai nModel are better than those of the other models.

Figure 5(c) shows that given the previous quest, current action and current
location, the average prediction for the current quest rises steadily from 0.12 to
about 0.83 for mai nMbdel , which gives the best average predictions. Thus, for
mai nMobdel the average odds of predicting the next quest have improved from
1: 19 to 3 : 22 at the start of a quest, and to nearly 5 : 1 near the end of
a quest. The average predictions obtained with i ndepMbdel are slightly lower,
while those obtained with act i onMbdel and | ocat i onModel are significantly

* The initial odds for next action, next location and current quest predictions are based on a naive
calculation involving the number of possible actions, locations and quests respectively.

** We have 38 degrees of freedom because each of the two averages and standard devia-
tions are computed from 20 splits; one degree of freedom is deducted because we use the
sample standard deviation when calculating the difference between the two models, yielding
2x(20 splits — 1 standard deviation) =38.

paper.tex; 16/12/1997; 19:15; no v.; p.17

18 ALBRECHT ET AL.

lower. The T-tests show at the 0.5% significance level that the average predictions
of mai nMbdel are significantly better than those of the other models after only
20% of the actions have been performed.

5.2.3. Average score results

Figure 6(a-c) shows the average score for actual actions, locations and quests for
the four models. Figure 6(a) shows that given the previous quest, current action and
current location, the average score obtained by i ndepMbdel and act i onMbdel
for the next action is around 0.35. Figure 6(a) also shows that given the previous
guest, current action and current location, the average action scores obtained with
i ndepModel and acti onModel are virtually indistinguishable for the first 72%
of a run; between 72% and 92% of a run, i ndepMbdel achieved better average
scores than act i onModel . In addition, for the first 93% of a run, i ndepMbdel
and act i onMbdel obtained better average scores than mai nivbdel , while after
95% of a run, mai nMbdel obtained better average scores than these two models.
As for average predictions, the null hypothesis that there is no significant difference
between the average scores obtained by the models was tested using a T-test with
38 d.f. for each set of predictions and each pair of models. For action predictions,
the T-tests confirmed all these observations at the 0.5% significance level.

In Figure 6(b) we see that given the previous quest and current location, we can
predict the next location with an average score of about 0.7. The average scores for
the next location obtained by all the relevant models, viz mai nvbdel ,i ndepMbdel
and | ocat i onModel , are virtually indistinguishable at the 5% significance level
throughout most of a run. An exception occurs for the actions performed between
68% and 74% of a run, where the average scores obtained by mai nModel are better
than those obtained by i ndepMbdel at the 5% significance level.

Figure 6(c) shows that given the previous quest, current action and current
location, the average score for the current quest rises steadily from about 0.22 to
about 0.88 both for i ndepMbdel and mai nMobdel . The average score obtained
with | ocat i onMbdel is slightly worse than that obtained with the two best mod-
els, unlike the average score obtained with act i onMbdel , which is significantly
worse. The T-tests confirm these observations, showing that after 44% of a run,
mai nMbdel achieves better average scores than i ndepMbodel at the 0.5% signif-
icance level; after 88% of a run, i ndepModel achieves better average scores
than | ocati onMbdel at the 0.5% significance level; and after 7% of a run,
| ocati onModel obtains better scores than acti onMbdel at the 0.5% signifi-
cance level.

5.2.4. Selecting the best model

The selection of a model is based on the quality of its predictions of the variables
of interest, that is, current quest, next action and next location. There are two ways

paper.tex; 16/12/1997; 19:15; no v.; p.18

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION

Average Score

Average Score

Average Score

AVERAGE SCORE
1
actionModel
indepModel ——
0.8 - mainModel — 1
0.6 + 1

20 40 60 80 100
Percentage of actions until quest completion

(a) Action prediction

0.4 locationModel -]
indepModel -——
mainModel —

0.2 |

0 s ‘ ‘ ‘

0 20 40 60 80 100
Percentage of actions until quest completion
(b) Location prediction

1

actionModel
locationMode| -
0.8 r indepModel - d

0.6

0.4

02 F

mainModel —

20 40 60 80 100
Percentage of actions until quest completion

(c) Quest prediction

19

Figure 6. Performance comparison of models. Average score for (a) actions, (b) locations, and

(c) quests.

paper.tex; 16/12/1997; 19:15; no

v,

p. 19

20 ALBRECHT ET AL.

of making a prediction for a variable: (1) selecting a value from a distribution, and
(2) choosing the value with the highest probability (taking into account the fact
that sometimes this value will be randomly selected among several equiprobable
values which have the highest probability). These two methods correspond to the
average prediction and average score measures respectively.

The meaning of the average prediction measure is as follows. Given that amodel
has yielded an average prediction probability p for the actual value of a particular
variable at a certain point in time, if we perform our prediction for this variable at
that point in time by randomly selecting a value based on the calculated probability,
then on average our prediction will be correct 100p% of the time. For example,
according to Figure 5(c), if we are asked to predict the current quest based on the
average prediction obtained by mai nMbdel after 80% of the actions have been
performed, then our prediction will be correct on average about 69% of the time.

The average score measure may be interpreted as follows. Given that a model
has yielded an average score s for the actual value of a particular variable at a certain
point in time, if we perform our prediction for this variable at that point in time by
selecting the value with the highest probability, then on average our prediction will
be correct 100s% of the time. For example, according to Figure 6(c), if we are asked
to predict the current quest based on the score obtained by mai nMbdel after 80%
of the actions have been performed, then our prediction will be correct on average
about 74% of the time. The average score generally yields prediction percentages
that are higher on average than the average prediction, because a singleton value,
e.g., actual quest = Avat ar , with the highest probability is assigned a score of 1,
regardless of the absolute value of this probability.

As seen from Figures 5 and 6, both measures of performance produce generally
consistent assessments of the various models: mai nMbdel is consistently worse at
action predictions for most of a run, and consistently better at quest predictions,
while i ndepModel performs well for all three predictions. The assessment pro-
duced by the average score accentuates some differences in performance compared
to the assessment produced by the average prediction, while it blurs certain other
differences. For example, for the first 50% of a run, the average action predictions
of mai nModel are quite close to those of | ocat i onModel andi ndepModel (Fig-
ure 5(a)), while the average action scores obtained by mai nMbdel are much lower
than the scores obtained by the other two models (Figure 6(a)). This is because with
an average prediction of probability less than 0.2 for the actual action, such as that
yielded by mai nMbdel , it is quite possible that there are other actions predicted
with the same probability or with a higher probability. In the first case, the score
assigned to the actual action is reduced (it is divided by the number of equiprobable
actions), and in the second case, it is 0. As seen in Figure 5(a), the three models
yield relatively low average action predictions. However, since the average pre-
diction obtained by mai nMbdel for the actual action is the lowest, mai nModel is
more likely than the other models to assign to other actions the same probability
or a higher probability than that assigned to the actual action.

paper.tex; 16/12/1997; 19:15; no v.; p.20

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 21

The average score tends to blur the differences between acti onMbdel and
i ndepModel foraction predictions, and the differences between| ocat i onMbdel ,
i ndepMbdel and mai nMbdel for location predictions. This is because different
models may have assigned different probabilities to the actual value of a particular
variable. However, if all the models assign the highest probability to n values
for this variable (including the actual value), then all the models will obtain the
same score. In addition, for quests the average scores of | ocat i onModel are quite
close to those of mai nMbdel andi ndepModel , while the average quest predictions
obtainedby| ocat i onMbdel are much lower than the average predictions obtained
by the other two models. This is because the probabilities assigned to the current
quest by | ocat i onMbdel are lower than those assigned by these two models,
but on average the current quest is still assigned the highest probability among its
competitors.

