Vector and Line Quantization for Billion-scale Similarity
Search on GPUs

Wei Chen?, Jincai Chen®"* Fuhao Zou®*, Yuan-Fang Li¢, Ping Lu®",
Qiang Wang?®, Wei Zhao®

¢ Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and
Technology, Wuhan 430074, China
YKey Laboratory of Information Storage System of Ministry of Education, School of
Computer Science and Technology, Huazhong University of Science and Technology,
Wuhan 430074, China
¢School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan 430074,China
4 Faculty of Information Technology, Monash University, Clayton 3800, Australia

Abstract

Billion-scale high-dimensional approximate nearest neighbour (ANN) search
has become an important problem for searching similar objects among the
vast amount of images and videos available online. The existing ANN meth-
ods are usually characterized by their specific indexing structures, including
the inverted index and the inverted multi-index structure. The inverted index
structure is amenable to GPU-based implementations, and the state-of-the-
art systems such as Faiss are able to exploit the massive parallelism offered
by GPUs. However, the inverted index requires high memory overhead to
index the dataset effectively. The inverted multi-index structure is difficult

to implement for GPUs, and also ineffective in dealing with database with

*Corresponding author
Email addresses: jcchen@hust.edu.cn (Jincai Chen), fuhao_zou@hust.edu.cn
(Fuhao Zou)

Preprint submitted to Future Generation Computer Systems March 26, 2019

1

2

3

4

5

6

7

8

different data distributions. In this paper we propose a novel hierarchical
inverted index structure generated by vector and line quantization methods.
Our quantization method improves both search efficiency and accuracy, while
maintaining comparable memory consumption. This is achieved by reducing
search space and increasing the number of indexed regions.

We introduce a new ANN search system, VLQ-ADC, that is based on
the proposed inverted index, and perform extensive evaluation on two pub-
lic billion-scale benchmark datasets SIFT1B and DEEP1B. Our evaluation
shows that VLQ-ADC significantly outperforms the state-of-the-art GPU-
and CPU-based systems in terms of both accuracy and search speed. The
source code of VLQ-ADC is available at https://github.com/zjuchenwei/
vector-line-quantization.

Keywords: Quantization; Billion-scale similarity search; high dimensional

data; Inverted index; GPU

1. Introduction

In the age of the Internet, the amount of images and videos available
online increases incredibly fast and has grown to an unprecedented scale.
Google processes over 40,000 various queries per second, and handles more
than 400 hours of YouTube video uploads every minute [I]. Every day, more
than 100 million photos/videos are uploaded to Instagram, more than 300
million uploaded to Facebook, and a total of 50 billion photos have been

shared to Instagramﬂ As a result, scalable and efficient search for similar

https://www.omnicoreagency.com/instagram-statistics/

https://github.com/zjuchenwei/vector-line-quantization
https://github.com/zjuchenwei/vector-line-quantization
https://www.omnicoreagency.com/instagram-statistics/

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

images and videos on the billion scale has become an important problem and
it has been under intense investigation.

As online images and videos are unstructured and usually unlabeled, it
is hard to compare them directly. A feasible solution is to use real-valued,
high-dimensional vectors to represent images and videos, and compare the
distances between the vectors to find the nearest ones. Due to the curse of
dimensionality [2], it is impractical for multimedia applications to perform
exhaustive search in billion-scale datasets. Thus, as an alternative, many
approzimate nearest neighbor (ANN) search algorithms are now employed
to tackle the billion-scale search problem for high-dimensional data. Recent
best-performing billion-scale retrieval systems [3H8] typically utilize two main
processes: indexing and encoding.

To avoid expensive exhaustive search, these systems use index structures
that can partition the dataset space into a large number of disjoint regions,
and the search process only collects points from the regions that are closest to
the query point. The collected points then form a short list of candidates for
each query point. The retrieval system then calculates the distance between
each candidate and the query point, and sort them accordingly.

To guarantee query speed, the indexed points need to be loaded into
RAM. For large datasets that do not fit in RAM, dataset points are encoded
into a compressed representation. Encoding has also proven to be critical for
memory-limited devices such as GPUs that excel at handling data-parallel
tasks. A high-performance CPU like Intel Xeon Platinum 8180 (2.5 GHz,
28 cores) performs 1.12 TFLOP/s single precision peak performanceﬂ In

Zhttps://ark.intel.com/content/www/us/en/ark/products/120496/

https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html

33

34

35

36

37

38

39

40

a1

42

43

44

45

46

47

48

49

50

51

52

53

54

contrast, GPUs like NVdia Tesla P100 can provide up to 10T FLOP /s sin-
gle precision peak performanceﬂ, and are good choices for high performance
similarity search systems. Many encoding methods have been proposed, in-
cluding hashing methods and quantization methods. Hashing methods en-
code data points to compact binary codes through a hash function [9, [10],
and quantization methods, typically product quantization (PQ), map data
points to a set of centroids and use the indices of the centroids to encode the
data points [11, [12]. By hashing methods, the distance between two data
points can be approximated by the Hamming distance between their binary
code. By quantization methods, the Euclidean distance between the query
and compressed points can be computed efficiently. It has been shown in
the literature that quantization encoding can be more accurate than various
hashing methods |11}, 13, [14].

Jégou et al. [11] first introduced an index structure that is able to handle
billion-scale datasets effieciently. It is based on the inverted index structure
that partitions the high dimensional vector space into Voronoi regions for a
set of centroids obtained by a quantization method called vector quantization
(VQ) [15]. This system, called IVFADC, achieves reasonable recall rates in
several tens of milliseconds. However, the VQ-based index structure needs
to store a large set of full dimensional centroids to produce a huge number
of regions, which would require a large amount of memory.

An improved inverted index structure called the inverted multi-index

intel-xeon-platinum-8180-processor-38-bm-cache-2-50-ghz.html

‘https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCle-datasheet.

pdf

https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/120496/intel-xeon-platinum-8180-processor-38-5m-cache-2-50-ghz.html
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

v

78

79

(IMI) was later proposed by Babenko and Lempitsky [16]. The IMI is based
on product quantization (PQ), which divides the point space into several
orthogonal subspaces and clusters the subspaces into Voronoi regions inde-
pendently. The Cartesian product of regions in each subspace forms regions
in the global point space. The strength of the IMI is that it can produce a
huge number of regions with much smaller codebooks than that of the in-
verted index. Due to the huge number of indexed regions, the point space
is finely partitioned and each regions contains fewer points. Hence the IMI
can provide accurate and concise candidate lists with memory and runtime
efficiency.

However, it has been observed that for some billion-scale datasets, the
majority of the IMI regions contain no points [5], which is a waste of index
space and has a negative impact on the final retrieval performance. The rea-
sons for this deficiency is that the IMI learns the centroids independently on
the subspaces which are not statistically independent [7]. In fact, some con-
volutional neural networks (CNN) produce feature vectors with considerable
correlations between the subspaces [10], 17, [18].

The high level of parallelism provided by GPUs has recently been lever-
aged to accelerate similarity search of high-dimensional data, and it has been
demonstrated that GPU-based systems are more efficient than CPU-based
systems by a large margin [4,6]. Comparing to IMI structure, the inverted in-
dexing structure proposed by Jégou et al. [11] is more straightforward to par-
allelize, because the IMI structure depends on a complicated multi-sequence
algorithm, which is sequential in nature [4] and hard to parallelize.

To the best of our knowledge, there are two high performance systems

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

that are able to handle ANN search for billion-scale datasets on the GPU:
PQT [4] and Faiss [6]. PQT proposes a novel quantization method call line
quantization (LQ) and is the first billion-scale similarity retrieval system on
the GPU. Subsequently Faiss implements the idea of IVFADC on GPUs and
currently has the state-of-the-art performance on GPUs. We compare our
method against Faiss and two other systems in Section [3]

In this paper, we present VLQ-ADC, a novel billion-scale ANN similarity
search framework. VLQ-ADC includes a two-level hierarchical inverted in-
dexing structure based on Vector and Line Quantization (VLQ), which can
be implemented on GPU efficiently. The main contributions of our solution

are threefold.

1. We demonstrate how to increase the number of regions with memory
efficiency by the novel inverted index structure. The efficient indexing
contributes to high accuracy for approximate search.

2. We describe how to encode data points via a novel algorithm for high
runtime/memory efficiency.

3. Our evaluation shows that our system consistently and significantly
outperforms state-of-the-art GPU- and CPU-based retrieval systems
on both recall and efficiency on two public billion-scale benchmark

datasets with single- and multi-GPU configurations.

