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Abstract. Every knot has a plat projection, obtained by closing up a braid with
bridges. The plat projection is determined by the number of strands and the number
of rows of twist regions in the braid, and an integer number of crossings in each twist
region. In recent work, we showed that under certain restrictions, including that the
number of rows is odd, a minimal width plat projection is unique. In this paper we
extend the results to even plats. Using new arguments, we show that if each of their
twist regions contains at least three crossings, and their length is sufficiently long
with respect to their width, then the projection is unique. This essentially “doubles”
the set of knots for which such diagrams classify the links.

1. Introduction

This paper provides further evidence that bridge number and plat diagrams give a
better way to enumerate knots than crossing number. Since Tait began his knot tables
in the late 1800s, knot theorists have been enumerating knots by crossing number. Such
an enumeration leads to exponential growth of the number of knots, and no natural
organization of diagrams. Further, it is difficult to determine when a link with an n
crossing diagram is prime, or when it can be reduced. Consequently, in 150 years only
diagrams with at most 17 crossings have been completely classified, and only up to
mirror image. Moreover, very little can be deduced about the topology or geometry of
a knot exterior from the fact that it has a given crossing number.

In the 1950s, moving away from crossing number, Schubert completely classified an
infinite family of knots and links with fixed bridge number, namely the 2-bridge knots
(also known as 4-plats) [11]. The 2-bridge links continue to serve as an infinite family
for which further algebraic and geometric information can be read from a diagram.
This paper adds to Schubert’s work and provides more evidence that bridge number
can be used successfully to enumerate and classify knots and links.

Every knot and link has a plat diagram, for example as in Figure 1. The diagram has
some number m of bridges, some number r of rows of twist regions, and for each twist
region, an integral number of crossings. If we enumerate knots and links by this data,
then every link will appear in the enumeration. However, there is still the question of
uniqueness: when has a plat diagram already appeared in our list? In recent work [10],
the authors showed that if m ≥ 3, if there are at least c ≥ 3 crossings per twist region,
if the number of rows r is odd, and if n = r + 1 satisfies n > 4m(m − 2), then the
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plat diagram is unique. There it was conjectured that a similar result held without
the restriction to r. The reason that proof for r odd does not extend to r even is
that it uses a crucial way the fact that vertical surfaces (see Definition 2.9 below) are
incompressible and boundary incompressible. This is not true for even r.

In this paper we prove that conjecture, allowing even r, using a new method of proof.
This essentially “doubles” the infinite class of knots and links that can be represented
by unique diagrams. The precise statement is the following:

Theorem 1.1 (Uniqueness of Diagrams). Let K ⊂ S3 be a knot or link with an even
plat projection K ′ with m′ bridges, where m′ ≥ 4 and n′, the length of K ′, satisfies n′

is odd and n′ > 4m′(m′−2). Suppose also that each twist region of K ′ contains at least
three crossings. Finally, suppose that K is another plat or even plat projection of K
with m bridges. Then m ≥ m′, and if m = m′ and each twist region of K has at least
one crossing, then K = K ′ up to rotation in a vertical axis.

Thus if we enumerate knots and links by plat diagram, then although we are dealing
with countable sets, we can make mathematically precise the statement that generically,
a plat diagram will be unique. Moreover, deciding whether two such links are the same
simply requires looking at the diagrams, a very easy task indeed. Finally, diagrams
satisfying the conditions of Theorem 1.1 have many useful algebraic and geometric
properties. The fundamental group, bridge number and tunnel numbers can be read
off the diagram [9, 7]. The complement will be hyperbolic, and hence the link is prime
[1]. If the number of crossings per twist region is increased to seven, there will be
bounds on volumes [5] and exceptional Dehn fillings [6]. None of these properties hold
for all diagrams with a given crossing number.

Knots in S3 which have a knot diagram that satisfies the conditions of Theorem 1.1
of [10] or Theorem 1.1 above will be call rigid knots. In light of the above the following
questions become relevant:

Question 1.2. Given a knot K ⊂ S3 is there an “effective” algorithm to decide if the
knot is a rigid knot?

Question 1.3. Assume it is known that K ⊂ S3 is a rigid knot. Is there an “effective”
algorithm to decide what is the corresponding unique 2m plat?

Question 1.4. Consider 3-manifolds obtained by surgery on knots that have a 2m plat
projection or a 2m e-plat projection. Are there any topological differences between the
two types of manifolds?