Despite the relatively good performance of | ocat i onMbdel we have decided
to retain only i ndepModel and mai nMbdel for the remainder of our analysis.
This is because | ocat i onMbdel cannot be used for action predictions, hence
we must run two models in tandem: act i onMbdel for action predictions and
| ocat i onMbdel forlocation and quest predictions, which takes more computation
time than running i ndepModel on its own, since each model must update the states
of the other.

5.3. VARYING THE SIZE OF THE TRAINING SET

In this section we examine the effect of varying the size of the training set on the
predictive power of the best two DBN models: mai nMbdel and i ndepModel .
Figure 7 shows the average quest predictions obtained after training with 5%, 20%,
50%, 80% and 95% of the data for mai nvbdel and i ndepModel . These results
were obtained with 20 different splits of the data. The null hypothesis that there is no
significant difference between the average predictions obtained with each training
set was tested using a T-test with 38 d.f.; the results are at the 0.5% significance
level. As expected, training with 5% of the data produces the worst results for both
models. As the size of the training set increases, the average predictions improve,
with the best results being obtained when training is performed with 95% of the
data. For mai nMbdel , after 36% of a run these results are significantly better than
those obtained when trained with 80% of the data, and after only 10% of a run they
are better than the results obtained when trained with 50% of the data. Training with
80% of the data yields better average predictions than training with 50% of the data
throughout a run. Similar results were obtained for i ndepMbdel , but the average
predictions made after training with the different data sets became distinguishable
from each other slightly later in a run.

paper.tex; 16/12/1997; 19:15; no v.; p.21

22 ALBRECHT ETAL.

1 T 1
95% Training \ ; 95% Training
08 | . 08 | \,:
s 80% Training s 80% Training
S 06 e S 06
o o
[\% 0, ini el T o 0, ini
> 50% Training \& > 50% Training
g 0.4 - L 20% Training g 0.4 - 20% Training
g g
< <
0.2 # \ 0.2 | # \
5% Training 5% Training
0 0
0 20 40 60 80 100 0 20 40 60 80
Percentage of actions till quest completion Percentage of actions till quest completion
(@) mai nvbdel (b) i ndepMbdel

Figure 7. Average quest predictions with different training set sizes: (a) mai nMbdel , and
(b) i ndepModel

5.4. USING DIFFERENT FLATTENING CONSTANTS

The flattening constant is a small number which is added to frequencies to account
for possible events which do not occur in training. This constant is the result
of assuming a Dirichlet prior distribution or Jeffrey’s non-informative prior dis-
tribution (Box and Tiao, 1973) when calculating the posterior distribution for the
probabilities of events. As indicated in Section 4.3, due to computational efficiency
considerations, in our implementation this constant is not added to zero frequencies
corresponding to events which involve domain variables seen in training.

The three main flattening constants used in the literature (Good, 1965) are 1,
0.5, and 1/k, where & is the number of possible values. The results presented thus
far have used a flattening constant of 0.5, which is obtained by using Jeffrey’s
non-informative prior distribution for the probabilities, and is also implied by the
Minimum Message Length criterion (Wallace and Boulton, 1968; Wallace, 1990).

Figure 8 shows the average quest predictions obtained with flattening constants
0.5, 1 and 1/k for mai nMbdel , where & is the number of observed quests plus 1
(for the ot her quest). We selected mai nModel for this analysis, since its CPD is
the biggest among the CPDs of all the models. Hence, the results obtained with
this model should highlight any potential benefits that may be obtained by using
different flattening constants.

According to Figure 8, a flattening constant of 0.5 yields better average quest
predictions than a flattening constant of 1 throughout a run, and better average pre-
dictions than 1/k for most of a run (between 5% and 85%). The average predictions
obtained with a flattening constant of 1 are better than those obtained with 1/k
during short portions of a run (between 13% and 36% and between 69% and 78%),
but most of the time these flattening constants yield similar average predictions.

paper.tex; 16/12/1997; 19:15; no v.; p.22

100

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 23

0.6

04

Average Prediction

g

0.2

1

0 20 40 60 80 100
Percentage of actions until quest completion

Figure 8. Average quest predictions for mai nModel with a flattening constant of 0.5, 1 and
1/k.

The average quest predictions obtained with 1/k rise over those obtained with a
flattening constant of 1 after 86% of a run, and then over those obtained with 0.5
after 91% of a run. These results were obtained using 20 different splits of the data,
each comprising a training set of 80% and a test set of 20%. The T-tests confirm
these results at the 0.5 significance level.

6. Screening and Abstraction

We use simple models and update equations because the size of the domain com-
pounds the complexity of the plan recognition problem. Another type of simpli-
fication involves reducing the size of the state space representation. We consider
two approaches for this task: ignoring non-significant actions in the domain, and
reducing the granularity of the location state space. In this section we describe
these approaches, and present the experimental results obtained with them.

6.1. SCREENING NON-SIGNIFICANT ACTIONS

As indicated in Section 3, the plan recognition problem in the MUD is exacerbated
by the presence of typographical errors and spelling mistakes, which increase the
number of actions that must be dealt with during training and testing without
actually having an impact on the states of the MUD. In order to overcome the
difficulties caused by these extraneous actions we used a Minimum Message Length
(MML) classifier (Wallace and Boulton, 1968; Wallace, 1990), which performs

paper.tex; 16/12/1997; 19:15; no v.; p.23

24 ALBRECHT ETAL.

unsupervised learning of the language that is understood by the MUD (details on
how the classifier is used are given in (Albrecht et al., 1997)). We then considered
only the actions in this language both during training and testing of our DBN
models. The results obtained with this classifier were used in the two best models
discussed in Section 4: i ndepModel and mai nModel .

6.1.1. Classification

The classifier was run with all our data, and it was given the following attributes:
(1) how many times each action was performed, and (2) how many players per-
formed it. We found it appropriate to learn the language of the MUD using the
entire data set (rather than using a portion of the data set as a training set) because
of the way in which we treat unseen actions. That is, actions that are not seen dur-
ing language training are simply ignored when making predictions during testing.
Thus, if we learned the language using only a small percentage of the data, then
we would obtain a reduced action set and location set (the number of locations
would be reduced because we consider only those locations where an action that
is in the language was performed). This would artificially increase our chances of
making successful predictions simply because there are less actions and locations
to choose from, unlike standard learning techniques where training with a reduced
data set yields poorer performance during testing.

