

Information Technology

Cheap Solutions to the Transport Problem

Mark Wallace June 2013

We could use the transport network we have, to make journeys quicker for everyone!

The AMSI Workshop on Mathematics of Transportation Networks

Rush Hour

Morning rush hour traffic

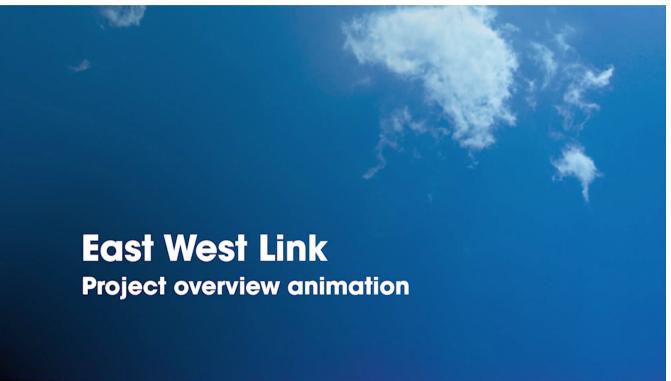
Early morning rush hour traffic

The term "rush hour" is out-of-date: morning traffic congestion in Melbourne lasts from 6:30 until 9:30am

The Age April 2012

They say it's getting worse!

Estimates suggest that the cost of congestion to Victoria will rise from \$3 billion to <mark>\$6 billion</mark> by 2020.



One Way to Relieve Congestion

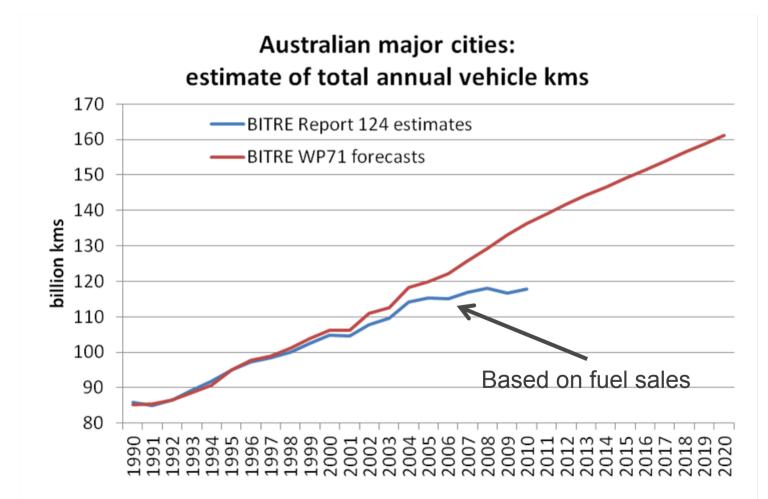
The Planned Solution

The Victorian Government has committed to funding the first stage of the 18 kilometre road, which has an estimated capital cost of between **\$6 billion** and **\$8** billion.

...but which problem?

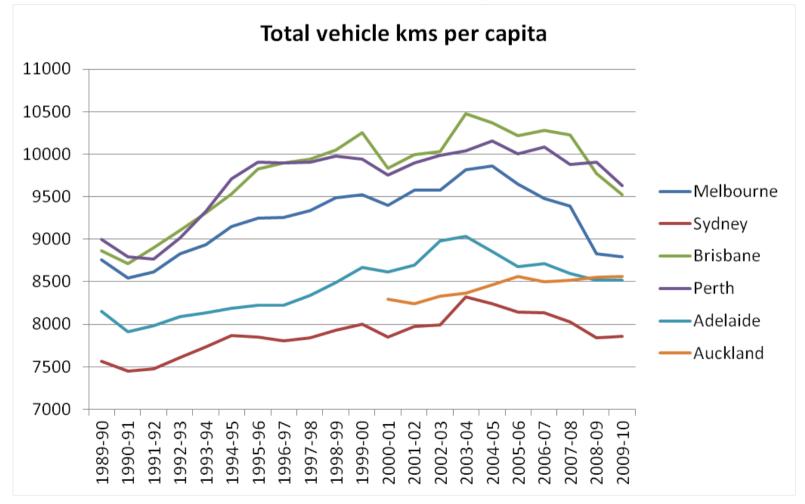
Traffic flowing in from the Eastern Freeway