Finally, the results of [10] were obtained by investigating essential surfaces in plat
diagrams as in [4, 3]. The existence of such surfaces was extended by Wu [13] to broader
classes of plat diagrams. We propose the following conjecture, which would extend our
results to Wu’s broader classes:

Conjecture 1.5. If K ⊂ S3 is a knot which has a 2m-plat diagram satisfying the
conditions of either Theorem 1.1 or [10, Theorem 1.1], except that twist regions that
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a1,1 a1,2

a2,1 a2,2 a2,3

a3,1 a3,2

a4,1 a4,2 a4,3

a5,1 a5,2

a1,1 a1,2

a2,1 a2,2 a2,3

a3,1 a3,2

a4,1 a4,2 a4,3

Figure 1. Left: A plat projection of a 3-bridge knot. For this example,
a1,1 = a2,2 = −3, and all other ai,j = −4. Right: An even plat projection
of a 3-bridge knot.

are not at the top or bottom of the diagram, or are not the first or last in each row,
are only required to be 1-highly twisted. Then the diagram is unique up to rotation in a
vertical axis, or rotation in a vertical and horizontal axis, depending if the plat is even
or odd respectively.

Organization. The organization of this paper deliberately mirrors that of [10], for
ease of comparison of results, except in the places that the old arguments do not apply.
In Section 2 we carefully define terms, introduce notation, and state previous results
that we will bring to bear on the problem. In Section 3 we assume we have two distinct
minimal plat projections of the same knot or link, and we show that there is an isotopy
between them that has certain desirable properties. In Section 4, we use the isotopies to
show that twist regions in one diagram are isotoped to twist regions in the other, with
adjacent twist regions mapped to adjacent twist regions. This allows us to complete
the proof of the main theorem.

2. Preliminaries

First we review the definition of plat and e-plat projections. To illustrate these
definitions, examples are given in Figure 1. The boxes labeled ai,j in that figure are
twist regions with ai,j crossings of the same sign, either positive, negative, or zero
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depending on the sign of ai,j. We require that the twist regions be reduced, meaning
the crossings within a twist region never have different signs, else a pair of crossings
could be canceled and removed, simplifying the diagram.

Denote the twist region associated with the box labeled ai,j by ti,j. Then ti,j is a
projection of a 1/aij-tangle to the plane of projection P , where the tangle consists of
strands of K lying in the 3-ball (box× I).

To carefully define a 2m plat or e-plat projection, consider an element B2m in the
braid group on 2m−1 generators {σ1, . . . , σ2m−1} with the following form. The element
B2m be written as a concatenation of sub-words

B2m = b1 · b2 · · · · · bn−1,

where bi satisfies the following:

(1) When i is odd, bi is a product of all σj with j even. Namely:

bi = σ
ai,1
2 · σai,2

4 · · · · · σai,m−1

2m−2

(2) When i is even, bi is a product of all σj with j odd. Namely:

bi = σ
ai,1
1 · σai,2

3 · · · · · σai,m
2m−1

On the top of the braids B2m, connect the strands by bridges: For each odd i ∈
{1, . . . , 2m} connect the i-th strand to the (i+ 1)-st strand by a bridge as in Figure 1.

On the bottom of the braids B2m, if n is odd then for even i ∈ {2, . . . , 2m − 2}
connect the i-th strand to the (i+1)-st strand by a bridge, and connect the first strand
to the 2m-th strand. If n is even then for each odd i ∈ {1, . . . , 2m − 1} connect the
i-th strand to the (i+ 1)-st strand by a bridge.

Definition 2.1. We say m is the width of the diagram and n, which equals the number
of rows of twist regions plus one, is the length. In the case that n is even, the diagram
is a plat. If n is odd, the diagram is an even plat or e-plat.

In Figure 1 left, there are five rows, so the length is n = 6. In Figure 1 right, there
are 4 rows, so the length is 5.

Remark 2.2. Note the confusing terminology. If the diagram has an even number of
rows of twist regions then its length n is odd and it is an even plat. If it has an odd
number of rows then its length n is even and it is a plat.

It is a well-known fact that every knot or link in S3 admits a 2m plat or e-plat
projection, for appropriate m. This follows from Alexander’s theorem, proved in 1923,
that any link can be represented by a closed braid (see e.g. [2, p. 24]). Given a closed
braid, pull strands of the braid closure across the diagram to obtain the plat or e-plat.
In fact, any 2m plat projection gives rise to a 2m e-plat projection, and vice versa.

Lemma 2.3. A knot has both odd and even minimal width plats.
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+ +

Figure 2. An even 4-plat gives rise to a corresponding odd 4-plat.

Proof. Starting with an even plat, pull the left-most strand on the bottom diagonally
across the other strands at the bottom to form an odd plat; an example when m = 4 is
shown in Figure 2. The figure shows the case that in the original diagram, the bottom
left twist region is positive. The strand goes under in this case so that a single crossing
is added to that twist region (not subtracted). Additionally, m+1 rows are added with
coefficients of 0 and +1 in each twist region. If the bottom left twist region is negative,
pull the diagonal strand over the others, again to add a single crossing to that twist
region and form m+ 1 additional rows with coefficients of 0 and −1.

The proof to move from odd to even is similar. This time pull the strand that is next
to the left-most strand diagonally across the diagram in a positive or negative fashion,
adding a single crossing to the bottom left twist region and adding m + 1 rows with
coefficients 0 and ±1 to the diagram. �

Note that in the proof of Lemma 2.3, isotoping from even to odd or vice versa entails
adding twist regions with coefficients in {0,±1}. However, our results will only apply
to diagrams with twist regions with more crossings.