Our classifier identified five classes. Table Il shows sample actions in these
classes together with the percentage of the actions contained in each class, the
ranges which contain most of the attribute values in each class (for each of the
attributes), and the percentage of the elements in each class accounted for by
these ranges.* For example, class C9 contains 65.6% of all the actions typed in by
players; these actions were normally typed in only once or twice (99.16% of the
actions in this class were typed in once or twice), and were executed by one player
only (all the actions in this class were executed by a single player). As can be seen
in Table 1, classes C8 and C11 contain the most widely used actions that were
typed in by the largest number of players. The actions in these classes are ‘sensible’
MUD domain actions and communication actions. In contrast, classes C9 and C6
contain infrequent actions used by a few players. These are typographical and
spelling errors, personal aliases, infrequent numerical combinations, and words
used in snippets of conversations. Class C10 contains a mixture of actions of the
type found in C8 and C11 (but less frequently used), and actions of the type found
in C6 and C9 (but more frequently used). Thus, the classifier has identified two
classes of actions that are unlikely to be in the MUD language, namely C6 and C9,
and two classes of actions that are very likely to be in the MUD language, namely
C8 and C11. However, the situation is not so clear with respect to C10.

* The classifier we used generates numerical identifiers for its classes as it creates them. When
classes are merged, they are not re-numbered. This results in non-consecutive numerical identifiers
for the resulting classes.

paper.tex; 16/12/1997; 19:15; no v.; p.24

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 25

Table 1. Classes of actions in the MUD

Class % of # of times action # of playerswho Sample
total was perfor med performed action commands

Range %ofclass Range % of class

C9 65.6% 1-2 (99.16%) 1 (100.00%) -guard..will 1-23e
Cé6 21.9% 2-7 (97.01%) 1-2 (100.00%) 101:tell Imove I’ve
C10 6.7% 7-54 (97.55%) 2-7 (98.70%) abuse alis copy Killl

Cll1 45% 20-1,096 (97.33%) 20-54 (95.20%) break dance free pray
C8 1.3% 148-22,026 (98.94%) 54-403 (98.26%) answer climb sell shout

In order to determine whether this screening process is useful in general, and
whether C10 should be included in the MUD language, we trained and tested
i ndepMbdel and mai nMbdel with two candidate MUD languages: the language
composed of the actions in C8 and C11 (called C8.11), and the language composed
of the actions in C8, C10 and C11 (called C8.10.11). Language C8.11 reduces the
action space from 4,904 actions to 415, while C8.10.11 reduces the action space to
926 actions. In order to obtain a preliminary indication of the validity of the learned
languages, we checked how many consecutive non-significant actions (i.e., actions
outside these languages) are typically performed. This test is based on the notion
that if the ignored actions are mainly typographical and spelling errors, typically
there should be short sequences of these actions, since a player would immediately
correct an erroneous command with a correct (significant) command. Indeed, the
average number of consecutive non-significant actions is 1.89 for C8.11 and 1.24
for C8.10.11, thereby supporting our hypothesis that the actions excluded from
C8.11 and C8.10.11 are not significant.

6.1.2. Screening results

As stated above, DBN training and testing was performed with the actions in the
language, rather than with the entire action set. Training was performed on 80% of
the data, and testing on 20% with cross-validation over 20 splits of the data (while
language learning was performed with the entire data set). The null hypothesis that
there is no significant difference between the models’ predictions was tested using
a T-test with 38 d.f. for each set of predictions and each pair of models. All the
results reported in the analysis below are at the 0.5% significance level.

During both training and testing, the non-significant actions are simply ignored,
i.e., they are removed from the data set. This means that the DBN does not learn
to predict the occurrence of non-significant actions during training, and that the

paper.tex; 16/12/1997; 19:15; no v.; p.25

26 ALBRECHT ET AL.

100

1 T 1
0.8 | Entire set - = 0.8 | Entire set -
- C8.11 — - c8.11 ——
2 C8.10.11 - 2 C8.10.11 -
2 £ 06
o o
a a
() ()
g g 04r
[[
> >
< <
0.2 r
0 0
0 20 40 60 80 100 0 20 40 60 80
Percentage of actions until quest completion Percentage of actions until quest completion
(@) mai nvbdel (b) i ndepMbdel
Aver age prediction
1 T T T T 1
0.8 | Entire set - 0.8 | Entire set -
c8.11 — c8.11 —
) C8.10.11 -) C8.10.11 -
3 0.6 f 3 0.6
7] 7]
() ()
[=2] [=2}
g g
g 04 r g 04 r
4 4
02 1 02
0 0
0 20 40 60 80 100 0 20 40 60 80
Percentage of actions until quest completion Percentage of actions until quest completion
(c) mai nMbdel (d) i ndepMbdel
Average score

Figure 9. Average quest predictions and average quest scores for mai nMbdel and
i ndepModel when trained with C8.11, C8.10.11 and the entire action set.

performance of non-significant actions by a player does not affect the predictions
made by the plan recognizer during testing. This causes difficulties when trying to
compare the performance of DBNs which use different languages, such as C8.11,
C8.10.11 and the entire action set, for action and location predictions. Hence, we
compare the performance of these DBNSs only for quest predictions. Figure 9(a-d)
shows the performance of mai nMbdel and i ndepModel , the two best models,
when trained and tested on C8.11, C8.10.11 and the entire action set. Figure 9(a-b)
shows the average predictions, and Figure 9(c-d) shows the average scores.
According to Figure 9, the performance of mai nModel when trained with
each of the training sets is slightly better than that of i ndepMbdel . i ndepMbdel
obtained the best average predictions when trained and tested with C8.11. After
38% of a run the average predictions obtained with C8.11 are significantly better

paper.tex; 16/12/1997; 19:15; no v.; p.26

100

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 27

than those obtained with C8.10.11, and after only 13% of a run the average pre-
dictions obtained with C8.11 are significantly better than those obtained with the
entire data set. The average scores for i ndepModel are largely consistent with the
average predictions, with the exception that the entire data set yields significantly
higher average scores between 27% and 41% of a run. The average predictions
obtained by mai nMbdel when trained and tested with the entire data set, C8.11
and C8.10.11 are virtually indistinguishable from each other for most of a run.
For small portions of a run the average predictions obtained with the entire data
set are better (between 26% and 33% and between 41% and 49%) and for other
portions they are worse (between 56% and 65%). As for i ndepModel , the aver-
age scores obtained by mai nMbdel largely mirror the average predictions. These
results indicate that training and testing with C8.11 had more impact on the results
obtained with i ndepMbdel than on those obtained with mai nMbdel . This can be
explained by the observation that in mai nMbdel the link between locations and
actions lowers the probabilities of non-significant actions, which in turn reduces
their contribution to quest predictions. Therefore, the removal of non-significant
actions does not substantially change quest predictions. The absence of this link
ini ndepMbdel (which results in higher probabilities for non-significant actions)
means that non-significant actions interfere more with quest predictions. Hence,
their removal has a higher impact on quest predictions.