Traffic flowing in from the Princes Freeway

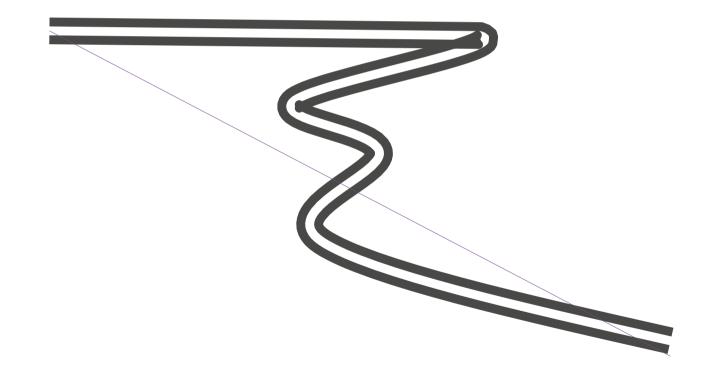

"There's more votes in moving voters' cars than moving trucks,"

A new road will not solve the congestion problem

Transport Demand based on BITRE Data


Bureau of Infrastructure, Transport and Regional Economics (BITRE)

😹 MONASH University


Transport Demand based on BITRE Data

Bureau of Infrastructure, Transport and Regional Economics (BITRE)


🚜 MONASH University

• A new road can increase traffic

• A new road can increase traffic

A new road can increase traffic

 A new road can shift the congestion from one place to another

A new road can increase traffic

 A new road can shift the congestion from one place to another

It is even possible that without any increase in traffic a new road can make every single journey slower!

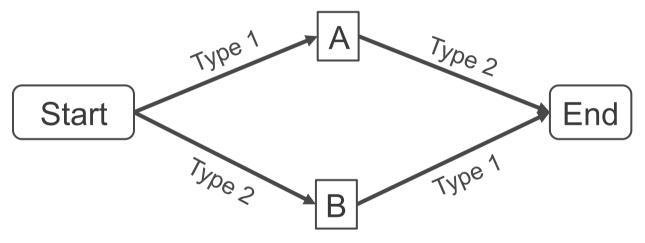
Different Types of Roads

Most roads take longer when there is more traffic

Example:

Cars per hour	60	600	1200
Travel time	10	15	30

Some roads are wide (or narrow) enough that the amount of traffic doesn't make much difference


Example:

Cars per hour	60	600	1200
Travel time	10	10	10

Braess' Paradox - How adding a road can make every journey slower

Imagine this road network:

Cars per hour	200	400	Cars
Travel time	20	40	Cars /10

Type 2

Cars per hour	200	400	Cars
Travel time	45	45	45

MONASH University

How long does it take to get from Start to End Start Start R Cars¹¹⁰

Assume there are 400 cars per hour.

The journey time depends on how many drivers choose Start $\rightarrow A \rightarrow End$ and how many choose Start $\rightarrow B \rightarrow End$

Scenario 1	Cars
Start \rightarrow A \rightarrow End	400
Start \rightarrow B \rightarrow End	0

Scenario 1	Cars	Time
Start \rightarrow A	400	40
$A \rightarrow End$	(400)	45

How long does it take to get from Start to End Cars¹⁰ 45 Start End Cars/10 45

Assume there are 400 cars per hour.

The journey time depends on how many drivers choose Start \rightarrow A \rightarrow End and how many choose Start \rightarrow B \rightarrow End

Scenario 1	Cars	Time
Start $\rightarrow A \rightarrow End$	400	85
Start \rightarrow B \rightarrow End	0	(45)

Scenario 1	Cars	Time
Start \rightarrow A	400	40
$A \rightarrow End$	(400)	45

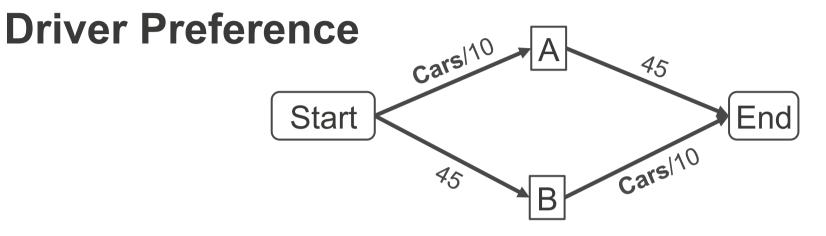
B

How long does it take to get from Start to End Cars¹⁰ 45 End Start Cars/10 45 B

Assume there are 400 cars per hour.

Scenario 2	Cars
Start $\rightarrow A \rightarrow End$	200
Start \rightarrow B \rightarrow End	200

Scenario 2	Cars	Time
Start \rightarrow A	200	20
$A \rightarrow End$	(200)	45
Start \rightarrow B	(200)	45
$B \rightarrow End$	200	20


How long does it take to get from Start to End Cars¹⁰ 45 End Start Cars/10 45 B

Assume there are 400 cars per hour.

