
Fast Node Overlap Removal — Addendum
Technical Report∗, January 2006

Tim Dwyer1, Kim Marriott1, and Peter J. Stuckey2

1 School of Comp. Science & Soft. Eng., Monash University, Australia
{tdwyer,marriott}@mail.csse.monash.edu.au

2 NICTA Victoria Laboratory
Dept. of Comp. Science & Soft. Eng., University of Melbourne, Australia

pjs@cs.mu.oz.au

Abstract. This document highlights an oversight in our recent paper
on a method for node overlap removal [1, 2]. The error, based on an in-
completed specified invariant, occurs in the algorithm satisfy VPSC and
leads to a rarely occurring case where not all constraints are satisfied. We
give the required additions to the algorithm to obtain correct behaviour,
revise the worst case complexity theorem and reproduce the experimen-
tal performance data. While the worst case complexity is O(n2) we show
that for typical input the performance is O(n log n) and this is reflected
by the new experimental results.

Keywords: graph layout, constrained optimization, separation constraints

1 Introduction

Our recent paper [1] details an algorithm for removing overlap between rect-
angles, while attempting to displace the rectangles by as little as possible. The
algorithm is primarily motivated by the node-overlap removal problem in graph
drawing. That is, many graph drawing algorithms treat nodes as points with
zero width and height so that, after a layout is found, if the nodes have labels or
associated graphics the layout must be adjusted to remove any overlaps. The al-
gorithm treats x- and y-dimensions separately, each as an instance of the variable
placement with separation constraints (VPSC) problem as detailed below. The
method for solving the VPSC problem to optimality is described in two parts.
The Satisfy VPSC procedure finds a solution in which all overlap is removed,
but which may not necessarily be optimal. The Solve VPSC algorithm uses Sat-
isfy VPSC to find an initial feasible solution, and then refines the arrangement
until an optimal solution is found. The problem described and corrected in this
paper occurs in Satisfy VPSC where the algorithm, as originally described, could
potentially produce infeasible solutions.

The problem stems from an erroneous assumption that, since variables were
being processed left to right (while solving in the x-dimension) in a partial order
determined by the directed acyclic graph of separation constraints, once a vari-
able was placed no other variables upon which its constraints were dependant

would be moved again. The algorithm relied on this assumed invariant to main-
tain heap data structures of incoming constraints to blocks of variables. That is,
the heaps required that the order of relative slackness of incoming constraints
to each block be preserved so that the topmost constraint on each heap would
always be the most violated. The actual situation turns out to be slightly more
complicated. The revised invariant, upon which the modified algorithm depends,
is stated and proven below. The complete, correct satisfy VPSC algorithm is also
given and the statement of complexity modified. Finally, we compare experimen-
tal results for the new version of the algorithm with those from the original paper
and find that practical performance is not adversely affected.

2 The Satisfy VPSC Algorithm

In each pass of the node-overlap removal process we must solve the following
constrained optimization problem for each dimension:

Variable placement with separation constraints (VPSC) problem. Given
n variables v1, . . . , vn, a weight vi.weight ≥ 0 and a desired value vi.des1

for each variable and a set of separation constraints C over these variables
find an assignment to the variables which minimizes

∑n
i=1 vi.weight ×

(vi − vi.des)2 subject to C.

We can treat a set of separation constraints C over variables V as a weighted
directed graph with a node for each v ∈ V and an edge for each c ∈ C from
left(c) to right(c) with weight gap(c). We call this the constraint graph. We
define out(v) = {c ∈ C | left(c) = v} and in(v) = {c ∈ C | right(c) = v}. Note
that edges in this graph are not the edges in the original graph.

We restrict attention to VPSC problems in which the constraint graph is
acyclic and for which there is at most one edge between any pair of variables. It
is possible to transform an arbitrary satisfiable VPSC problem into a problem
of this form and our generation algorithm will generate constraints with this
property.

Since the constraint graph is acyclic it imposes a partial order on the vari-
ables: we define u �C v iff there is a (directed) path from u to v using the
edges in separation constraint set C. We will make use of the function to-
tal order(V ,C) which returns a total ordering for the variables in V , i.e. it returns
a list [v1, . . . , vn] s.t. for all j > i, vj 6�C vi.

Figure 1 lists the basic algorithm for finding a solution to the VPSC problem
such that the separation constraints are satisfied and the variable placement is
“close” to optimal. It takes as input a set of separation constraints C and a
set of variables V . The algorithm works by merging variables into larger and
larger “blocks” of contiguous variables connected by a spanning tree of active
constraints, where a separation constraint u + a ≤ v is active if, for the current
position for u and v, u + a = v.

1 vi.des is set to x0
vi or y0

vi for each dimension, as used in generate Cno
{x|y}.