The rest of the paper is organized as follows. Section [2|introduces related
works on indexing with quantization methods. Section (3| presents VLQ, our
approach for approximate nearest neighbor (ANN)-based similarity search
method. Section [4] introduces the details of GPU implementation. Section

provides a series of experiments, and compares the results to the state of the

6

106

107

108

109

110

111

112

113

114

i

Ac

by

¥ o%
s
8
5

ceocoo
eoo
o
%
s

Y l 3o Fo o . 1‘ /////,
%g‘%’% Bysay f%%;gag B ‘o< Wl

b

a

4

d

(a) Vector Quantization. (b) Product Quantization. (c) Line Quantization.

Figure 1: Three different quantization methods. Vector and Product quantization methods
are both with k& = 64 clusters. The red dots in plot (a) and (b) denote the centroids and
the grey dots denote the dataset points in both plots. Vector quantization (a) maps the
dataset points to the closest centroids. Product quantization (b) performs clustering in
each subspace independently (here axes). In plot (¢), a 2-dimensional point = (red dot) is
projected on line I(c;, ¢;) with the anchor point ¢;(x) (black dot). The a,b,c denote the
values of || z —¢; ||%,]| # — ¢; || and || ¢; — ¢; ||* respectively. We use the parameter A
to represent the value of || ¢; — ¢;(x) || /¢ . The anchor point g;(x) can be represented by

¢;,c; and A. The distance from z to I(¢;, ¢;) can be calculated by a, b, c and A.

2. Related work

In this section, we briefly introduce some quantization methods and sev-
eral retrieval systems related to our approach. Table [I| summarizes the com-
mon notations used throughout this paper. For example, we assume that

X ={xy,...,ox} C RP is a finite set of N data points of dimension D.

2.1. Vector quantization (VQ)

In vector quantization [I5] (Figure|[l|a), a quantizer is a function g, that
maps a D-dimensional vector x to a vector ¢,(z) € C, where C is a finite

subset of R”, of k vectors. Each vector ¢ € C' is called a centroid, and C is

7

115

116

117

118

119

Table 1: Commonly used notations.

Notation Description

x;, D data points, their dimension and the number of data points
X, N a set of data points and its size, X = {zy,..., 2y} C RP

¢, s,l(c,s) centroids, nodes and edges

m encoding length

k the number of first-level centroids

n the number of edges of each first-level centroid

wq the number of first-layer nearest regions for a query

Q the portion of the nearest of the w - n second-level regions

Wy the number of second-level nearest regions for a query, wy =
a-wy-n

A a scalar parameter for line quantization

r displacement from data points to the approximate points

a codebook of size k. We can use Lloyd iterations [19] to efficiently obtain a
codebook C on a subset of the dataset. For a finite dataset, X, g,(z) induces

quantization error E':

E=Ylla—aqf) . (1)

TEX

According to Lloyd’s first condition, to minimize quantization error a

quantizer should map vector x to its nearest codebook centroid.

= i —c|. 2
¢o(w) = argmin ||z —c | (2)

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

Hence, the set of points X; = {2 € R” | q,(x) = ¢;} is called a cluster or
a region for centroid ¢;.

The inverted index structure based on VQ [I1] can split the dataset
space into k regions that correspond to the k centroids of the codebook.
Since the ratio of regions to centroids is 1:1, it requires a large amount of
space to store the D-dimensional centroids when £ is large. This would give
a negative effect on the performance of the retrieval system. Our hierarchical
index structure based on VLQ increase the ratio by n times, i.e., n times more
regions can be generated by our indexing structure with the same number of

centroids as the VQ based indexing structure.

2.2. Product quantization (PQ)

Product quantization (Figure[l] (b)) is an extension of vector quantization.
Assuming that the dimension D is a multiple of m, any vector # € R can be
regarded as a concatenation (z!,--- ™) of m sub-vectors, each of dimension
D/m. Suppose that C',--- , C™ are m codebooks of subspace R”/™ each
owns k D/m-dimensional sub-centroids. A codebook of a product quantizer

qp is thus a Cartesian product of sub-codebooks.

C=C'x---xC™ (3)

Hence the codebook C' contains a total of k™ centroids, each is a form of
c=(ct,--+,c™), where each sub-centroid ¢' € C? for i € M = {1,--- ,m}.
A product quantizer ¢, should minimize the quantization error £ defined in

Formula |1l Hence, for x € RP, the nearest centroid in codebook C is

0 (@) = (gp(z1), - gy (a™)), (4)

9

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

where ¢' is a sub-quantizer of ¢ and q;(x) is the nearest sub-centroid for
sub-vector ', i.e., the nearest centroid g,(z) for x is the concatenation of the
nearest sub-centroids for sub-vector '

The inverted multi-index structure (IMI) applies the idea of PQ for
indexing and can generate k™ regions with m codebooks of k sub-centroids
each. The benefit of inverted multi-index is thus it can easily generate a much
larger number of regions than that of VQ-based inverted index structure with
moderate values of m and k. The drawback of IMI is that it produces a lot of
empty regions when the distributions of subspaces are not independent [5].
This will affect the system’s performance when handling datasets which have
significant correlations between different subspaces, such as CNN-produced
feature point dataset [5].

The PQ-based indexing structure later has been improved by OPQ [20]
and LOPQ [12]. OPQ make a rotation on dataset points by a global D x D
rotation matrix and LOPQ rotates the points which belong to the same cell
by a same local D x D rotation matrix to minimize correlations between two
subspaces [20]. OPQ and LOPQ can both improve the indexing efficiency of
PQ but slow down the query speed by a large margin as well.

Additionally, PQ can also be used to compress datasets. Typically each
sub-codebook of PQ contains 256 sub-centroids and each vector x is mapped

to a concatenation of m sub-centroids (le‘v -+), for j; is a value between

) im
1 and 256. Hence the vector x can be encoded into an m-byte code of
sub-centroid index (ji, - ,jm). With the approximate representation by
PQ, the Euclidean distances between the query vector and the large number

of compressed vectors can be computed efficiently. According to the ADC

10

155

156

157

158

159

160

161

162

163

164

165

procedure [I1], the computation is performed based on lookup tables.
ly =z P~y —g@) IP= D Iy =<, I7 (5)
i=1

where 3 is the ith subvector of a query 3. The Euclidean distances between
the query sub-vector y* and each sub-centroids céz can be precomputed and
stored in lookup tables that reduce the complexity of distance computation
from O(D) to O(m). Due to the high compression quality and efficient dis-
tance computation approach, P(Q is considered the top choice for compact

representation of large-scale datasets|3, [7, 12], [14], 20].

2.3. Line quantization (LQ)

Line quantization (LQ) [4] owns a codebook C of k centroids like VQ. As
shown in Figure |1f (¢), with any two different centroids ¢;,¢; € C, a line is
formed and denoted by I(c;,c;). A line quantizer ¢ quantizes a point z to

the nearest line as follows:

q(x) = arg min d(z,(c;, ¢j)), (6)

Z(Civcj)
where d(z,[(c;, ¢;)) is the Euclidean distance from x to the line {(¢;, ¢;), and
the set X;; = {z € RP|q(x) = I(c;,¢;j)} is called a cluster or a region for line
l(c;, ¢j). The squared distance d(x,(c;, ¢;)) can be calculated as following :
d(z,(ci,¢;))* = (L=XN) |z —ci [P+ =N [l ¢ — i | 0
+A o= |

Because the values of || x —¢; ||%, || z —¢; ||, || ¢; — ¢ ||* can be pre-computed

between x and all centroids, Equation [7] can be calculated efficiently. The

11

166

167

168

169

170

171

anchor point of z is represented by (1 — A) - ¢; + A - ¢j, where A is a scalar
parameter that can be computed as following:

P+l =il = Iz —c|I*)

ey —ei|?

|z —c¢

)\:O.5‘(

(8)

When = is quantized to a region of {(¢;, ¢;), then the displacement of from

l(c;, ¢j) can be computed as following:
ra(r) =2 = ((1=A)-c+A-¢). (9)

Here we regard I(c;, ¢;) and I(cj,¢;) as two different lines. So LQ-based
indexing structrue can produce k - (k — 1) regions with a codebook of k
centroids, The benefit of LQ-based indexing structure is that it can produce
many more regions than that of VQ-based regions. However it is considerably
more complicated to find the nearest line for a point x when k is large. So

we use LQ as an indexing approach with a codebook of a few lines.

Table 2: A summary of current state-of-the-art retrieval systems based on quantization
method. N is the size of the dataset X, m is the number of sub-vectors in product
quantizatino (PQ), k is the size of the codebook, and n is the number of second-level
regions. In the last column of each row, the first term is the complexity for encoding, and

the second term is the complexity for indexing.