Scenario 2	Cars	Time
Start \rightarrow A \rightarrow End	200	65
Start \rightarrow B \rightarrow End	200	65

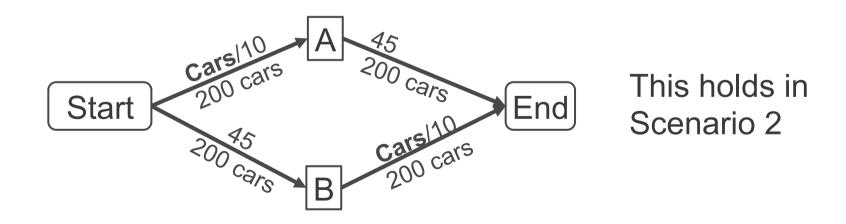
Scenario 2	Cars	Time
Start \rightarrow A	200	20
$A \rightarrow End$	(200)	45
Start \rightarrow B	(200)	45
$B \rightarrow End$	200	20

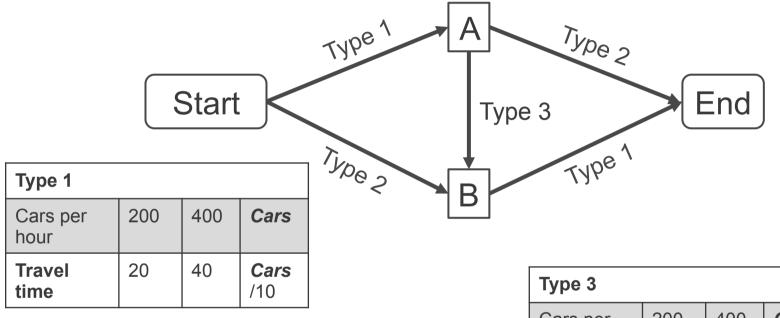
Scenario1

Drivers can save time by switching:

	Route	Cars	Time
1	Start \rightarrow A \rightarrow End	400	85
2	Start \rightarrow B \rightarrow End	0	(45)
	Change from route 1 to route 2		aved = 45 = 40

Scenario2

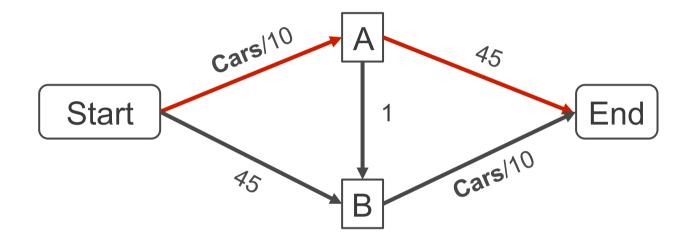

No drivers can save time by switching:


	Route	Cars	Time
1	Start $\rightarrow A \rightarrow End$	200	65
2	Start \rightarrow B \rightarrow End	200	65
	Change from route 1 to route 2		aved = 65 = 0

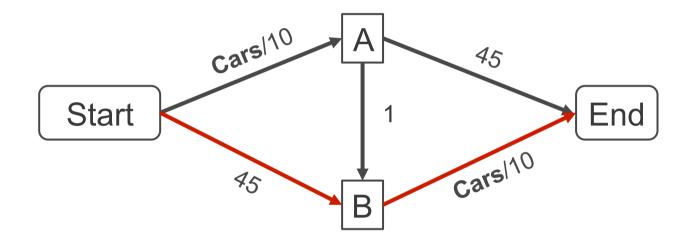
User Equilibrium

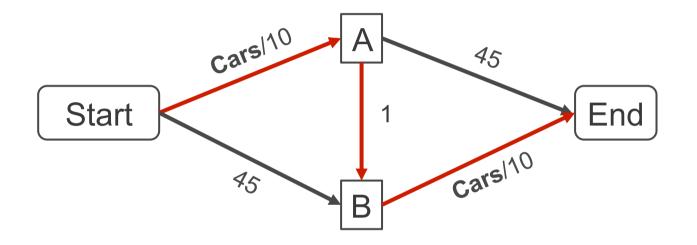
The long term traffic pattern is when all driver preferences are satisfied.