2

procedure satisfy VPSC(V ,C)
timeCtr ← 0
[v1, . . . , vn]← total order(V, C)
for i ∈ 1 . . . n do

merge left(block(vi))
endfor

return [v1 ← posn(v1), . . . , vn ← posn(vn)]

procedure block(v)
let b be a new block s.t.

b.vars ← {v}
b.nvars ← 1
b.posn ← v.des
b.wposn ← v.weight × v.des
b.weight ← v.weight
b.active ← ∅
b.in← newQueue()
b.time← timeCtr ← timeCtr + 1
for c ∈ in(v) do

time(c)← timeCtr
add(b.in, c)

endfor
block [v]← b
offset [v]← 0

return b

procedure merge left(b)
while violation(top(b.in)) > 0 do

c← top(b.in)
removeTop(b.in)
bl← block[left(c)]
if bl.in =null then

setup in constraints(bl)
endif
distbltob← offset [left(c)] + gap(c)

−offset [right(c)]
if b.nvars > bl.nvars then

merge block(b, c, bl,−distbltob)
else

merge block(bl, c, b, distbltob)
b← bl

endif
endwhile

return

procedure merge block(p, c, b, distptob)
p.wposn ← p.wposn + b.wposn−

distptob × b.weight
p.weight ← p.weight + b.weight
p.posn ← p.wposn/p.weight
p.active ← p.active ∪ b.active ∪ {c}
for v ∈ b.vars do

block [v]← p
offset [v]← distptob + offset [v]

endfor
p.vars ← p.vars ∪ b.vars
p.nvars ← p.nvars + b.nvars
timeCtr ← timeCtr + 1
top(p.in)
top(b.in)
p.in ← merge(p.in, b.in)
b.time← timeCtr

return

Fig. 1. Algorithm satisfy VPSC(V, C) to satisfy the Variable Placement with Separa-
tion Constraints (VPSC) problem

3

procedure greater than(c,d)
vc ← violation(c)
if block[left(c)].time > time(c)

or block[left(c)] = block[right(c)]
then

vc ←∞
endif
vd ← violation(d)
if block[left(d)].time > time(d)

or block[left(d)] = block[right(d)]
then

vd ←∞
endif

return vc > vd

procedure top(heap)
outOfDate ← ∅
while not empty(heap) do

c← heap.root
l← block[left(c)]
r ← block[right(c)]
if l = r then

removeTop(heap)
else if l.time > time(c) then

removeTop(heap)
outOfDate ← outOfDate ∪ {c}

else
break

endif
endwhile
for c ∈ outOfDate do

time(c)← timeCtr
insert(heap, c)

endfor
return heap.root

Fig. 2. New procedures for handling the constraint pairing heaps.

We represent a block b using a record with the following fields: vars, the set
of variables in the block; nvars, the number of variables in the block; active, the
set of constraints between variables in the block which form the spanning tree
of active constraints; in, which (essentially) contains the set of constraints {c ∈
C | right(c) ∈ b.vars and left(c) 6∈ b.vars}; out, the set of out-going constraints
defined symmetrically to in; posn, the position of the block’s “reference point”;
wposn, the sum of the weighted desired locations of variables in the block; and
weight, the sum of the weights of the variables in the block. In this new version
of the algorithm we have added the field time which indicates when the set in
was last examined or modified.

In addition, the algorithm uses two arrays blocks and offset indexed by vari-
ables where block [v] gives the block of variable v and offset [v] gives the dis-
tance from v to its block’s reference point. Using these we define the function
posn(v) = block [v].posn + offset [v] which gives the current position of variable
v.

The constraints in the field b.in for each block b are stored in a priority
queue such that the function top(q) (see Figure 2) always returns the most
violated contraint in the queue q where violation(c) = posn(left(c)) + gap(c) −
posn(right(c)). We explain the implementation of these queues below.

The main procedure, satisfy VPSC, processes the variables based on a total
order induced from a topological sort of the constraint graph. At each stage the
invariant is that we have found an assignment to v1, .., vi−1 which satisfies the
separation constraints. We process vertex vi as follows. First we assign vi to its

4

own block, created using the function block and we place this block at vi.des.
Of course the problem is that some of the “in” constraints may be violated.
We check for this and find the most violated constraint c. We then merge the
two blocks connected by c using the function merge block. This merges the two
blocks into a new block with c as the active connecting constraint. We repeat
this until the block no longer overlaps the preceding block, in which case we have
found a solution to v1, .., vi.

At each step we place the reference point b.posn for each block at its optimum
position, i.e. the weighted average of the desired positions:∑k

i=1 vi.weight× (offset [vi]− vi.des)∑k
i=1 vi.weight

In order to efficiently compute the weighted arithmetic mean when merging two
blocks we use the fields wposn, the sum of the weighted desired locations of
variables in the block and weight the sum of the weights of the variables in the
block.