System Index structure Encoding CPU/GPU Space complexity

Faiss [6] VQ PQ GPU O(N-m)+O(k- D)
Ivi-hnsw [7] 2-level VQ PQ CPU O(N -m)+ O(k- (D +n))
Multi-D-ADC [I6] IMI (PQ) PQ CPU ON-m)+0O(k-(D+k))
VLQ-ADC (our system) VLQ PQ GPU ON-m)+O(k- (D +n))

12

w2 2.4. The applications of VQ-based and P(Q)-based indexing structures for billion-

173 scale dataset

174 In this subsection we introduce several billion-scale similarity retrieval
s systems that apply VQ- or PQ-based indexing structure and encoded by
we PQ, and discuss their strengths and weaknesses.

177 All the systems discussed below are best-performing, state-of-the-art sys-
s tems for billion-scale high-dimensional ANN search. Their indexing structure
17 and encoding method are summarized in Table[2 Since all these systems em-
180 ploy the same encoding method based on PQ, we will mainly focus on their
11 indexing structures in the discussions below.

Faiss [6] is a very efficient GPU-based retrieval approach, by realizing
the idea of IVFADC [11] on GPUs. Faiss uses the inverted index based on
VQ [21] for non-exhaustive search and compresses the dataset by PQ. The
inverted index of IVFADC owns a vector quantizer ¢ with a codebook of k
centroids. Thus there are k regions for the data space. Each point z € X
is quantized to a region corresponding to a centroid by a V(Q quantizer g,.
The displacement of each point from the centroid of a region it belongs to is

defined as
re(z) =z — q(x), (10)
1.2 where the displacement r,(z) is encoded by PQ with m codebooks shared
183 by all regions. For each region, an inverted list of data points is maintained,
18a along with PQ-encoded displacements.

185 The search process of Faiss/TVFADC proceeds as follows:

186 1. A query point y is quantized to its w nearest regions, extracting a list

187 of candidates £. C X which have a high probability of containing the

13

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

204

205

206

207

208

209

210

211

nearest neighbor.

2. The displacement of the query point y from the centroid of each sub-
region is computed as 7,4(y).

3. The distances between r,(y) and PQ-encoded displacements in L. are
then computed according to Formula

4. Sort the list L. to be L, based on the distances computed above. The

first points in L, are returned as the search result for query point y.

Ivf-hnsw [7] is a retrieval system based on a two-level inverted index
structure. Ivf-hnsw first splits the data space into k regions like IVFADC.
Then each region is further split into several sub-regions that correspond to
n sub-centroids. Each sub-centroid of a region can be represented by the
centroid of the region and another centroid of a neighbor region. Assume
that each region has n neighbor regions, thus each region can be split into
n regions. Each data point is first quantized to a region and then further
quantized to a sub-region of the region. The displacement of each point from
the sub-centroid of a sub-region it belongs to is encoded by PQ. An inverted
list of data point is maintained for each sub-regions similar to IVFADC.

The search process of Ivf-hnsw proceeds as follows:

1. A query point y is quantized to its w first-level nearest regions, giving
w - n sub-regions.

2. Among the w-n sub-regions, y is secondly quantized to 0.5-w-n nearest
sub-regions, generating a list of candidates £, C X.

3. The displacement of the query point y from the sub-centroid of each

sub-region is computed as 7,(y).

14

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

4. The distances between r,(y) and PQ-encoded displacements in L. are

then computed according to Formula

5. The re-ordering process of Ivf-hnsw is similar to IVFADC/Faiss.

Multi-D-ADC [16] is based on the inverted multi-index which is cur-
rently the state-of-the-art indexing method for high-dimensional large-scale
datasets. An inverted multi-index of Multi-D-ADC usually owns a product
quantizer with two sub-quantizers ¢', ¢ for subspace RP/2, each of k sub-
centroids. A region in the D-dimensional space is now a Cartesian product
of two corresponding subspace regions. So the IMI can produce k? regions.
For each point z = (z!,2%) € X, sub-vectors 2!, 22 € RP/? are separately
quantized to subspace regions of ¢'(z!), ¢*(z?) respectively, and z is then
quantized to the region of (¢'(z'), ¢*(2?)) . The displacement of each point
x from the centroid (¢*(z'), ¢*(z?)) is also encoded by PQ, and an inverted
list of points is again maintained for each region.

The search process of Multi-D-ADC proceeds as follows:

1. For a query point y = (y',3?), The Euclidean distances of each of sub-
vectors y!,y? to all sub-centroids of ¢!, ¢* are computed respectively.
The distance of y to a region can be computed according to Formula
for m = 2.

2. Regions are traversed in ascending order of distance to y by the multi-
sequence algorithm [16] to generate a list of candidates L. C X.

3. The displacement of the query point y from the centroid (¢!, ¢?) of each
region is computed as 7,(y) as well.

4. The re-ordering process of Multi-D-ADC is similar to IVFADC /Faiss.

15

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

259

The VQ-based indexing structure requires a large full-dimensional code-
book to produce regions when k is large. The PQ-based indexing structure
are not suitable for all datasets, especially for those produced by convolu-
tional neural networks (CNN) [7]. The novel VQ-based indexing structure
proposed by Ivf-hnsw can produce more regions than the prior VQ-based
indexing structure. However its performance on the codebook of small size
is not good enough. We will discuss that in Sec/5] In comparison, our index-
ing structure is efficient with a small size of codebook which can accelerate
query speed and at the same time is suitable for any dataset irrespective of

the presence/absence of correlations between subspaces.

3. The VLQ-ADC System

In this section we introduce our GPU-based similarity retrieval system,
VLQ-ADC, that contains a two-layer hierarchical indexing structure based
on vector and line quantization and an asymmetric distance computation
method. VLQ-ADC incorporates a novel index structure that can index the
dataset points efficiently (Sec. [3.1)). The indexing and encoding process will
be presented in Sec. and the querying process is discussed in Sec. |3.3

Comparing with the existing systems above, One major advantage of our
system is that our indexing structure can generate shorter and more accu-
rate candidate list for the query point, which will accelerate query speed by
a large margin. Another advantage of our system is that the improved asym-
metric distance computation method base on PQ encoding method provide a
higher search accuracy. In the remainder of this section we will use Figure

to illustrate our framework. We recall that commonly used notations are

16

260

261

262

263

264

summarized in Table [1l.

VQ-based indexing structure VLQ-based indexing structure

Figure 2: A comparison of the indexing structure and search process of the VQ-based
indexing structure (left) and our VLQ-based indexing structure (right) on data points
(small blue dots) of dimension 2 (D = 2). The large red dots denote the (first-level)
same cell centroids in both figures. Left: The 4 shaded areas in the left figure represent
the first-level regions, one for each centroid, and they make up the areas that need to be
traversed for the query point ¢. Right: For each centroid in the right figure, n = 4 nearest
neighboring centroids are found. Thus the n-NN graph consists of all the centroids and
the edges (thick dashed lines) between them. Each first-level region in the right figure
consists of 4 second-level regions, each of which represent the data points closet to the
corresponding edge in the n-NN graph as denoted by the line quantizer ¢;. Given the
query point ¢ and parameter o = 0.5, only half of the second-level subregions (shaded in
blue) need to be traversed. As can be seen, VLQ allows search to process substantially

smaller regions in the dataset than a VQ-based approach.

3.1. The VLQ-based index structure

For billion-scale datasets with a moderate number of regions (e.g., 26)
produced by vector quantization (VQ), the number of data points in most

regions is too large, which negatively affects search accuracy. To alleviate

17

265

266

267

268

271

272

273

274

275

276

277

278

279

281

282

283

284

285

286

287

288

289

this problem, we propose a hierarchical indexing structure. In our structure,
each list is split into several shorter lists, i.e., each region is divided into
several subregions, using line quantization (LQ).

Our indexing structure is a two-layer hierarchical structure which consists
of two levels of quantizers. The first level contains a vector quantizer ¢,
with a codebook of k£ centroids. The vector quantizer ¢, partitions the data
point space X into k regions. The second level contains a line quantizer ¢
with an m-nearest neighbor (n-NN) graph. The n-NN graph is a directed
graph in which nodes are first-level centroids and edges connect a centroid
to its m nearest neighbors. In each first-level region, the line quantizer ¢
then quantizes each data point to the closest edge in the n-NN graph, thus
splitting the region into n second-level regions.

As an example, in the right side of Figure [2| given n = 4, the top left
first-level region is further divided into 4 subregions by ¢;, enclosed by solid
lines and denoted 1, 2, 3, and 4. Each subregion contains all the data points
that are closest to a given edge of the n-NN graph, as calculated by the line
quantization ¢;.

Training the codebook. We use Lloyd iteration in the fashion of the
Linde-Buzo-Gray algorithm [15] to obtain the codebook of the VQ quantizer
¢v- The n-NN graph is then built on the centroids of the codebook.