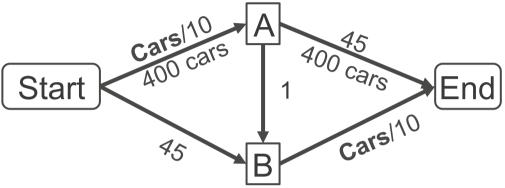
In this case, no car can reduce its journey time by switching to an alternative route

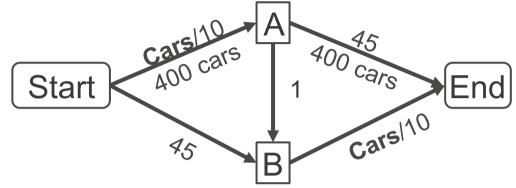


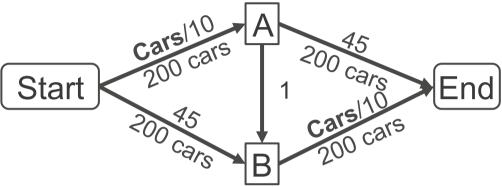
Туре 2			
Cars per hour	200	400	Cars
Travel time	45	45	45

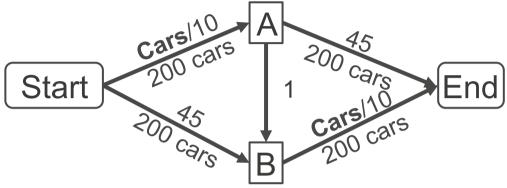

Туре 3			
Cars per hour	200	400	Cars
Travel time	1	1	1


Route1

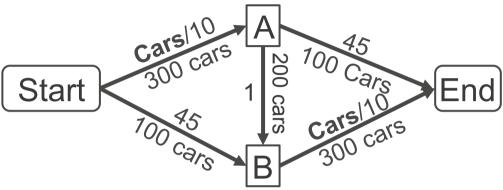

Route2

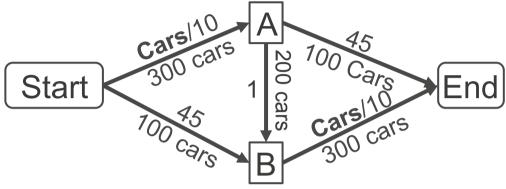

Route3


	Cars	Road	Cost	Total
Route 1	400	S→A	40	05
		A→E	45	85
Route 2	0	S→B	45	45
		B→E	0	45
Route 3	0	S→A	40	
		A→B	1	41
		B→E	0	

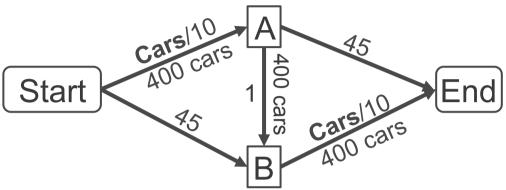

	Cars	Road	Cost	Total	Switch	Saved	Choose	
Route 1	400	S→A	40	95	R1→R2	40	Yes	
		A→E	45	85	R1→R3	44	Yes 🔨	Not
Route 2	0	S→B	45	45	R2→R1	-40	(No)	User
		B→E	0	45	R2→R3	4	(Yes)	Equilibrium
Route 3	0	S→A	40		R3→R1	-44	(No)	Equilibrium
		A→B	1	41				
		B→E	0		R3→R2	-4	(No)	

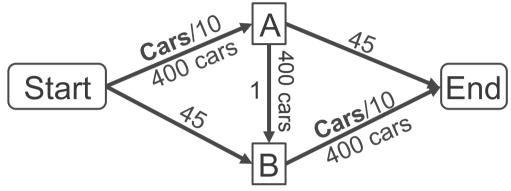
MONASH University


	Cars	Road	Cost	Total	
Route 1	200	S→A	20	05	
		A→E	45	65	
Route 2	200	S→B	45	05	
		B→E	20	65	
Route 3	0	S→A	20		
		A→B	1	41	
		B→E	20		

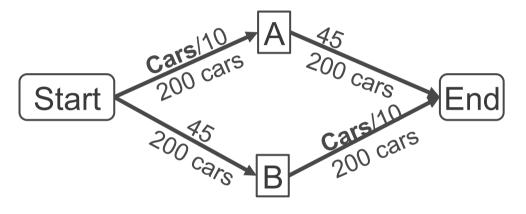

	Cars	Road	Cost	Total	Switch	Saved	Choose	
Route 1	200	S→A	20	<u>c</u> e	$R1 \rightarrow R2$	0	No	
		A→E	45	65	R1→R3	24	Yes K	Not
Route 2	200	S→B	45	<u>CE</u>	R2→R1	0	No	→ User
		B→E	20	65	R2→R3	24	Yes 🖌	Equilibrium
Route 3	0	S→A	20		R3→R1	-24	(No)	Equilibrium
		A→B	1	41		24		
		B→E	20		R3→R2	-24	(No)	

MONASH University


	Cars	Road	Cost	Total
Route 1	100	S→A	30	75
		A→E	45	75
Route 2	100	S→B	45	75
		B→E	30	75
Route 3	200	S→A	30	
		A→B	1	61
		B→E	30	