We use four queue functions: newQueue() which returns a new queue, add(q, c)
which inserts the constraint c into the queue q, top(q) which returns the con-
straint in q with maximal violation, remove(q) which deletes the top constraint
from q, and merge(q1, q2) which returns the queue resulting from merging queues
q1 and q2. There are two special conditions that our queues must handle. The
first is that some of the constraints in b.in may be internal constraints, i.e. con-
straints which are between variables in the same block. Such internal constraints
are removed from the queue when encountered by top(q). The other condition
is that when a block is moved, violation for each of the incoming and outgoing
constraints changes value. Therefore to avoid a complete scan of all incoming
constraints to find the most violated we take advantage of how blocks move rel-
ative to each other to maintain lazily updated priority queues based on pairing
heaps [3] with efficient support for the above operations. The operation of these
queues is dependant on the following conditions.

Lemma 1. Let u + d ≤ v be a constraint over variables u and v. Let a =
block[u], b = block[v] and let the constraint between u and v be the most violated
constraint in b.in. Then, for any w ∈ b.vars, if pw = posn(w) before the merge
and p′w = posn(w) after the merge, then p′w > pw. Symmetrically, for any m ∈
a.vars, p′m < pm

Proof. All variables in a.vars and b.vars are offset by a fixed amount from their
reference positions a.posn and b.posn respectively. We can therefore W.O.L.G.
rewrite the constraint as a.posn + d ≤ b.posn. In the merge block procedure we
obtain a new position p for the merged block as the weighted average position
s.t. p · (a.weight+ b.weight) = a.weight ·a.posn+ b.weight · (b.posn−d). For the
constraint to be violated before the merge we must have that b.posn−d < a.posn.
Combining either side of this inequality with the expression above we are able
to eliminate the sum of weights and find that p > b.posn − d and p < a.posn.
Thus, variables in the block at the RHS of the constraint must increase in value
and those on the LHS will decrease. ut

5

Lemma 2. Given the call merge left(block(v)) (i.e. the first call to merge left
for block[v]) for some variable v ∈ V with position pv = posn(v) prior to the call
and subsequent position p′v, p′v ≥ pv. Conversly, for any variable u ∈ V, u 6= v
with position pu prior to merge left(block(v)) and subsequent position p′u, p′u ≤
pu.

Proof. Since merge left only corrects violated constraints incoming to the argu-
ment block, p′v > pv by Lemma 1 if such constraints exist or p′v = pv otherwise.
Again, since we only merge across incoming constraints, any u where u 6�C v
or u �C v where there is unsufficient violation in the constraints in the path
from u to v for block[u] and block[v] to be merged, will be unaffected by the
call merge left(block(v)), so p′u = pu. If u �C v and constraints in this path
are violated, then when block[u] is first merged with block[v] it will be across a
constraint incoming to block[v] and so by Lemma 1 posn(u) must decrease. Such
a decrease in position for the variables in block[u] may lead to further violations
which must be corrected by some increase in position as merge left recurses,
however since all such constraints were satisfied prior to the initial call, subse-
quent increases must be smaller and hence the net effect is p′u < pu. ut

Theorem 1. Let c be the constraint at the top of the heap for block r with LHS
in block l 6= r. If time[c] > l.time then c is the most violated incoming constraint
of block r.

Proof. (Sketch) The max-heap condition that is (lazily) maintained by the pair-
ing heaps used in incoming constraint priority queues for each block is:

For any two constraints c, d in a particular heap, if c is positioned as the
parent of d then greater than(c, d) is true.

Block time stamps are updated when blocks are created or when a block is
merged. Thus, for some variable v any time posn(v) can change, block[v].time is
updated. Constraint time stamps are updated whenever constraints are placed
in a queue. When a block b on the right side of a constraint moves, the violation
of each constraint in b.in is changed by the same amount and the relative order
of constraints in the queue is not affected. However, a change in position of the
LHS of the constraint can happen independently to constraints incoming to the
RHS. But since we apply merge left to variables in an order due to a topological-
sort over the constraint DAG such a movement cannot be due to an initial call to
merge left and therefore, by Lemma 2 must be a decrease in position and hence a
decrease in the constraint’s degree of violation relative to the other constraints in
the RHS queue. Thus, it may be higher in the heap than it should be. However,
since it is decreased, if its parent satisfied the max-heap condition before the
change, that parent must still satisfy this condition. That is, the parent must
still be more violated than any of its children. The check time[c] > l.time tells
us that the LHS of c has not been moved since c was placed in the queue, that
the max-heap condition of c relative to its children must hold, and therefore if
c is the root of the heap, then it must be the most violated constraint in the
entire heap. ut

6

Thus, the procedure top in Figure 2 is able to obtain the most violated constraint
in the priority queue by removing constraints that fail the timestamp test until
a valid one is found. The out-of-date constraints are then reinserted into the
heap with an updated timestamp. After all are reinserted, the root of the heap
is returned as the most violated.