Memory overhead of indexing structure. One advantage of our
indexing structure is its ability to produce substantially more subregions with
little additional memory consumption. Same as VQ, our first layer codebook
needs k- D - sizeof(float) bytes. In addition, for second-level indexing, for

each of the k first-layer centroids, the n-NN graph only needs to store (1)

18

20 the indices of its n nearest neighbors and (2) the distances to its n nearest
201 neighbors, which amounts to k-n-(sizeof(int)+sizeof(float)) bytes. Note
22 we do not need to store the full-dimensional points. For a typical values of
03k = 210 centroids and n = 32 subcentroids, the additional memory overhead
2a for storing the graph is 216 - 32 - (32 + 32) bits (16 MB), which is acceptable
205 for billion-scale datasets.

206 One way to produce the subregions is by utilizing vector quantization
207 (VQ) again in each region. However, that would require storing full-dimensional
208 subcentroids and thus consume too much additional memory. For the same
20 configuration (k = 2'¢ centroids and n = 32 subcentroids) and a dimension
s0 of D = 128, the additional memory overhead for a VQQ-based hierarchical in-
;0 dexing structure would be 2'%-32-128 - sizeof(f1loat) additional bits (1,024
32 MB). As can be seen, our VLQ-based hierarchical indexing structure is sub-
03 stantially more compact, only consuming 1/64 of the memory required by a
s VQ-based approach for the second-level codebook.

305 We note that the PQ-based indexing structure requires O(k - (D + k))
w6 memory to maintain the indexing structure (Table [2]), which is memory in-
w7 efficient as it is quadratic in k. This is a limitation of PQ-based indexing
w8 structure. In contrast, the space complexity of our hierarchical indexing
20 structure is O(k - (D + n)), where typically n < k (n is much smaller than

20 k), hence making our index much more memory efficient.

su 3.2, Indexing and encoding

312 In this subsection, we will describe the indexing and encoding process
213 and summarize both processes in Algorithm [I] and [2] respectively.

314 For our two-level index structure, the indexing process comprises two

19

315

316

317

318

Algorithm 1 VLQ-ADC batch indexing process

1: function INDEX([z1,...,2yN])

2: fort+ 1: N do

3: zy + qy(z) = argmin .o || 2 — ¢ |2 // VQ
4: S; =n-argmin,.. || c—¢ ||*> // Construct the n-NN graph
5: Ty > @) = argming, s,;),s,;e5, AT, 1(c;, 8i5)) // LQ
6: end for

7. end function

different quantization procedures, one for each layer. Similar to the IVFADC
scheme, each dataset point is quantized by the vector quantizer ¢, to the first-
level regions surrounded by the dotted lines in Figure 2] These regions form
a set of inverted lists as search candidates.

We describe the second-level indexing process as follows. Let X* be a
region of {z1,...,x;} that corresponds to a centroid ¢;, for i € {1,... ,k}.
In constructing the n-NN graph, let S; = {s;1,...,sin} denote the set of the
n centroids closest to ¢; and [(c;, s;;) denote an edge between ¢; and s;;, for
j €{1,...,n}. The points in X* are quantized to the subregions by a line
quantizer ¢, with a codebook &; of n edges {l(c;, $i1), - -, 1(¢i, Sin) }. Thus the
region X is split into n subregions {X},..., X!} and each point z € X7 is
quantized to a second-level subregion X; So the entire space X are divided

into k X n second-level subregions.
X ={zeX'|qx)=1(c,s;y)} forallie{l.. k} (11)

Each data point in the dataset X is assigned to one of the k-n cells. When

the data point z is quantized to the sub-region of edge [(c;, s;;), according to

20

319

320

321

322

323

324

325

326

Algorithm 2 VLQ-ADC batch encoding process

1: function ENCODE([z1,...,xyN])

2: fort+ 1: N do

3: To(x) = 2 — (1= Nij) - e + Nij - 845) // Equation
4: let rp = 1y, (z¢) // displacement
5: re=1[rf,...,r" // divide r; into m subvectors
6: for p<+1:m do

T:) = cj, = argming, eor || 77 — ¢, ||?

8: end for

9: Codey = (J1, .-, jm)

10: end for

11: end function

the Equation [9 and [§] the displacement of = from the corresponding anchor

point can be computed as following:

o (2) =2 — (1 = Agj) - ¢ + Aij - 5i;), where (12)
— ..]2 — —_ |12 = | P
WS lz—si; "= llz—ql : | sij —ci lI?) (13)
| sij —a |

As shown in Algorithm [2] the value of r,,(z) is first computed by Equa-
tion [12] and encoded into m bytes using PQ [I1]. The PQ codebooks are
denoted by C*, ..., C™, each containing 256 sub-centroids. The vector r, ()
1 m

is mapped to a concatenation of m sub-centroids (c; ,--- ¢/
J1 Jm

), for j; is a
value between 1 and 256. Hence the vector r,, () is encoded into an m-byte
code of sub-centroid index (ji,--- ,jm). In Figure [Ic), we assume that ¢;

is the closest centroid to x and can observe that the anchor point of each

21

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

point x is closer to x than ¢;. So the dataset points can be encoded more
accurately with the same code length. This will improve the recall rate of
search, as can be seen in our evaluation in Section

From Equation , the value of \;; for each point can be computed. it
is a float type value and requires 4 bytes for each data point. To further
improve memory efficiency, we quantize it into 256 values and encode it by a

byte. Empirically we find that the encoded A;; still exhibits high recall rates.

3.3. Query

One important advantage of our indexing structure is that at query time,
a specific query point only needs to traverse a small number of cells whose
edges are closest to the query point, as shown in the right side of Figure 2]
There are three steps for query processing: (1) region traversal, (2) distance

computation and (3) re-ranking.

3.3.1. Region traversal

The region traversal process consists of two steps: first-level regions
traversal and second-level regions traversal. During first-level regions traver-
sal, a query point y is quantized to its w; nearest first-level regions, which
correspond to w; - n second-level regions produced by quantizer ¢,. The
subregions traversal is performed within only the w; - n second-level regions.
Moreover, y is quantized again to ws nearest second-level regions by quan-
tizer ¢;. Then the candidate list of y is formed by the data points only within
the wy nearest second-level regions. Because the ws second-level regions is
obviously smaller than the w, first-level regions, the candidate list produced

by our VLQ-based indexing structure is shorter than that produced by the

22

351

352

353

354

355

356

357

358

359

VQ-based indexing structure. This will result in a faster query speed.

We use parameter o to determine the percentage of w; - n second-level
regions to be traversed give a query, such that ws = a - w; - n. We conduct a
series of experiments in Section [5| to discuss the performance of our system

with different values of «.

3.3.2. Distance computation

Distance computation is a prerequisite condition for re-ranking. In this
section, we describe how to compute the approximate distance between a
query point y to a candidate point z. According to [I1], the distance from y

to x can be evaluated by asymmetric distance computation (ADC) as follows:

Iy = ai(@) = g2(z — aa(2)) | (14)

where ¢i(x) = (1 — Xij) - ¢; + Nij - 855 and go(- - -) is the PQ approximation of
the x; displacement.

Expression [14] can be further decomposed as follows [3]:

ly—aq(@) I+ 1 @) 117 +2(a =), @))—

2(y, q2(-).

(15)

where (-, -) denotes the inner product between two points.
If (¢, si5) is the closest edge to x, i.e., ¢1(x) = (1 — Njj)ci + NijSij, Ex-

pression [15 can be transformed in the following way:

[y = (1= Aij)es + Aigsig) I+ | go-) |I” +

te?gl te;r,n2 (16)
2(1 = Ay) {ci, @2 -+)) +2X5 {55, @2(- -+) = 2(y, g2 (- -+) -
term3 h tev4 3 te?;5

23

According to Equation [7] term1 in Expression [I6] can be computed in the

following way:

| y—((1 = Xj)ei + Aigsig) IP= (L= ly — e [P+
—_——

term6 (17>
()\12] —)‘U) || Ci — Sij H2 +)\¢j || Y — Sij ||2 .
term7 term8&

360 In Expression [16] and Equation some computations can be done in

i1 advance and stored in lookup table as follows:

362 e All of term2, term3, term4 and term7 are independent of the query.
363 They can be precomputed from the codebooks. Term2 is the squared
364 norm of the displacement approximation and can be stored in a table
365 of size 256 x m. Term?7 is the square of the length of the edge that the
366 point x belongs to and is already computed in the codebook learning
367 process. Term3 and term4 are scalar products of the PQ sub-centroids
368 and the corresponding first-level centroid subvectors and can be stored
369 in a table of size k£ x 256 x m.

370 e Term6 and term8 are the distances from the query point to the first-
371 layer centroids. They are the by-product of first-layer traversal.