	Cars	Road	Cost	Total	Switch	Saved	Choose	
Route 1	100	S→A	30	75	R1→R2	0	(No)	
		A→E	45	75	R1→R3	14	(Yes)	Not
Route 2	100	S→B	45	75	R2→R1	0	(No)	User
		B→E	30	75	R2→R3	14	(Yes)	
Route 3	200	S→A	30		R3→R1	-4	No	Equilibrium
		A→B	1	61			No	
		B→E	30		R3→R2	-4	Νο	

	Cars	Road	Cost	Total	
Route 1	0	S→A	40	05	
		A→E	45	85	
Route 2	0	S→B	45	05	
		B→E	40	85	
Route 3	400	S→A	40		
		A→B	1	81	
		B→E	40		



	Cars	Road	Cost	Total	Switch	Saved	Choose	
Route 1	0	S→A	40	05	R1→R2	0	(No)	
		A→E	45	85	R1→R3	4	(Yes)	
Route 2	0	S→B	45	05	R2→R1	0	(No)	User
		B→E 40	40	85	R2→R3	4	(Yes)	Equilibrium
Route 3	400	S→A	40		R3→R1	-4	No	•
		A→B	1	81			No	
		B→E	40		R3→R2	-4	Νο	

Braess' Paradox

Without New Road

Long Term Traffic Pattern User Equilibrium Every journey has time **65**

With New Road
Carsl¹⁰
Start
X5
A00 cars
Carsl¹⁰
End
Carsl¹⁰
Carsl¹⁰
End

Long Term Traffic Pattern User Equilibrium Every journey has time **81**

Lesson for non-mathematical decision makers

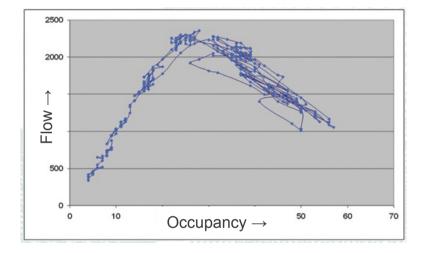
Adding new infrastructure doesn't necessarily relieve congestion –

sometimes it can make things worse!

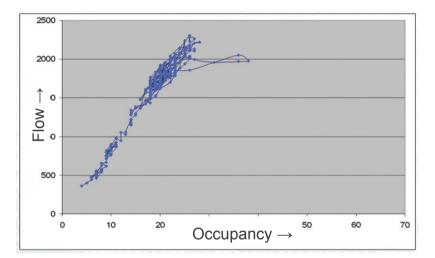
We could use the transport network we have, to make journeys quicker for everyone.

- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Integrated Freight Transport
- Automated vehicle control

Improving Signals at Traffic Lights



Impact of Monash Ramp Signals



Impact of Monash Ramp Signals

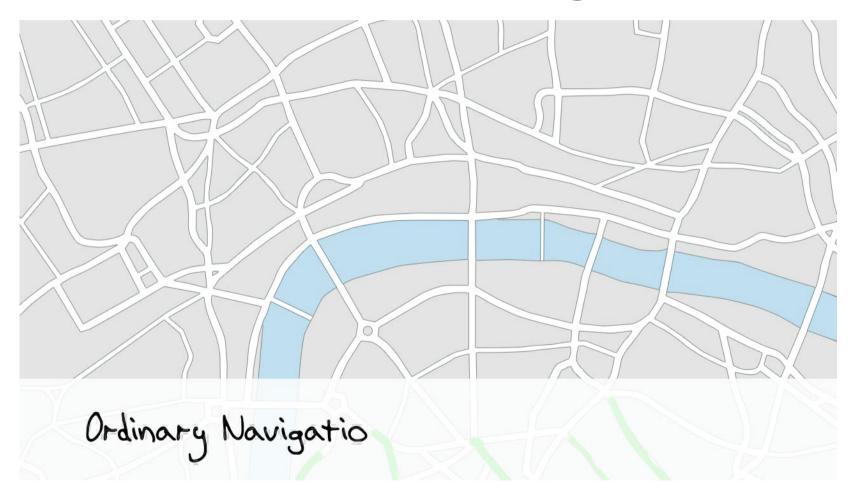
Monash Freeway October 2007

Monash Freeway October 2008

Crashes reduced by 30%

Average travel speeds increased by 25.9% from 48.9 km to 66 km/h in peak hour traffic

Veh/hr/lane capacity increased from 1500 towards 2000



We could use the transport network we have, to make journeys quicker for everyone.

- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Integrated Freight Transport
- Automated vehicle control

Coordinated Vehicle Routing

Coordinated Vehicle Routing

- Notify the coordinated navigation system when you start a journey
- The system knows where it has sent others cars and sends yours a different route
- Claimed results show that, on average, cars taking Greenway routes make it to their destination twice as fast and use up to 20 percent less fuel.
- About 10% of drivers in a city would need to have it running for it to work optimally.

We could use the transport network we have, to make journeys quicker for everyone.

- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Automated vehicle control
- Integrated Freight Transport

Improved Public Transport

Two big reasons for public transport

- Reduce congestion
- Reduce pollution

Curitiba, Brazil

- The Bus Rapid Transport System plays a large part in making this a livable city.
- The buses run frequently—some every 90 seconds—and reliably
- the stations are convenient, comfortable, and attractive.

Consequently, Curitiba has one of the most heavily used, yet low-cost, transit systems in the world.

Improved Public Transport

The problem

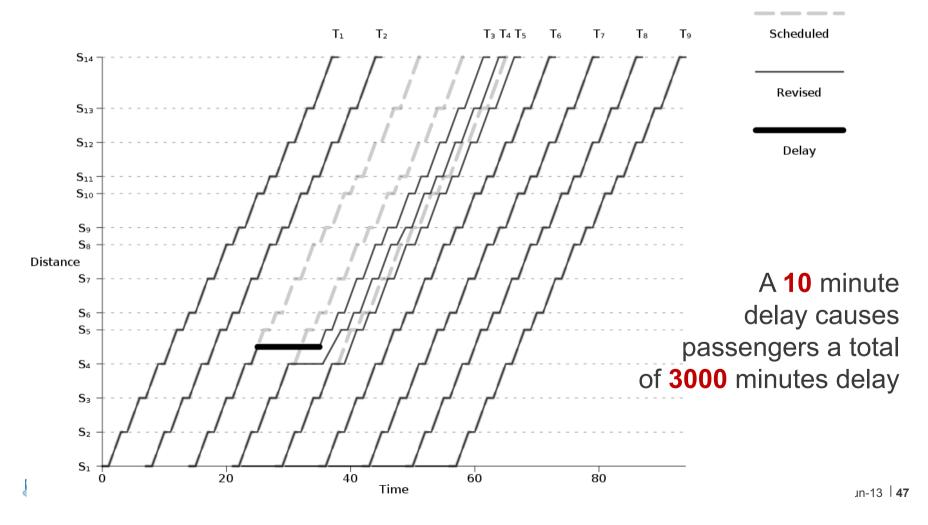
The Pollution Cost of Congestion

MONASH University

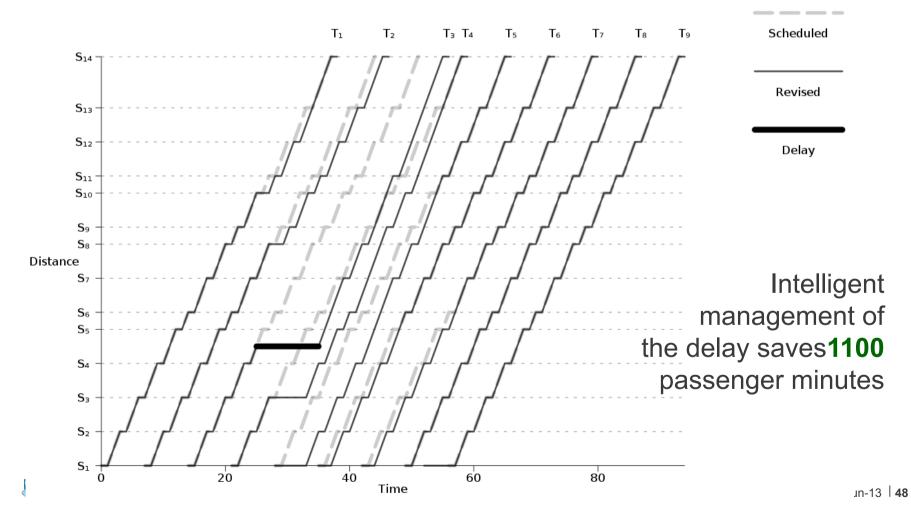
Maths of Transport Networks

Improved Public Transport Estimates for Melbourne from BZE

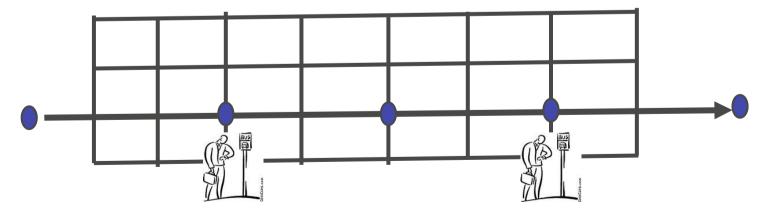
- BZE has outlined a coherent bus network covering Melbourne
- Buses come every 10 minutes at every stop
- This would only need a **doubling** of the current bus fleet
- If public transport increased from 10% to 20% of trips in Melbourne
- This would save 200,000,000 litres of fuel per year
- This translates to 500,000 tons of CO2 per year