Interestingly, the memory requirements of mai nMbdel (which involve repre-
senting the CPDs) were reduced only by about 8% when trained and tested with
the smallest language, C8.11. The reason for this relatively small reduction is that
the CPDs for mai nMbdel were initially very sparse (and zero probability events
were not explicitly represented). Further, action screening introduces previously
unseen action-action combinations, which must be represented in the CPDs. The
reduction in memory requirements for i ndepModel was about 15%. It is worth
noting that the reduction in memory requirements for both models was similar in
absolute terms, indicating that similar information was removed from both models
when trained with C8.11. However, in terms of percentages, the reduction is higher
fori ndepModel since its CPDs are smaller than those of mai nMbdel . In contrast,
there was a considerable reduction in computation time during training and test-
ing for both mai nModel and i ndepModel (training and testing for mai nvbdel ,
which has the highest computational requirements, went down from about one
day to about half a day). The reductions obtained during training took place when
constructing the CPD tables which involve actions and locations; the reductions
obtained during testing took place when making quest predictions.

Due to the advantages of using C8.11 both in terms of quest prediction perfor-
mance and in terms of computational requirements, we decided to use this language
for the subsequent abstraction-based simplification process. Although in absolute
terms mai nMbdel performs slightly better than i ndepModel when using this
language, both models were retained for the next stage of our analysis.

paper.tex; 16/12/1997; 19:15; no v.; p.27

28 ALBRECHT ET AL.

6.2. ABSTRACTION OF LOCATIONS

The abstraction of locations consists of identifying sets of related locations in the
MUD. This can be done in two ways: (1) Path abstraction — involves abstracting
a specific location to a larger location which includes it, e.g., keeping track of
the building a player is visiting, rather than a particular room in that building; or
(2) Room abstraction — abstracting a specific location to all locations of the same
type, e.g., the reception at any inn in the MUD is considered a single type of room,
namely “reception”. These abstractions are implemented as follows:

Path — involves using the entire hierarchical description of a location in the MUD
except for the last word, e.g., “players/paladin/room/abbey/guardhouse” in
Table | is represented as “players/paladin/room/abbey”. This reduces the size
of the location state space, |L|, from 3,369 to 181.

Room — involves using only the last word in the hierarchical description of a loca-
tion in the MUD, e.g., “players/paladin/room/abbey/guardhouse” in Table I is
represented as “guardhouse”. This leads to a reduction in the location state
space size, | L|, from 3,369 to 3,079.

6.2.1. Location abstraction results

DBN training and testing was performed with the abstracted locations and the
actions in language C8.11, rather than with the entire location set and action set.
This means that during both training and testing, the specific locations are not taken
into account, which in turn affects directly the location predictions performed, and
indirectly the action predictions (since actions may depend on locations). Thus, as
for action screening, we compare the performance of DBNs trained and tested on
different location sets for quest predictions only.

Figure 10(a-d) shows the performance of nai nModel and i ndepModel when
trained and tested on the following data: entire location and action set; actions in
C8.11 and entire location set (C8.11); actions in C8.11 and locations in the path
abstraction (called C8.11-path); and actions in C8.11 and locations in the room
abstraction (called C8.11-room). Figure 10(a-b) shows average quest predictions,
and Figure 10(c-d) shows average quest scores. These results were obtained when
the models were trained on 80% of the data and tested on 20% with cross-validation
over 20 splits of the data. The null hypothesis that there is no significant difference
between the models’ predictions was tested using a T-test with 38 d.f. for each
set of predictions and each pair of models. All the results reported in the analysis
below are at the 0.5% significance level.

According to Figure 10, the performance of mai nMbdel when trained with each
of the training sets is slightly better than the performance of i ndepModel . The
average predictions obtained when i ndepModel was trained and tested with C8.11
and with C8.11-room are virtually indistinguishable, and after about half a run they

paper.tex; 16/12/1997; 19:15; no v.; p.28

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION

29

100

Entire set - Entire set -
Cc8.11 — Cc8.11 —
0.8 C8.11-path 0.8 C8.11-path
c C8.11-room c C8.11-room
kel kel
S 06t . = 06]
o o
a a
() ()
g 0.4 g g 0.4 i
[[
> >
< < ,
02| i E 02t/ E
0 0
20 40 60 80 100 0 20 40 60 80
Percentage of actions until quest completion Percentage of actions until quest completion
(@) mai nvbdel (b) i ndepMbdel
Aver age prediction
1 1
Entire set - Entire set -
c8.11 — c8.11 —
0.8 C8.11-path - . 0.8 | c8.1lpath]
C8.11-room C8.11-room
< [
3 o6+ 1 3 06 g
7] : 7]
() ()
[=2] [=2}
g g
g 04 r q g 04 r q
4 4
02 f 1 02f 1
0 0
20 40 60 80 100 0 20 40 60 80
Percentage of actions until quest completion Percentage of actions until quest completion
(c) mai nMbdel (d) i ndepMbdel
Average score

Figure 10.
and i ndepModel
action-location set.

Average quest predictions and average quest scores for mai nibdel
when trained with C8.11, C8.11-path, C8.11-room and the entire

rise to be the best among the average predictions obtained with all the training sets.
Training and testing with C8.11-path yields slightly lower average predictions
for the second half of a run. In addition, after only 12% of a run, the average
predictions obtained when the entire data set was used for training and testing
are worse than those obtained with the other three data sets. The average scores
obtained when i ndepMbdel was trained and tested with C8.11 and with C8.11-
room are also indistinguishable. However, unlike the average predictions, they are
higher than the average scores obtained with the entire data set only after about half
a run. Further, the average scores obtained with C8.11-path are relatively lower
than the average predictions obtained with this data set, and drop off significantly
below the average scores obtained with the other data sets after 93% of a run.

paper.tex; 16/12/1997; 19:15; no v.; p.29

100

30 ALBRECHT ETAL.

In contrast to i ndepModel , for most of a run (until 93% has been completed),
mai nMbdel yields the best average predictions when trained and tested on C8.11-
path. For the first 53% of a run C8.11-path yields the highest average predictions.
Between 70% and 93% of a run, the predictions obtained when trained and tested
with each of the data sets become virtually indistinguishable, at which point the
average predictions obtained with the entire data set and with C8.11-path drop off
slightly. Asfori ndepMbdel , the average predictions obtained with C8.11 and with
C8.11-room are virtually indistinguishable throughout a run, and so are the average
scores obtained with these data sets. In addition, the average scores obtained when
mai nModel was trained and tested with C8.11-path are relatively lower than the
average predictions obtained with this data set, indicating a performance that is
commensurate with that obtained with the other data sets for most of a run (but not
better). Further, the relative drop in the average scores obtained with C8.11-path
starts after only 75% of a run (compared to 93% for the average predictions).