372 e Termb is the scalar product of the PQ sub-centroids and the corre-
373 sponding query subvectors and can be computed independently before
374 the search. Its computation costs 256 x D multiply-adds [6].

315 The proposed decomposition is used to simplify the distance computation.

s With the lookup tables, the distance computation only requires 256 x D
7 multiply-adds and 2 x m lookup-adds. In comparison, the classic IVFADC

3

J

24

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

distance computation requires 256 x D multiply-adds and m lookup-adds
[6]. The additional m lookup-adds in our framework improves the distance
computation accuracy with a moderate increase of time overhead. We will

discuss this trade-off in detail in Section [Bl

3.3.3. Re-ranking

Re-ranking is a step of re-sorting the candidate list of data points accord-
ing to the distances from candidate points to the query point. It is the last
step of the query process. The purpose of re-ranking is to find out the near-
est neighbours to the query point among the candidate points by distance
comparing.We apply the fast sorting algorithm of [6] to our re-ranking step.
Due to the shorter candidate list and more accurate approximate distances,
the re-ranking step of our system is both faster and more accurate than that

of Faiss.

4. GPU Implementation

One advantage of our VLQ-ADC framework is that it is amenable to
implementations on GPUs. It is mainly because our searching and distance
computing algorithm that applied during query can be efficiently parallelized
on GPUs. In this work we have implemented our framework in CUDA.

There are three different levels of granularity of parallelism on GPU:
threads, blocks and grids. A block is composed of multiple threads, and a
grid is composed of multiple blocks. Furthermore, there are three memory
types on GPU. Global memory is typically 4-32 GB in size with 5-10x
higher bandwidth than CPU main memory [6], and can be shared by different

blocks. Shared memory is similar to CPU L1 cache in terms of speed and is

25

Algorithm 3 VLQ-ADC batch search process

1: function SEARCH([y1, -, ¥n,)s L1, , Lixn)

2: fort < 1:n,do

3: Cy + wy-argmin,.o || y. — ¢ ||?

4: Ljo < wyargmingec, s, es, |y — (L= Xij) - o = Aij - s |2 7/
described in Sec. B3]

5: Store values of || y; — ¢ ||?

6: end for

7: fort < 1:n,do

8: Ly + |]

9: Compute (y;, g2(-++)) // See term5 in Equation

10: for L in L}, do

11: for ¢ in £} do

12: // distance evaluation described in Sec. [3.3.2

13: d <l ye — quze) — e — qulzr)) |12

14: Append (d; L; j) to Ly

15: end for

16: end for

17: end for

18: R; <+ K-smallest distance-index pairs (d, ') from L; // Re-ranking

19: return R;

20: end function

w2 only shared by threads within the same block. GPU register file memory has

w03 the highest bandwidth and the size of register file memory on GPU is much

ws larger than that on CPU [6].

26

405

406

407

408

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

VLQ-ADC is able to utilize GPU efficiently for indexing and search.
For example, we use blocks to process D-dimensional query points and the
threads of a block to traverse the inverted lists. We use global memory to
store the indexing structures and compressed dataset that is shared by all
blocks and grids, and load part of lookup tables in the shared memory to
accelerate distance computation. As the GPU register file memory is very
large, we store structured data in the register file memory to increase the
performance of the sorting algorithm.

Algorithm [3| summarizes our search process that is implemented on GPU.
We use four arrays to store the information of the inverted index lists. The
first array stores the length of each index list, the second one stores the
sorted vector IDs of each list, and the third the fourth store the correspond-
ing codes and A values of each list respectively. For an NVIDIA GTX Titan
X GPU with a 12GB of RAM, we load part of the dataset indexing struc-
ture in the global memory for different kernels, i.e., region size, data points
compressed codes and A values of each list. A kernel is the unit of work (in-
struction stream with arguments) scheduled by the host CPU and executed
by GPUs [6]. We load the vector IDs on the CPU side, because vector IDs
are resolved only if re-ranking step determines K-nearest membership. This
lookup produces a few sparse memory reads in a large array, thus the IDs
stored on CPU can only cause a tiny performance cost.

Our implementation makes use of some basic functions from the Faiss

library, including matrix multiplication and the K-selection algorithm to im-

27

428

429

430

431

432

433

434

435

437

438

439

440

441

442

443

444

445

446

447

448

449

prove the performance of our approachlﬂ

K-selection. The K-selection algorithm is a high-performance GPU-based
sorting method proposed by Faiss [6] and GSKNN [§]. The K-selection keep
intermediate data in the register file memory. It exchanges register data using
the warp shuffle instruction, enabling warp-wide parallelism and storage. The
warp is a 32-wide vector of GPU threads, each thread in the warp has up
to 255 32-bit registers in a shared register file. All the threads in the same

warp can exchange register data using the warp shuffle instruction.

List search. We use two kernels for inverted list search. The first kernel is
responsible for quantizing each query point to w; nearest first-level regions
(linein Algorithm. The second kernel is responsible for finding out the w-
nearest second-level regions for the query point (line [4fin Algorithm . The
distances between each query point and its w nearest centroids are stored
for further calculation. In the two kernels, we use a block of threads to
process one query point, thus a batch of n, query points can be processed

concurrently.

Distance computation and re-ranking. After the inverted lists £; of each
query point are collected, there are up to n, X wy X max |£;| candidate points
to process. During the distance computation and re-ranking process, pro-
cessing all the query points in a batch yields high parallelism, but can exceed
available GPU global memory. Hence, we choose a tile size t, < n, based

on amount of available memory to reduce memory overhead, bounding its

4The source code will be released upon publication.

28

450

451

452

453

454

456

457

458

459

460

461

462

463

464

466

467

468

469

470

471

472

473

complexity by O(t, x wy x max|L;]).

We use one kernel to compute the distances from each query point to the
candidate points according to Expression [16] and sort the distances via the
K-selection algorithm in a separate kernel. The lookup tables are stored in
the global memory. In the distance computation kernel, we use a block to
scan all w; inverted lists for a single query point, and the significant portion
of the runtime is the 2 x wy x m lookups in the lookup tables and the linear
scanning of the £; from global memory.

In the re-ranking kernel, we refer to Faiss by using a two-pass K-selection.
First reduce t, X we X max|L;|) to t, x 7 x K partial results, where 7 is some
subdivision factor, then the partial results are reduced again via k-selection
to the final ¢, x K results.

Due to the limited amount of GPU’s memory, if an index instance with
long encoding length cannot fit in the memory of a single GPU, it cannot
be processed one the GPU efficiently. Our framework supports multi-GPU
parallelism to process indexing instance of a long encoding length. For b
GPUs, we split the index instance into b parts, each of which can fit in the
memory of a single GPU. We then process the local search of n, queries on
each GPU, and finally join the partial results on one GPU. Our multi-GPU
system is based on MPI, which can be easily extended to multiple GPUs on

multiple servers.

5. Experiments and Evaluation

In this section, we evaluate the performance of our system VLQ-ADC and

compare it to three state-of-the-art billion-scale retrieval systems that are

29

474

475

476

477

478

480

481

482

483

484

485

486

487

490

491

492

493

494

495

496

497

based on different indexing structures and implemented on CPUs or GPUs:
Faiss [6], Ivf-hnsw [7] and Multi-D-ADC [I6]. All the systems are evalu-
ated on the standard metrics: accuracy and query time, with different code
lengths. All the experiments are conducted on a machine with two 2.1GHz
Intel Xeon E5-2620 v4 CPUs and two NVIDIA GTX Titan X GPUs with 12
GB memory each.

The evaluation is performed on two public benchmark datasets that are
commonly used to evaluate billion-scale ANN search: SIFT1B [22] of 10°
128-D vectors and DEEP1B [5] of 10? 96-D vectors. Each dataset has a
10,000 query set with the precomputed ground-truth nearest neighbors. For
our system, we sample 2 x 10% vectors from each dataset for learning all the
trainable parameters. We evaluate the search accuracy by the test result
Recall@K | which is the rate of queries for which the nearest neighbors is in
the top K results.

Here we choose nprobe =64 for all the inverted indexing systems (Faiss,
Ivf-hnsw and VLQ-ADC), as 64 is a typical value for nprobe in the Faiss
system. The parameter max_codes that means the max number of candidate
data points for a query is only useful to CPU-based system (max_codes is
set to 100,000), hence for GPU-based systems like Faiss and VLQ-ADC,
max_codes parameter is not configured. In fact, we compute the distances of

query point to all the data points that are contained in the neighbor regions.

5.1. Fvaluation without re-ranking

In experiment 1, we evaluate the index quality of each retrieval system.
We compare three different inverted index structures and two inverted multi-

index schemes with different codebooks sizes without the re-ranking step.