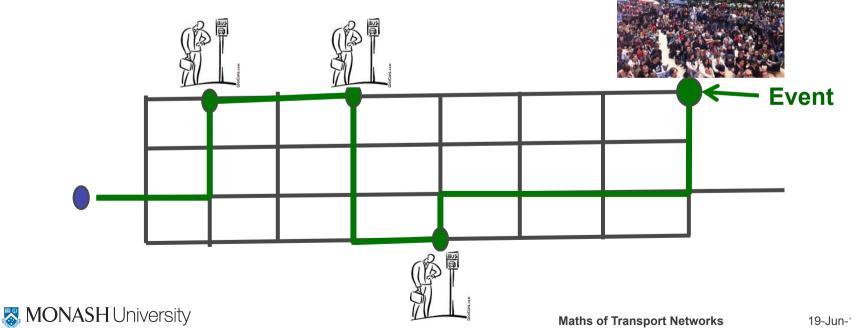
Improved Public Transport


- If all users specified when and where they wanted to go
 - trains and buses could be delayed when passengers need a connection
 - when a connection is missed, bus and train schedules could be adapted to minimise passenger disruption
 - each passenger would be advised of their new route

Minimising Passenger Disruption on the Sandringham Line



Minimising Passenger Disruption on the Sandringham Line


Improved Public Transport

- If all users specified when and where they wanted to go
 - currently bus request stops
 - instead some bus routes could require passengers to communicate their request

Improved Public Transport

- If all users specified when and where they wanted to go
 - currently bus request stops
 - instead some bus routes could require passengers to communicate their request

We could use the transport network we have, to make journeys quicker for everyone.

- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Automated vehicle control
- Integrated Freight Transport

Vehicle Communication

- Vehicle Communication Supports Safety
 - "Vehicles that don't crash" (University of Michigan)
 - Address approximately 80% of the crash scenarios

• Vehicle to Vehicle Warnings

- merging trucks,
- cars in the driver's blind side,
- a vehicle ahead brakes suddenly.
- Vehicle to Roadside
 - entering school zone
 - workers are on the side of the road
 - upcoming traffic light is about to change.

Vehicle Communication

We could use the transport network we have, to make journeys quicker for everyone.

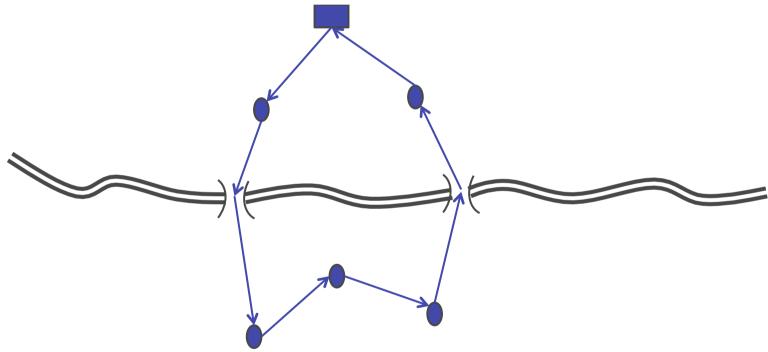
- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Automated vehicle control
- Integrated Freight Transport