Thus, for both i ndepMbdel and mai nMbdel (and according to both average
prediction and average score) the path abstraction performs as well as or better
than the other data sets for about the first half of a run, at which point the relative
performance of the path abstraction starts deteriorating, becoming significantly
worse than the performance obtained with the other data sets towards the end of a
run. This may be explained by the observation that initially information about the
general whereabouts of a player may give a good indication of his or her intent.
However, as quest completion draws near, more detailed information is required to
make a precise prediction. In addition, training with the room abstraction (and the
screened action set) yielded the same performance as training with the screened
action set and all the rooms. This result is consistent with our expectation that
players perform the same types of actions in rooms of the same type. Finally, the
discrepancies in the performance assessments obtained with average prediction
and average score suggest that further investigation is required into the distribution
of scores and predictions over different runs.

The memory requirements for nmai nModel (which involve representing the
CPDs) were further reduced (in addition to the 8% obtained from action screen-
ing) by about 44% when trained and tested with C8.11-path, and only by 1% for
C8.11-room. Similarly, the reductions in memory size for i ndepModel were 39%
and 1% for C8.11-path and C8.11-room respectively. The path abstraction yielded
a considerable reduction in computation time during training and testing for both
mai nMbdel and i ndepMbdel (training and testing for mai nMbdel , which has
the highest computational requirements, went down from half a day, which was
achieved by using C8.11, to about three hours). The reductions obtained during
training took place when constructing the CPD tables which involve actions and
locations; the reductions obtained during testing took place when making quest
predictions. This indicates that a fruitful strategy for achieving reductions in com-
putation time during plan recognition may consist of starting the plan recognition
process with the models trained with the path abstraction, and switching to the

paper.tex; 16/12/1997; 19:15; no v.; p.30

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 31

models trained with the more comprehensive data sets later in the plan recognition
process. In contrast to the path abstraction, the room abstraction yielded no sub-
stantial gains in computation time due to the relatively small difference between
the number of rooms in the entire location set and the number of rooms in the room
abstraction. Nonetheless, if such small gains are necessary, our results indicate that
the room abstraction can fully replace the entire location set without causing any
change in predictive power.

7. Discussion

We have presented and compared four Dynamic Belief Networks which predict a
user’s next location, next action and current quest based on a training corpus. We
do not learn the structure of the Bayesian networks. Instead, we have proposed
four basic network structures that model different underlying dependencies in the
domain. Simple models are required since the number of possible values for each
node makes network training and evaluation a computationally complex task.

We have used two different measures to compare the different DBN models,
viz average prediction and average score. Both measures compute averages across
all the test runs, and both are used from the start of a run until quest completion.
This type of calculation is required because of the nature of the MUD domain,
where current quest, next action and next location predictions may fluctuate within
the course of a single run. Using our performance measures we can show gradual
prediction improvement as quest completion nears.

The comparison between the four presented models gives some insight into
the underlying dependencies in the domain. The accuracy of quest predictions
obtained when using both a user’s locations and a user’s actions is significantly
higher than the accuracy of the predictions obtained when using actions alone,
and somewhat higher than the accuracy obtained when using locations alone. As
seen in Section 5.2.4, the average quest predictions produced by | ocat i onMbdel
are significantly lower than those produced by mai nModel and i ndepModel .
However, the average scores obtained by these three models are rather close. This
indicates that when the current quest is predicted by randomly choosing a quest
with the highest probability, the performance of the three models will be quite
close. Still, both performance measures clearly indicate that mai nMbdel is the
best of all the models for quest prediction. In addition, our results indicate that
the system’s belief regarding which quest a user is attempting affects both location
and action predictions. Interestingly, mai nvbdel performs the worst on action
predictions for most of a run, as measured by both the average prediction and
the average score. As indicated in Section 6.1.2, this may be due to the link from
locations to actions in mai nMbdel , which reduces the probability of non-significant
actions (these actions form a large percentage of the observed actions). Another
contributing factor may be the increased size of the CPD table used in mai nMbdel
and the resulting sparseness of that table; the lack of a sufficient number of data

paper.tex; 16/12/1997; 19:15; no v.; p.31

32 ALBRECHT ET AL.

points results in undue emphasis being placed upon a relatively small number of
observations. There is very little difference between the location predictions of
| ocat i onModel , mai nMbdel and i ndepModel . Therefore, if the focus is on
location predictions only, the simplest model, i.e., | ocati onMbdel , should be
used.

All the performance results for quest predictions presented in this paper are
based on the assumption that at all stages until a quest is completed a player is
intending to complete that quest. However, one of the features of our domain is that
a player may undertake actions towards another quest that is completed in a later
run, may execute actions that are not related to any quest, or may have abandoned
an attempt at a quest that was intended for a while. In each case we have no way of
knowing this has occurred. Thus, our quest prediction results may be considered
an underestimate of the actual outcomes.

An important feature of our approach is that due to the probabilistic training,
predictions are based on actions that are normally performed to achieve a goal,
rather than on actions that necessarily advance a user towards the achievement of a
goal. Thus, actions that are necessary to achieve a goal (and hence performed by a
large number of users to satisfy a particular goal) have a relatively significant effect
on predictions. On the other hand, actions that are performed across many goals
and extraneous actions (i.e., those which do not contribute to the achievement of
any goals, such as typographical errors), have little effect on the prediction of a
particular goal.

In an extension to the basic approach, we have attempted to screen out these
extraneous actions using an MML classifier. By learning the language of the MUD,
we have substantially reduced the computation time required by our DBNs while
gaining quest predictive power (the reductions in memory requirements were rather
modest). We have shown that further computational reductions may be obtained
by using an abstraction based on the hierarchical structure of the location vari-
able. The simplest abstraction, room abstraction, obtained little reduction in both
computation time and memory requirements, and its prediction results were vir-
tually indistinguishable from those obtained without the abstraction. The coarser
abstraction, i.e., path abstraction, achieved significant reductions in both compu-
tation time and memory requirements at the expense of a slight reduction in the
predictive performance of mai nMbdel towards the end of a run.

To summarize, if we wish to predict all the domain variables of interest, that
is, current quest, next action and next location, the best models are mai nMbdel or
i ndepModel . However, if we are interested only in quest predictions, mai nMbdel
obtains both the highest average predictions and the highest average scores when
trained on the actions in the MUD language C8.11. Training with the locations
in the path abstraction leads to an improved performance during the early stages
of a run, while training with the room abstraction yields the same performance
as training with all the locations in the MUD (these training sets also reduce the
computational requirements of mai nMbdel).

paper.tex; 16/12/1997; 19:15; no v.; p.32

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 33

8. Future Work

In this section, we discuss ideas for future research along several dimensions.