30

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

1. Faiss. We build a codebook of k = 28 centroids by k-means, and find
proposed inverted lists of each query by Faiss.

2. Ivf-hnsw. We use a codebook of k = 2% centroids by k-means, and
set 64 sub-centroids for each first-level centroid

3. Multi-D-ADC. We use two IMI schemes with two codebook sizes
k = 2! and &k = 2'2 and choose the implementation from the Faiss
library for all the experiments.

4. VLQ-ADC. For our approach, we use the same codebook as Ivf-hnsw,
and a 64-edge k-NN graph with indexing and querying as described in

Section [3.2 and B.3/F

The recall curves of each indexing approach are presented in Figure[3 On
both datasets, our proposed system VLQ-ADC (blue curve) outperforms the
other two inverted index systems and the Multi-D-ADC scheme with small
codebooks (k = 219) for all the reasonable range of X. Compared with the
Multi-D-ADC scheme with a larger codebook (k = 2'2), our system performs
better on DEEP1B, and almost equally well on SIFT1B.

On the DEEP1B dataset, the recall rate of our system is consistently
higher than that of all the other indexing structures. With a codebook
that is only 1/4 the size of Faiss’ codebook, the recall rate of our inverted
index is higher than Faiss. This demonstrates that the line quantization

procedure can further improve the index quality than the previous inverted

5We use the implementation of Ivf-hnsw that is available online

(https://github.com/dbaranchuk/ivf-hnsw) for all the experiments.
The VLQ-ADC source code is available at https://github.com/zjuchenwei/

vector-line-quantization.

31

https://github.com/dbaranchuk/ivf-hnsw
https://github.com/zjuchenwei/vector-line-quantization
https://github.com/zjuchenwei/vector-line-quantization

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

index methods.

Even on the SIFT1B dataset, the performance of our indexing structure
is almost the same as that of IMI with much larger codebook k = 10'? and
much better than other inverted index structures.

As shown in Figure [3] for the SIFT1B dataset, the IMI with & = 2'% can
generate better candidate list than the inverted indexing structures. While
for the DEEP1B dataset, the performance of the IMI falls behind that of
the inverted indexing structures. The reasons are that SIFT vectors are
histogram-based and the subvectors are corresponding to the different sub-
spaces, which describe disjoint image parts that have weak correlations in the
subspace distributions. On the other hand, the DEEP vectors are produced
by CNN that have a lot of correlations between the subspaces. It can be
observed that the performances of our indexing structure is consistent across
the two datasets. This demonstrates that our indexing structure’s suitability

for different data distributions.

5.2. Evaluation with re-ranking

In experiment 2, we evaluate the recall rates with the re-ranking step. In
all systems the dataset points are encoded in the same way: indexing and
encoding. (1) Indexing: displacements from data points to the nearest cell
centroids are calculated. For VLQ-ADC the displacements are calculated
from data points to the nearest anchor points on the line. (2) Encoding;:
the residual values are encoded into 8 or 16 bytes by PQ with the same
codebooks shared by all the cells. Here we compare the same four retrieval
systems as in experiments 1. All the configurations for the retrieval systems

are the same as in experiment 1. For the GPU-based systems, we evaluate

32

545

546

547

548

549

550

551

552

553

554

555

556

557

1.0

1.0
—— VLQ-ADC k=216 —— VLQ-ADC k=216
Faiss k=218 ; Faiss k=218
—— Ivf-hnsw k =26 /l —— Ivf-hnsw k =216 /
0871 __ Multi-D-ADC k = 2% / 081 __ Multi-D-ADC k =212 7
—=- Multi-D-ADC k = 210 Il, —=- Multi-D-ADC k = 21°
/
% 0.6 - ¥ 0.6
© ©
© / ©
ot]
x 0.4 « 0.4
0.2 0.2
ot r—— 0.0
3456 7 8 91011121314151617181920 3456 7 8 91011121314151617181920
Log,K Log,K
DEEP1B SIFT1B

Figure 3: Recall rate comparison of our system, VLQ-ADC, without the re-ranking step,
against two inverted index systems, Faiss, Ivf-hnsw, and one inverted multi-index scheme,

Multi-D-ADC (with two different codebook sizes: k = 219 and k = 212).

performance with 8-byte codes on 1 GPU and 16-byte codes on 2 GPUs.
The Recall@K values for different values K = 1/10/100 and the average
query times on both datasets in milliseconds (ms) are presented in Table .

From Table [3| we can make the following important observations.

Overall best recall performance. Our system VLQ-ADC achieves best
recall performance for both datasets and the two codebooks (8-byte and
16-byte) in most cases. For the twelve recall values (Recall@1/10/100 x
two codebooks x two datasets), VLQ-ADC achieves best values in nine
cases and second best in two cases. The second-best system is Faiss,
obtaining best results in two cases. Multi-D-ADC (with k& = 2!% x 212

regions) obtains best results in one case.

Substantial speedup. VLQ-ADC is consistently and significantly faster

than all the other systems in all experiments. For all configurations,

33

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

VLQ-ADC’s query time is within 0.054-0.068 milliseconds, while the
other systems’ query times vary greatly. In the most extreme case,
VLQ-ADC is 125x faster than Multi-D-ADC (0.068 vs 8.54). At the
same time, VLQ-ADC is also consistently faster than the second fastest
system, the GPU-based Faiss, by an average 5x speedup.

Comparison with Faiss. VLQ-ADC outperforms the current state-of-the-

art GPU-based system Faiss in terms of both accuracy and query time
by a large margin, except for only three out of sixteen cases (R@Q10 with
16-byte codes for SIFT1B, and R@100 with 16-byte codes for SIFT1B
and DEEP1B). E.g., as a GPU-based system, VLQ-ADC outperforms
Faiss in terms of accuracy by 17%, 14%, 4% of R@Q1, R@Q10 and R@100
respectively on the SIFT1B dataset and 8-byte codes. At the same
time, the query time is consistently and significantly faster than Faiss,
with a speedup of up to 5.7x. Faiss outperforms VLQ-ADC in recall
values in three cases, all with 16-byte codes. However, the difference is
negligible (~0.02%). Similarly, though less pronounced, characteristics
can be observed on DEEP1B.

The main reason for this improvement is that the index quality and
encoding precision in VLQ-ADC is better than those of Faiss. Due
to the better indexing quality, the inverted list of our system is much

shorter than that of Faiss, which results in a much shorter query time.

Additionally, although the codebook size of our system (k = 219) is
only 1/4 of that of Faiss (k = 2!8), our system produces more regions

(222) than Faiss (2'®). Therefore, our system achieves better accuracy

34

582 as well as memory and runtime efficiency than Faiss.

ss3. Comparison with Multi-D-ADC. The proposed system also outperforms

584 the IMI based system Multi-D-ADC both in terms of accuracy and
585 query time on both datasets. For example, VLQ-ADC leads Multi-D-
586 ADC with codebooks k = 2'2 by 14.2%, 7.4%, 1.3% of R@Q1, RQ10
587 and R@Q100 respectively on the SIFT1B dataset and 8-byte codes with
588 up to 6.8x speedup. On the DEEP1B dataset, the advantage of our
589 system is even more pronounced. Similarly, VLQ-ADC outperforms
590 Multi-D-ADC scheme with smaller codebooks k = 2!° even more signif-
501 icantly, especially in terms of query time, where VLQ-ADC consistently
502 achieves speedups of at least one order of magnitude while obtaining
503 better recall values.

sa. Comparison with Ivf-hnsw. Similarly, VLQ-ADC outperforms Ivf-hnsw,

595 another CPU-based retrieval system in both recall and query time. Al-
596 though Ivf-hnsw can also produce more regions with a small codebook,
507 it still cannot outperform the VQ-based indexing structure with larger
508 size of codebook.

so0 Effects on recall of indexing and encoding. The improvement of R@10

600 and R@100 shows that the second-level line quantization provides more
601 accurate short-list of candidates than the previous inverted index struc-
602 ture, and the improvement of R@Q1 shows that it can also improves
603 encoding accuracy.

oo Multi-D-ADC. From Table [3], we can also observe that Multi-D-ADC

605 scheme with k& = 2'2 outperforms the scheme with k& = 2° in query

35

606

607

608

609

610

611

612

613

614

time by a large margin. It is mainly because Multi-D-ADC with larger
codebooks can produce more regions, which can extract more concise

and accurate short-lists of candidates.