Automated Vehicle Control

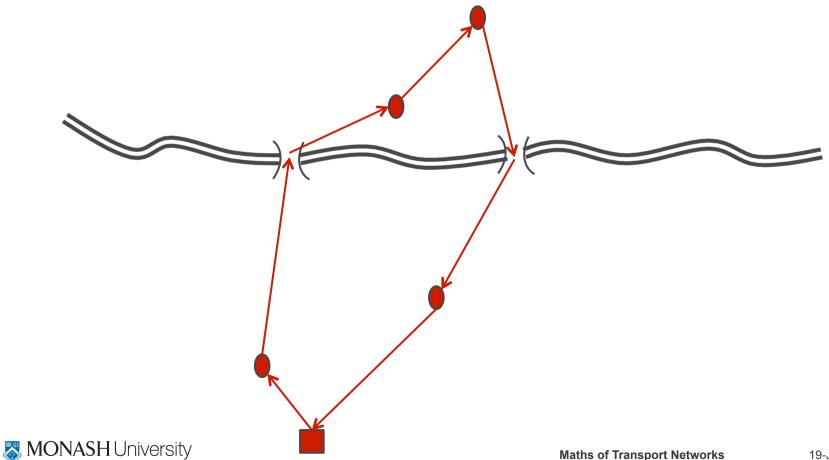
Platooning

Automated Vehicle Control

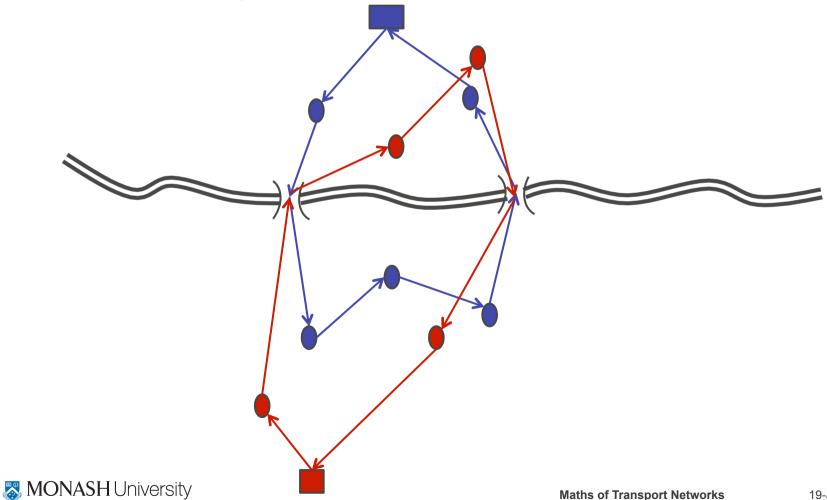
• Individual



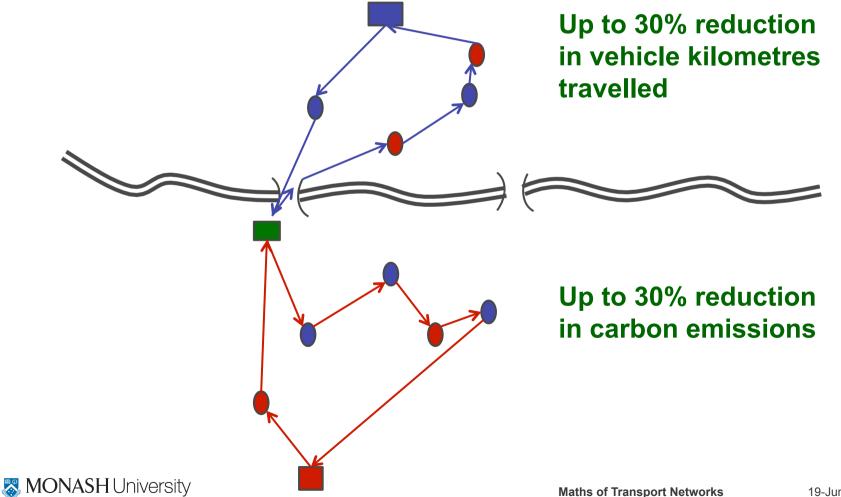
We could use the transport network we have, to make journeys quicker for everyone.


- Improved signals at traffic junctions
- Coordinated vehicle routing
- Improved public transport
- Communication
 - vehicle to vehicle
 - vehicle to roadside
- Automated vehicle control
- Integrated Freight Transport

Travelling Salesman Solution



Another Travelling Salesman Solution



Two Travelling Salesman Solutions

19-Jun-13 | **60**

City Logistics Solution

Cheap Solutions to the Transport Problem

- Improved signals at traffic junctions 20%
- Coordinated vehicle routing 20%
- Improved public transport
- Communication
- Automated vehicle control
- Integrated Freight Transport

- 50%

-10%

- 30%
- 30%

Cheap Solutions to the Transport Problem

- Improved signals at traffic junctions 20% on freeways
- Coordinated vehicle routing
- Improved public transport
- Communication
- Automated vehicle control
- Integrated Freight Transport

- 20% cars on urban roads
- -10% cars on urban roads
- 50% at traffic junctions
- 30% on multi-lane roads
- 30% freight on urban roads

Cheap Solutions to the Transport Problem

- Improved signals at traffic junctions 20% on freeways
- Coordinated vehicle routing
- Improved public transport
- Communication
- Automated vehicle control
- Integrated Freight Transport

- 20% cars on urban roads
- -10% cars on urban roads
- 50% at traffic junctions
- 30% on multi-lane roads
- 30% freight on urban roads

Total potential reduction on urban roads:

(Freight*0.7 + Cars*0.8*0.9) / (Freight+Cars) = 0.7

Congestion could be reduced to 2/3 of its current level