Model comparison

The model comparisons presented in this paper use measures which are averages
across all the test runs. A more in-depth comparison of our DBNs may be obtained
by looking at differences in their performance for individual predictions in indi-
vidual runs. To this effect, we intend to extend the model comparison analysis to
pairwise combinations of the predictions made by different DBNs.

Learning the MUD language

There are some caveats to our results showing how the MML classifier can be
used to learn the language of the MUD. Firstly, we have compared only quest
prediction performance across languages; in future research we intend to devise a
suitable method for comparing action and location predictions across languages.
In addition, a possible problem with our approach for learning the MUD language
is that it may ignore actions that are performed only for quests that are very
infrequently attempted, such as Arachnophobia, Demon and Mantis, which are
performed 15 times, 17 times and 13 times respectively in a corpus of 3,017 quest-
achieving runs. Such actions would not be considered part of the MUD language,
even though they are significant for the quests in question. In order to overcome
this problem, we propose to include the following 20 additional attributes when
activating the MML classifier. For each action a; in the data set we include ga;;
i=1,...,20 (one attribute for each quest), where the value of ga;; is:

number of instances of quest @; in which action a; was performed
;5= n .
14ij number of completed instances of quest Q;

However, in this case, the nature of the learned language differs, since what
is being learned are the actions that are significant for each quest, rather than the
actions that are significant for the MUD as a whole. In order to test the impact of
this approach, we would need to split the evaluation process so that each quest is
evaluated separately.

Relaxing simplifying assumptions

The results in this paper were obtained under certain user-related and domain-
related simplifying assumptions. Examples of the former are: all users complete a
quest, all users have similar profiles (i.e., behaviour patterns), all users attempt one
guest at a time, and the interactions between users can be ignored. Among the latter
we have: the domain has certain independence relations, and only certain types of
data are available.

paper.tex; 16/12/1997; 19:15; no v.; p.33

34 ALBRECHT ET AL.

The first two assumptions will be relaxed simultaneously by including non-
quest runs into our observations, and using a classification mechanism to build
user profiles which reflect the kinds of activities performed by different types of
users. A DBN which incorporates a user’s class will then be built and trained
from this data. The plan recognition task will involve the identification of a user’s
profile on the basis of his or her actions and visited locations, and the prediction
of the actions, locations and objectives of this user in the context of the identified
profile. The relaxation of the third and fourth user-related assumptions requires
the extension of our system so that it can handle conjunctive goals and goals that
change over time, and also so that it can keep track of the actions and locations of
all the users playing the game at the same time.

The data for our domain originally provided at the beginning of this research
were limited. Recently we have started collecting additional data, e.g., horizontal
movements and the health and wealth state of the players. These data will allow
us to develop more detailed models, and to test them against the baseline results
obtained with our current models. We also plan to investigate whether we can
improve the performance of the system by including the object of an action in our
models.

Applying our approach to other domains

In addition to extending our models to handle richer MUD data, we are interested
in applying our approach to other domains. The four simple models explored in this
paper for the MUD domain show promise for application to other domains with
similar features, e.g., the WWW and Unix. If we consider the location variable
to be a typical state variable, and the quest variable to correspond to the accepted
notion of a goal, then the set of node types encompassing action, state and goal is
very general.

Like the MUD, the WWW has a hierarchical location structure, but the WWW
has a very limited number of actions (dictated by the Web browser). This indicates
that | ocat i onModel has potential for predicting the next web-page a user may
fetch on the basis of the previous pages visited.* The Unix domain also has a
hierarchical location structure, and like the MUD, it contains a large number of
possible actions, though probably less than 7,259. Further, it appears that the object
of an action is of importance in Unix, hence the intended extension to incorporate
objects into the models used for the MUD will also be applicable to the Unix
domain. Finally, Unix goals such as sending a file to a printer loosely correspond
to MUD quests. However, the Unix domain highlights the importance of extending
our approach to conjunctive goals, since a typical Unix goal may be to print on a
double sided printer that is also a color printer and that is also on the fourth floor

* A related application of keyhole plan recognition to the WWW is in the design of filtering
agents which unobtrusively infer a user’s preferences from observations of his or her behaviour, e.g.,
(Joachims et al., 1997; Moukas and Maes, 1998; Balabanovic, 1998).

paper.tex; 16/12/1997; 19:15; no v.; p.34

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 35

(from (Lesh and Etzioni, 1996)). It is difficult to determine similar goals in the
MUD, which limits the applicable models to those containing a single quest node.
However, our current models may be extended to DBNs which have one node for
each goal conjunct. Initially, we intend to apply our models to the recognition of
simple Unix goals, and then consider extensions to handle conjunctive goals.

Acknowledgments

This research was supported in part by grant A49600323 from the Australian
Research Council. The authors are indebted to Michael McGaughey for writing
the data collection programs for the MUD and for his assistance during the initial
stages of this project. The authors would also like to thank Ariel Bud for valuable
contributions throughout this project.

References

Albrecht, D. W., Zukerman, I., and Nicholson, A. E. (1997). Bayesian models for keyhole plan
recognition in an adventure game (extended version). Technical Report 328, Department of
Computer Science, Monash University, Victoria, Australia.

Allen, J. and Perrault, C. (1980). Analyzing intention in utterances. Artificial Intelligence, 15:143-
178.

Balabanovic, M. (1998). Exploring versus exploiting when learning user models for text recommen-
dation. User Modeling and User-adapted Interaction, this issue.

Bauer, M. (1996). Acquisition of user preferences for plan recognition. In UM96 — Proceedings of
the Fifth International Conference on User Modeling, pages 105-112, Kona, Hawaii.

Box, G. E. and Tiao, G. C. (1973). Bayesian Inference in Statistical Analysis. Addison-Wesley
Publishing Company, Philippines.

Buntine, W. (1996). A guide to the literature on learning probabilistic networks from data. IEEE
Transactions on Knowledge and Data Engineering, 8(2):195-210.

Cafiamero, D., Delannoy, J., and Kodratoff, Y. (1992). Building explanations in a plan recognition
system for decision support. In ECAI92 Workshop on Improving the Use of Knowledge-Based
Systems with Explanations, pages 35-45, Vienna, Austria.

Carberry, S. (1990). Incorporating default inferences into plan recognition. In AAAI90 — Pro-
ceedings of the Eight National Conference on Artificial Intelligence, pages 471-478, Boston,
Massachusetts.

Charniak, E. (1993). Statistical Language Learning. MIT Press, Cambridge, Massachusetts.

Charniak, E. (1997). Personal communication.

Charniak, E. and Goldman, R. P. (1993). A Bayesian model of plan recognition. Artificial Intelligence,
64(1):50-56.