Table 3: Performance comparison between VLQ-ADC (with the re-ranking step) against
three other state-of-the-art retrieval systems of recall@1/10/100 and retrieval time on
two public datasets. For each system the number of total regions is specified beneath each
system’s name. VLQ-ADC consistently achieves higher recall values and significantly lower
query time than all other systems. Best result in each column is bolded, and second best
is underlined. For the two GPU-based systems, Faiss and VLQ-ADC, we experiments are
performed on 1 GPU for 8-byte encoding length, and on 2 GPUs for 16-byte encoding

length.
SIFT1B DEEP1B
System 8 bytes 16 bytes 8 bytes 16 bytes
R@1 R@10 R@I100 t (ms) Ra1l R@10 R@100 t(ms) R@1 R@10 R@I100 t (ms) R@1 R@10 R@100 t (ms)
Faiss 01383 04432 07978 0.31 03180 07825 09618 0280 02101 04675 07438 0.32 0.3793 0.7650 0.9509 0.33
21:‘
Ivf-hnsw 01599 0496 0778 235 0331 0737 08367 277 0217 0467 07195 230 03646 07096 0828 3.7

916

Multi-D-ADC 0.1255 0.4191 0.7843 1.65 0.3064 0.7716 0.9782 8.54 0.1716 0.3834 0.6527 328 0.324 0.6918 0.9258 6.152

910 4 910

Multi-D-ADC 0.1420 0.4720 0.8183 0.367 0.3324 0.8029 0.9752 1.603 0.1874 0.4240 0.6979 0.839 0.3557 0.7087 0.9059 1.52

912y 912

VLQ-ADC 0.1620 0.507 0.829 0.054 0.345 0.8033 0.9400 0.068 0.2227 0.4855 0.7559 0.059 0.394 0.7644 0.92
916

=1

2 0.067

5.3. Data point distributions of different indexing structures

The space and time efficiency of an indexing structure is impacted by
the distribution of data points produced by the structure. To analyse the
distribution produced by the structures studied in this paper, we plot in
Figure [4] the percentages of regions by the discretized number of data points

in each region.

36

615

616

617

618

619

620

621

622

623

624

625

626

627

== VLQ-ADC . === VLQ-ADC
Faiss Faiss

m— (vf-hnsw
Multi-D-ADC

= vf-hnsw
0.8 Multi-D-ADC

0.6 0.57 0.57

Portion of different regions
o
&

Portion of different regions

0.18 0.18 02

0.07 0.07

0 1-100 101300 301-500 >500 ’ 0 1-100 101300 301-500 >500
The number of points per region The number of points per region

SIFT1B DEEP1B

Figure 4: The distributions of data points in regions produced by different indexing struc-
tures. The x axis is five categories representing the discretized numbers of data points
in each region (0, 1-100, 101-300, 301-500 and > 500). The y axis is the percentage of

regions in each different categories.

As shown in Figure [4] the portion of empty regions produced by the
inverted indexing structures (Faiss, Ivf-hnsw and VLQ-ADC) is much less
than that produced by the inverted multi-index structure (Multi-D-ADC).
For Multi-D-ADC, there are 38% empty regions for SIFT1B and 58% empty
regions for DEEP1B (left most group in each plot). This result empirically
validates the space inefficiency of inverted multi-index structure [16].

For Faiss, which is based on the inverted indexing structure using VQ,
over 98% and 93% of regions contain more than 500 data points for SIFT1B
and DEEP1B respectively. This will possibly produce long candidate lists
for queries, thus negatively impacting query speed. For VLQ-ADC (and
Ivf-hnsw), the regions are much more evenly distributed. The majority of
the regions on both datasets contain less than 500 data points, and more

regions contain 101-300 data points than others. This is a main reason why

37

28 VLQ-ADC can provide shorter candidate lists and thus a faster query speed.

629

630

631

632

633

634

635

636

637

638

1.0 0.40 0.9 0.40
VLQ-ADC —e— VLQ-ADC VLQ-ADC —e— VLQ-ADC

0.94 Faiss —A— Faiss 035 08 Faiss —A— Faiss 0.35
n o
081 075 to.30 £ 0.7 Fo3o £
0.72 1 0.65 1
0.7 £ 0.61 £
o 025= © 06 o025 .=
B os [~ 5 0574 55 =
> >
= 0200 =05 0.496.49 0.475 0.485 47 1020 5
S osq 3 S 46 =]
Q o] o
o 0.15 o 0.4 0.15 ©
0.4 o o
© ©
[} 03 010 ©
0.34 0.10 4 .. 3 g
< <

02 to.05 0.2 F0.05

0.1 0.00 0.1 0.00

M 10M 100M 300M 1000M m 10M 100M 300M 1000M
Dataset Scale Dataset Scale

Figure 5: Comparison of recall@10 and average query time between VLQ-ADC and Faiss
under different dataset scales. The two systems are compared with an 8-byte encoding
length. The z axis indicates the five data scales (1M/10M/100M/300M/1000M). The left
y axis is the recall@10 value (represented by the bars) and the right y axis is the average

query time (in ms, represented by the lines).

5.4. Performance comparison under different dataset scales

In this section we evaluate the performance of our system under differ-
ent dataset scales. Figure |5 shows, for SIFT1B and DEEP1B, the recall
and query time values for Faiss and VLQ-ADC for subsets of SIFT and
DEEP1B of different sizes: 1M, 10M, 100M, 300M and 1000M (full dataset)
respectively. As can be seen in the figure, the recall values of VLQ-ADC is
always higher than that of Faiss under all dataset scales. When the scale of
dataset is under 300M, the query speed of Faiss is slightly faster than that
of VLQ-ADC. When the scale of the datasets is over 300M, the query speed
of VLQ-ADC matches that of Faiss.

38

639

640

641

642

643

644

645

646

647

648

649

650

651

652

It can also been observed from the figure that for the full datasets of
SIFT1B and DEEP1B (1000M), Faiss takes 0.31ms and 0.32ms respectively
(see Table 3 too). Compared to the 100M subsets of these two datasets, Faiss
suffers an approx. 15x slowdown when data scale grows 10x. On the other
hand, for these two datasets, VLQ-ADC takes 0.054ms and 0.059ms respec-
tively, representing only an approx. 2x slowdown when data scale grows 10x.
The superior scalability and robustness of VLQ-ADC over Faiss is evident

from this experiment.

0.08
0.06
—

—e— SIFT1B
—+— DEEP1B

Recall@k
Recall@k
search time (ms/vector)

SIFT1B DEEP1B Search time

Figure 6: The performance of VLQ-ADC on different numbers of centroids k& =
216 /217 /218 " The results are collected on the same two datasets with an 8-byte encoding
length and n = 32 edges of each centroids. The right plot shows the average search time

with different values of k.

5.5. Fvaluation on impact of parameter values

Number of centroids k£ and edges n. We evaluate the performance of
VLQ-ADC on different k£ and n values with 8-byte codes. We first fix the
value of n to 64 and compare the performance of our system for different
k centroids. In Figure [6] we present the evaluation of VLQ-ADC for k =

216 /217 /218 Then we fix k£ = 2'¢ and increase the number of edge n from 32

39

653

654

655

656

657

- n-32 08290833 - n-32
0g) mm =64 0.79 0] == =64
n=12s n=12s 073907560763
<o
07 07] /
9
$
v 06 06 3 0.06
5} 0507 051 ® £ k,‘//;/
Tos 0.4s8 Sos 0.4820.486 049 £
] g g
&0, 20, 5004
s
. s 0.2150.2230.222 » 0.021 —e— SIFT1B |
01520.1620168 —+— DEEP1B
01 01 X
1 10 100 1 10 100 32 64 128
K K

Figure 7: The performance of VLQ-ADC on different numbers of graph edges n =
32/64/128. The results are collected on the same two datasets with an 8-byte encod-
ing length and k = 2'6 number of centroids. The right plot shows the average search time

with different values of n.

0.:
=i e
08 - 0.4 o8 - a=04 0.75¢ 0.1 /
05 05 =
07 07 So16 P
¢
08 o 08 LI /N
%DS 0.500.5140.5160.516 %05 5 4504920490494 % /,/
o o 0.12
3 3 £
L) E o4 = o
co
03 03 b
. . v 0.08 1 —e— SIFTIB |
0.06] —+— DEEP1B |
1 10 100 0.125 0.25 0.4 0.5
K
SIFT1B DEEP1B Search time

Figure 8: The performance of VLQ-ADC on different values of parameter a =
0.25/0.4/0.5, with values of k, n and w fixed at k = 216, n = 64,w = 64. The result
are collected on the same two datasets with an 8-byte encoding length and 64 edges of

each centroids. The right plot shows the average search time with different values of a.

to 64 and 128. In Figure [7] we present the evaluation of the VLQ-ADC for
different edge numbers.

From Figure [6] and [7] we can observe that the increase in the number
of centroids and edges can improve search accuracy, while slightly increas-

ing query time. This is because the indexing scheme with more centroids

40

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

and more edges can represent the dataset points more accurately and hence
provide more accurate short inverted lists.