The last detail concerns the merging of constraint queues in the merge block
operation, see Figure 1. A pairing-heap merge operation simply compares the
roots of the two heaps, takes the maximum as the new root, and makes the other
heap a child of this root. To ensure our invariant holds after a merge we first
apply the top operation to each heap so that the roots are correct.

Theorem 2. Let θ be the assignment to the variables V returned by satisfy VPSC(V,C).
Then θ satisfies the separation constraints C.

Proof. (Sketch) The induction hypothesis is that after processing variable vi we
have found a solution θi to the variables Vi = {v1, . . . , vi} which satisfies the
constraints Ci = {c ∈ C | {end(c), in(c)} ⊆ Vi}.

Clearly this holds for the base case when i = 0.
Now consider vi+1. We will now iteratively construct the block b contain-

ing this variable. At each step we have the following invariant that the only
constraints in Ci+1 that may not hold are non-internal constraints in b.in, i.e.

{c ∈ Ci+1|in(c) ∈ b.vars ∧ out(c) 6∈ b.vars}.

Furthermore, we have that for all v ∈ Vi posn(v) = θi(v) if v 6∈ b.vars or if
v ∈ b.vars, posn(v) ≤ θi(v)

Clearly these hold when b contains only the variable vi+1 since because of
the total ordering Ci+1 \ Ci = in(vi+1).

Now consider a “merge” step in which the most violated non-internal con-
straint c ∈ b.in has been selected and bl is the block of left(c). Let b′ be the
block resulting from merging b and bl. Since the merge moves variables in b
and bl uniformly no internal constraint in either b or bl can become unsatisfied.
Furthermore since c is the most violated constraint between b and bl no other
constraint between the two can be violated once b and bl have been merged.
Since we place the variables at the weighted average of the desired values of the
variables we have that v ∈ b.vars, posn(v) ≤ θi(v). Thus since posn(v) = θi(v)
if v 6∈ b.vars, the only possibly violated constraints are non-internal constraints
in b′.

Theorem 3. The procedure satisfy VPSC(V,C) has amortized complexity O((|V |+
|C|) log |C|).

Proof. (Sketch) Computing the initial total order over the directed acyclic graph
of constraints takes O(|V |+ |C|) time with depth first search.

Pairing-heaps give amortized O(1) insert, findMin (top) and merge opera-
tions while remove is O(log m) (amortized) in m the size of the heap. Since
internal constraints may be merged into the heaps we may perform at most

7

m remove operations in eliminating them. Thus, maintenance of in and out
constraint queues in satisfy VPSC is O(m log m). Since each constraint cannot
appear more than once in the priority queues and since we do not reinsert any
constraints after removing them, we have m ≤ |C|.

The other potentially costly part of merging is copying the contents of blocks.
We perform at most n ≤ min(|C|, |V | − 1) merges since we can only merge as
many times as there are constraints and after |V | − 1 merges we are left with a
single block. Since we always copy the smaller block into the larger each variable
is copied up to log n times, the worst case occurring when merging equally sized
blocks for each merge — proof is by a standard recurrence relation. Thus, the
total cost of copying variables is |V | log n.

From the bounds on n and m we have that the outer-most for loop in sat-
isfy VPSC is within O((|C|+ |V |) log |C|) time which also subsumes the initial
cost of computing the total order.

3 Results

0

0.01

0.02

0.03

0.04

0.05

0.06

0 100 200 300 400 500 600 700 800 900

|V|

S
e

c
o

n
d

s

Fig. 3. Running times for overlap removal with satisfy vpsc.

Figure 3 gives running time results for overlap removal with satisfy vpsc ap-
plied to sets of randomly generated rectangles. The time includes constraint
generation time and three passes of satisfy vpsc — applied horizontally, then

8

vertically, then horizontally once more. We varied the number of rectangles be-
tween 10 and 1000, generated but adjusted the size of the rectangles to keep k
(the average number of overlaps per rectangle) appoximately constant (k ≈ 10).
Each size sample was run 100 times and the time shown at each point is the
mean.

References

1. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. In: Proceedings
of the 13th International Symposium on Graph Drawing (GD’05). Volume 3843 of
LNCS. (2006) 153–164

2. Dwyer, T., Marriott, K., Stuckey, P.: Fast node overlap removal. Technical Report
2005/175, Monash University, School of Computer Science and Software Engineering
(2005)

3. Weiss, M.A.: Data Structures and Algorithm Analysis in Java. Addison Wesley
Longman (1999)

9