Conati, C., Gertner, A. S., VanLehn, K., and Druzdzel, M. (1997). On-line student modeling for
coached problem solving using Bayesian Networks. In UM97 — Proceedings of the Sixth Inter-
national Conference on User Modeling, pages 231-242, Sardinia, Italy.

Dagum, P., Galper, A., and Horvitz, E. (1992). Dynamic network models for forecasting. In UAI92
— Proceedings of the Eighth Conference on Uncertainty in Artificial Intelligence, pages 41-48,
Stanford, California.

Dean, T. and Wellman, M. P. (1991). Planning and control. Morgan Kaufmann Publishers, San
Mateo, California.

Forbes, J., Huang, T., Kanazawa, K., and Russell, S. (1995). The BATmobile: Towards a Bayesian
automated taxi. In IJCAI95 — Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 1878-1885, Montreal, Canada.

Good, 1. J. (1965). The Estimation of Probabilities: An Essay on Modern Bayesian Methods. Research
Monograph No. 30. MIT Press, Cambridge, Massachusetts.

paper.tex; 16/12/1997; 19:15; no v.; p.35

36 ALBRECHT ETAL.

Heckerman, D. (1995). A tutorial on learning Bayesian networks. Technical Report MSR-TR-95-06,
Microsoft Research.

Huber, M. J., Durfee, E. H., and Wellman, M. P. (1994). The automated mapping of plans for
plan recognition. In UAI94 — Proceedings of the Tenth Conference on Uncertainty in Artificial
Intelligence, pages 344-350, Seattle, Washington.

Jameson, A. (1996). Numerical uncertainty management in user and student modeling: An overview
of systems and issues. User Modeling and User-Adapted Interaction, 5:193-251.

Joachims, T., Freitag, D., and Mitchell, T. (1997). Webwatcher: A tour guide for the world wide
web. In IJCAI97 - Proceedings of the Fifteenth International Joint Conference on Artificial
Intelligence, pages 770-775, Nagoya, Japan.

Lesh, N. (1997). Adaptive goal recognition. In IJCAI97 — Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, pages 1208-1214, Nagoya, Japan.

Lesh, N. and Etzioni, O. (1995). A sound and fast goal recognizer. In IJCAI95 — Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, pages 1704-1710, Montreal,
Canada

Lesh, N. and Etzioni, O. (1996). Scaling up goal recognition. In Principles of Knowledge Represen-
tation and Reasoning, pages 178-189

Litman, D. and Allen, J. F. (1987). A plan recognition model for subdialogues in conversation.
Cognitive Science, 11:163-200.

Moukas, A. and Maes, P. (1998). User modeling in an evolving multi-agent system. User Modeling
and User-adapted Interaction, this issue.

Nicholson, A. E. and Brady, J. M. (1994). Dynamic belief networks for discrete monitoring. IEEE
Systems, Man and Cybernetics, 24(11):1593-1610.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San
Mateo, California.

Pynadath, D. and Wellman, M. (1995). Accounting for context in plan recognition with application
to traffic monitoring. In UAI95 — Proceedings of the Eleventh Conference on Uncertainty in
Artificial Intelligence, pages 472-481, Montreal, Canada.

Quinlan, J. R. (1983). Learning efficient classification procedures and their application to chess end
games. In Michalski, R. S. and Carbonell, J., editors, Machine Learning: an Artificial Intelligence
Approach. Tioga Publishing Company, Palo Alto, California.

Raskutti, B. (1993). Handling Uncertainty during Plan Recognition for Response Generation. PhD
thesis, Monash University, Victoria, Australia.

Raskutti, B. and Zukerman, 1. (1991). Generation and selection of likely interpretations during plan
recognition. User Modeling and User Adapted Interaction, 1(4):323-353.

Russell, S., Binder, J., Koller, D., and Kanazawa, K. (1995). Local learning in probabilistic networks
with hidden variables. In IJCAI95 — Proceedings of the Fourteenth International Joint Conference
on Artificial Intelligence, pages 1146-1152, Montreal, Canada.

Wern, A. and Stenborg, O. (1995). Recognizing the plans of a replanning user. In Proceedings of the
1JCAI-95 Workshop on The Next Generation of Plan Recognition Systems: Challenges for and
Insight from Related Areas of Al, pages 113-118, Montreal, Canada.

Wallace, C. (1990). Classification by minimum-message-length inference. In Goos, G. and Hartmanis,
J., editors, ICCI "90 — Advances in Computing and Information, pages 72-81. Springer-Verlag
Berlin.

Wallace, C. and Boulton, D. (1968). An information measure for classification. The Computer
Journal, 11:185-194.

Appendix A: Update Formulas for the Four Models

In a Bayesian network (Pearl, 1988) we say that an undirected path between a set
of nodes X and another set of nodes Y is blocked by a set of nodes E, if there is a
node Z on the path for which one of the following conditions holds:

1. Z isin E and Z has one arrow on the path leading in and one arrow out.

2. Zisin E and Z has both path arrows leading out.

paper.tex; 16/12/1997; 19:15; no v.; p.36

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 37

3. Neither Z nor any of its descendants is in E, and both arrows lead into Z.
A set of nodes E is said to d-separate two sets of nodes X and Y if every
undirected path between X and Y is blocked.

The d-separation condition. The set of nodes E d-separates X and Y if and only
if X and Y are conditionally independent given E.

A.1 MAINMODEL

This model was constructed assuming that the next action depends only on the
current action, the next location and the current quest, and the next location depends
only on the current location and the current quest. Therefore:

Pr(aild’,q,a0,l0,11) = Pr(ailq’,ao,l1) ,
Pr(ll|ql,q,a0,10) Pr(ll|qlalO))

and for n > 0,

Pr(a’n+l|q,7 q, ao, lOa <ee O, l'fLa ln+l) = Pr(an+l|qla Qnp, ln+l))
Pr(ln+1|qla q, ao, lOa <ee 5 an, ln) = Pr(Zn+l|q’a ln) .

Also, in this model node @ d-separates node @' from nodes { Ao, Lo}. So
Pr(¢'|g, ao,lo) = Pr(q'|q) . Therefore, we obtain the following update equations:

Pr(ailq, a0, lo) = Y _ Pr(ailq’,q,a0,lo,11) Pr(l1lq',q,ao,l0) Pr(d'|g,ao,lo)
q'
= > Pr(ailq’, a0, 1) Pr(lilg’,lo) Pr(q'lg) ,
q’all
Pr(l1lg,lo,a0) = Y _Pr(lil¢, q,a0,l0) Pr(q'lg, ao, o)
ql
= Y Pr(lalq’,lo) Pr(q'l) ,
ql

and for n > 0,

Pr(an+1lq, ao,los - - -y an,ly)
= z {Pr(a’n+l‘q,7 q, ao, lOa ey O, ln7 ln+l) X
q' 1
Pr(ln+l|qla q, ao, lOa sy Qp, ln) Pr(qI|Q7 ao, lOa ceey O, ln) }
= Z Pr(an+l|ql’ Qp, ln+l) Pr(ln+l|q,7 ln) Pr(q,|qa ao, lOa ceey O, ln) ;
q'\ln1
PI'(ln+1 g, ao, lOa <oy O, ln)
:Z Pr(ln+l|qla q, ao, l07 <eey O, ln) Pr(q,|qa ao, lOa ceey O, ln)
q

paper.tex; 16/12/1997; 19:15; no v.; p.37

38 ALBRECHT ETAL.

= " Pr(ln.1ld’ 1n) Pr(q'lq, a0, lo, - - ans)
7
Pr(q'|q, ao,lo, - - ., an+1, ln+1)
_Pr(ap+1,lnald’, g, a0, lo, ... an, ln) Pr(d'|q, a0,lo, ..., an,ly)
) Pr(ans1, lns1lg, ao, Lo, - - -, any In)
=aPr(an+1|qla G, Un+1) PI(ln+l|q’a L) Pr(qI|Qa ao,lo,...,an,ly) ,

where « is a normalizing constant.