Value of portion a. Now, we discuss how to determine the value of pa-
rameter « for subregions pruning, as described in Section [3.3.1} As shown in
Figure 8] we test several values of a on both datasets. A lower o value means
fewer subregions will be traversed, hence lower query time. At the same time,
we can observe that higher o values only moderately increase recall values,
while significantly increases query time (up to 3.7x times). Hence we choose
a = 0.25.

Time and memory consumption. Because the billion-scale dataset do
not fit on the GPU, the database is built in batches of 2M vectors, then
aggregating the information on the CPU. With file I/O, it takes about 150
minutes to build the whole database on a single GPU.

Here we analyze the memory consumption of each system. As shown in
Table [2} for a database of N = 10° points, the basic memory consumption for
all systems is 4 - N bytes for point IDs that are Integer type and m - N bytes
for point codes. In addition to that, Multi-D-ADC consumes 4 - k% bytes to
store the region boundaries. Faiss consumes 4 - k- D bytes for the codebooks
and 4 - k- m - 256 bytes for the lookup tables. Ivf-hnsw requires N bytes for
quantized norm items 4 - k - (D + n) bytes for its indexing structure[7]. For
our system, we require N bytes for quantized A values and 4 - k - (D + 2n +
m - 256) bytes for the codebook, the n-NN graph and the lookup tables. We
summarize the total memory consumption for all systems in Table 4] with
8-byte encoding length on both datasets.

As presented in Table [the memory consumption of our system is less

41

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

than that of Faiss, and about 10% more than that of Multi-D-ADC with 2'2

codebook, which is acceptable for most realistic setups.

Table 4: The memory consumption of all systems for SIFT1B of 10° 128-dimensional data

points.

System (codebook size) ~ Memory consumption (GB)

Faiss (218) 14
Ivf-hnsw (216) 13.04
Multi-D-ADC (2!2 x 212) 12.25
VLQ-ADC (29) 13.55

6. Conclusion

Billion-scale approximate nearest neighbor (ANN) search has become an
important task as massive amounts of visual data becomes available online.
In this work, we proposed VLQ-ADC, a simple yet scalable indexing struc-
ture and a retrieval system that is capable of handling billion-scale datasets.
VLQ-ADC combines line quantization with vector quantization to create a
hierarchical indexing structure. Search space is further pruned to a por-
tion of the closest regions, further improving ANN search performance. The
proposed indexing structure can partition the billion-scale database in large
number of regions with a moderate size of codebook, which solved the draw-
back of prior VQ-based indexing structures.

We performed comprehensive evaluation on two billion-scale benchmark

datasets: SIFT1B and DEEP1B and three state-of-the-art ANN search sys-

42

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

tems: Multi-D-ADC, Ivf-hnsw, and Faiss. Our evaluation shows that VLQ-
ADC consistently outperforms all three systems on both recall and query
time. VLQ-ADC achieves a recall improvement over Faiss, the state-of-the-
art GPU-based system, of up to 17% and a query time speedup of up to 5x
times.

Moreover, VLQ-ADC takes the data distribution into account in the in-
dexing structure. As a result, it performs well on datasets with different
distributions. Our evaluation shows that VLQ-ADC is the best performer
on both SIFT1B and DEEP1B, demonstrating its robustness with respect to
data with different distributions.

We conclude by pointing out a number of future work directions. We plan
to investigate further improvements to the indexing structure. Moreover,
a more systematic and principled method for hyperparameter selection is

worthy investigation.

Acknowledgment

This work is supported in part by the National Natural Science Foun-
dation of China under Grant No.61672246, No.61272068, No0.61672254 and
the Fundamental Research Funds for the Central Universities under Grant
HUST:2016YXMSO018. In addition, we gratefully acknowledge the support of
NVIDIA Corporation with the donation of the Titan Xp GPUs used for this
research. The authors appreciate the valuable suggestions from the anony-

mous reviewers and the Editors.

43

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

References

1]

T. H. H. Chan, A. Guerqgin, M. Sozio, Fully dynamic k-center clustering,
in: World Wide Web Conference, 2018, pp. 579-587.

R. Weber, H.-J. Schek, S. Blott, A quantitative analysis and perfor-
mance study for similarity-search methods in high-dimensional spaces,

in: VLDB, volume 98, 1998, pp. 194-205.

A. Babenko, V. Lempitsky, Improving bilayer product quantization for
billion-scale approximate nearest neighbors in high dimensions, arXiv

preprint arXiv:1404.1831 (2014).

P. Wieschollek, O. Wang, A. Sorkine-Hornung, H. Lensch, Efficient
large-scale approximate nearest neighbor search on the GPU, in: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 2027-2035.

A. B. Yandex, V. Lempitsky, Efficient indexing of billion-scale datasets
of deep descriptors, in: Computer Vision and Pattern Recognition, 2016,

pp- 2055-2063.

J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search with

GPUs, arXiv preprint arXiv:1702.08734 (2017).

D. Baranchuk, A. Babenko, Y. Malkov, Revisiting the inverted indices
for billion-scale approximate nearest neighbors, in: Proceedings of the

European Conference on Computer Vision (ECCV), 2018, pp. 202-216.

44

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

8]

[10]

[11]

[12]

[13]

[14]

C. D. Yu, J. Huang, W. Austin, B. Xiao, G. Biros, Performance op-
timization for the k-nearest neighbors kernel on x86 architectures, in:
Proceedings of the International Conference for High Performance Com-

puting, Networking, Storage and Analysis, ACM, 2015, p. 7.

Y. Gong, S. Lazebnik, A. Gordo, F. Perronnin, Iterative quantization:
A procrustean approach to learning binary codes for large-scale image
retrieval, IEEE Transactions on Pattern Analysis and Machine Intelli-

gence 35 (2013) 2916-2929.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition, in: Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770-778.

H. Jégou, M. Douze, C. Schmid, Product quantization for nearest neigh-
bor search, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence 33 (2011) 117.

Y. Kalantidis, Y. Avrithis, Locally optimized product quantization for
approximate nearest neighbor search, in: Computer Vision and Pattern

Recognition, 2014, pp. 2329-2336.

M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high
dimensional data, IEEE Transactions on Pattern Analysis and Machine

Intelligence 36 (2014) 2227-2240.

M. Norouzi, D. J. Fleet, Cartesian k-means, in: IEEE Conference on

Computer Vision and Pattern Recognition, 2013, pp. 3017-3024.

45

763

764

765

766

767

768

769

770

771

772

773

774

775

776

T

778

779

780

781

782

783

784

[15]

[16]

[17]

[18]

[21]

[22]

Y. Linde, A. Buzo, R. Gray, An algorithm for vector quantizer design,
IEEE Transactions on communications 28 (1980) 84-95.

A. Babenko, V. Lempitsky, The inverted multi-index, in: Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
IEEE, 2012, pp. 3069-3076.

A. S. Razavian, H. Azizpour, J. Sullivan, S. Carlsson, CNN features
off-the-shelf: An astounding baseline for recognition, in: 2014 IEEE
Conference on Computer Vision and Pattern Recognition Workshops,

2014, pp. 512-519.

Y. Gong, L. Wang, R. Guo, S. Lazebnik, Multi-scale orderless pooling
of deep convolutional activation features, in: European conference on

computer vision, Springer, 2014, pp. 392-407.

S. Lloyd, Least squares quantization in pcm, IEEE transactions on

information theory 28 (1982) 129-137.

T. Ge, K. He, Q. Ke, J. Sun, Optimized product quantization for approx-
imate nearest neighbor search, in: Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2013, pp. 2946-2953.

J. Sivic, A. Zisserman, Video Google: a text retrieval approach to
object matching in videos, in: Proceedings Ninth IEEE International

Conference on Computer Vision, 2003, pp. 1470-1477.

H. Jégou, R. Tavenard, M. Douze, L. Amsaleg, Searching in one billion

vectors: re-rank with source coding, in: Acoustics, Speech and Signal

46

785 Processing (ICASSP), 2011 IEEE International Conference on, IEEE,
- 2011, pp. 861864

47

	Introduction
	Related work
	Vector quantization (VQ)
	Product quantization (PQ)
	Line quantization (LQ)
	The applications of VQ-based and PQ-based indexing structures for billion-scale dataset

	The VLQ-ADC System
	The VLQ-based index structure
	Indexing and encoding
	Query
	Region traversal
	Distance computation
	Re-ranking

	GPU Implementation
	Experiments and Evaluation
	Evaluation without re-ranking
	Evaluation with re-ranking
	Data point distributions of different indexing structures
	Performance comparison under different dataset scales
	Evaluation on impact of parameter values

	Conclusion