A.2 ACTIONMODEL

This model was constructed assuming that the next action depends only on the
current action and the current quest. Therefore:

Pr(al‘ql7Q7 aO) = Pr(0,]_|q,,0,0) ’
and for n > 0,

Pr(an+l|q,7 q,a0,. .. aan) = Pr(an+1|qla ap) -

Also, in this model node @ d-separates node Q' from node Ag. So Pr(¢'|q, ao) =Pr(4'|q) .
Therefore, we obtain the following update equations:

Pr(ailg,a0) = > Pr(ailq,a0) Pr(q'|q) ,
ql

and for n > 0,

Pr(an+l|qa ag, .- -, a'n) Z Pr(an+1|qla an) Pr(q,|Qa agy . .- 7an) ’

q
Pr(qI|Qa aQy .-y a’n+l) aPr(a’n+l|qla an) Pr(ql|q7 agy ..., an))
where « is a normalizing constant.

A.3 LOCATIONMODEL

This model was constructed assuming that the next location depends only on the
current location and the current quest. Therefore:

Pr(ll|qla q, ZO) = Pr(ll|qla ZO))
and for n > 0,
Pr(ln+1|qla q, 107 RN ln) = Pr(ln+1|qla ln) -

Also, in this model node @ d-separates node @' from node Lo. So Pr(¢'|q, lo) =Pr(4'|q) .
Therefore, we obtain the following update equations:

Pr(lalg,lo) = > Pr(l1l¢’,lo) Pr(d'lg) ,
ql

paper.tex; 16/12/1997; 19:15; no v.; p.38

BAYESIAN MODELS FOR KEYHOLE PLAN RECOGNITION 39

and for n > 0,
PI’(ln+1|q, ZO, ey ln)

> PrCnald’s 1) Pr(d'lg,lo, ., 1n)
q/

Pr(ql|q7 lOa Ty ln+l) apr(Zn+l|qla ln) Pr(q,|Q7 107 cee 7ln))
where « is a normalizing constant.

A.4 INDEPMODEL

This model was constructed assuming that the next action depends only on the
current action and the current quest, and the next location depends only on the
current location and the current quest. Therefore:

Pr(al‘q,7Q7 aOalO) = Pr(a1|q,7a0))
Pr(Zl‘qla(b aOaIO) = Pr(ll‘ql,lO))
and for n > 0,

Pr(a/n+l|q,a q, ao, lOa sy Qp, ln) = Pr(a'n+l‘q,a a'n) ’
Pr(ln+l|qla q, ao, l07 ceey Qn, l’n) Pr(ln+1|qla ln) .

Also, in this model we have the following d-separations:
1. Node @ d-separates node @’ from nodes { Ao, Lo}.
2. Nodes{Q’, Q, Ao, ..., An, Lo, ..., L, } d-separate node A,,.1 from node L. 1.
So, by the d-separation condition we have: Pr(¢q'|q, ao,lo) = Pr(q'|q), and for
n > 0,

Pr(An+l, ln+l|qla q, ao, lOa <oy Qp, ln) = Pr(an+l|qla a'n) Pr(ln+l|qla ln) .

Therefore, we obtain the following update equations:

Pr(ailg,ao,lo) = Y Pr(ailq’,a0) Pr(qlg) ,

q
Pr(l1lg,lo,a0) = Y _Pr(llq’,lo) Pr(q'lq) ,
ql
and for n > 0,
Pr(a’n+l|Qa ao, 107 vy Qp, ln)

:Z Pr(an+l‘q,a a'n) Pr(qI|Qa ao, lOa coey Oy ln))
ql
Pr(ln+1|Qa ao, lOa vy Oy ln)
:Z Pr(ln+1|qla ln) Pr(qI|Qa ao, lOa cee 5 Qn, ln))
ql
Pr(q,|Qa ao, l07 N i P ln+l)
:aPr(an+l|qla an) Pr(ln+l|ql’ ln) Pr(qI|Q1 ao, lOa ey O, ln))

paper.tex; 16/12/1997; 19:15; no v.; p.39

40 ALBRECHT ET AL.

where « is a normalizing constant.

Authors’ Vitae
David Albrecht

Monash University, School of Computer Science and Software Engineering, Clay-
ton, Victoria 3168, Australia

David Albrecht is a Research Fellow and Lecturer in Computer Science at Monash
University. He received his B.Sc and Ph.D. degrees in Mathematics from Monash
University, and has worked in several research areas including plan recognition,
speech recognition, program extraction, linear logic, functional operator theory,
general relativity, and optimal control theory.

Ingrid Zukerman

Monash University, School of Computer Science and Software Engineering, Clay-
ton, Victoria 3168, Australia

Ingrid Zukerman is an Associate Professor in Computer Science at Monash Uni-
versity. She received her B.Sc. degree in Industrial Engineering and Management
and her M.Sc. degree in Operations Research from the Technion — Israel Institute
of Technology. She received her Ph.D. degree in Computer Science from UCLA in
1986. Since then, she has been working in the Department of Computer Science at
Monash University. Her areas of interest are discourse planning, plan recognition,
multi-media interfaces, agent modeling and speech recognition.

Ann Nicholson

Monash University, School of Computer Science and Software Engineering, Clay-
ton, Victoria 3168, Australia

Ann Nicholson is a Senior Lecturer in Computer Science at Monash University.
She received her B.Sc (Hons) and M.Sc. degrees in Computer Science from the
University of Melbourne. In 1992 she received her D.Phil. in Engineering from
the University of Oxford, where she was part of the Robotics Research Group.
In 1994, after 2 years as a post-doctoral research fellow in Computer Science at
Brown University, she took up a position in the Department of Computer Science at
Monash University. Her areas of interest are reasoning under uncertainty, dynam-
ic belief networks, stochastic planning, monitoring, scheduling, plan recognition,
intelligent agents, robotics and sensor validation.

paper.tex; 16/12/1997; 19:15; no v.; p.40