Definition 2.4. Let c ∈ N be a constant. A 2m plat or e-plat is c-highly twisted if
| ai,j | ≥ c for all i, j. If a knot or link admits a c-highly twisted plat or e-plat projection,
then it is a c-highly twisted knot or link.

The plat and e-plat in Figure 1 are both 3-highly twisted. Plats and e-plats obtained
by isotopy in Figure 2 are not.

Definition 2.5. An m-bridge sphere of a knot or link K ⊂ S3 is a 2-sphere which
meets K in 2m points and cuts (S3,K) into two m-string trivial tangles (B1, T1) and
(B2, T2). An m-string trivial tangle is a pair (B3, T ) consisting of a 3-ball B3 and a
collection T of m arcs properly embedded in B3 that are simultaneously isotopic into
∂B3 fixing ∂B3.
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Definition 2.6 (Schubert [11] 1956). The bridge number b(K) of a knot or link K ⊂ S3

is the minimal number of over-crossing arcs over all regular projections of K. Equiv-
alently, the bridge number is the minimal value of m such that K has an m-bridge
sphere; see [2, p. 23].

Notice that any 2m plat or e-plat projection of K has an m-bridge sphere, obtained
by taking a 2-sphere in S3 that intersects the plane of projection in a horizontal line
just below the maximum points of the plat or e-plat projection. Hence b(K) ≤ m.

In fact we can say something stronger for 3-highly twisted plats and e-plats. The
following result, which follows by combining results of Johnson and Moriah [7] with
work of Tomova [12] and Johnson and Tomova [8], plays an important role in our proofs
for both the odd and even case.

Theorem 2.7. Let K be a diagram of K ⊂ S3 that is 3-highly twisted, has a plat or
even plat projection of width m and length n, with m ≥ 3 and n > 4m(m − 2). Then
K is an m-bridge knot or link, and it has a unique m-bridge sphere up to isotopy.

2.1. Horizontal bridge spheres and vertical 2-spheres. We now define two fam-
ilies of surfaces, horizontal and vertical, that are important in our proof.

Given the diagram of a 2m plat or e-plat, there is an obvious height function obtained
by sweeping horizontally from the top bridges of the diagram at height t = 1, to the
bottom bridges at height t = 0. In the case of the e-plat we must adjust the bottom
height so that the arc from the first to 2m-th strand has minimum height the same as
the other arcs from k-th to (k + 1)-st strands. Now note that each height t ∈ (0, 1)
corresponds to a bridge sphere.

Definition 2.8. With a height function defined on the diagram of the plat or e-plat
as above, and t ∈ (0, 1), there is a bridge sphere whose intersection with the plane of
projection is the horizontal line of height t. Define this sphere to be a horizontal bridge
sphere, and denote it by Σt.

Note that all horizontal bridge spheres Σt for 0 < t < 1 are isotopic. If the plat or
e-plat projection further satisfies the hypotheses of Theorem 2.7, it follows that any
bridge sphere is isotopic to a horizontal bridge sphere.

We can further define horizontal spheres at height t = 0 and t = 1, but these do not
meet K transversely, and meet K in only m points, so they are not bridge spheres.

In addition to horizontal bridge spheres, we will also consider vertical 2-spheres, first
defined in [3]; see also [13].

Definition 2.9. Suppose K is a 2m plat or e-plat projection of a knot or link and K
has length n. Define an arc α = α(c1, . . . , cn−1) on the plane of projection P to run
monotonically from the top of the diagram to the bottom, intersecting K in exactly
n points, such that α is disjoint from all twist regions and has ci twist regions to the
left at the i-th row; see Figure 3. Connect endpoints of α by a simple arc β ⊂ P that
is disjoint from K so that α ∪ β has one maximum and one minimum with respect to
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Figure 3. An arc α in a 4-plat with n = 7.

the height function on P . Form a 2-sphere by attaching disks in front of and behind
P . This 2-sphere is denoted by S = S(c1, . . . , cn−1).

If there is at least one twist region on each side of α at each level, the 2-sphere
S(c1, . . . , cn−1) is called a vertical 2-sphere; see Figure 3.

If there is at least one twist region on each side of α at each level except possibly
level i for i odd, or levels i and i+ 2 for i odd, or levels i− 1, i, and i+ 1 for i even, we
say that S is an almost vertical 2-sphere. Note that the set of almost vertical 2-spheres
contains the set of vertical 2-spheres.

For plats, vertical 2-spheres are known to be incompressible ([4, 13]), and we used
this fact extensively in the proof of the odd plats case. For even plats, vertical 2-spheres
are not necessarily incompressible. Thus the proofs in this paper must avoid using the
incompressibility of vertical 2-spheres.

3. Isotopies

We now begin the proof of Theorem 1.1 by setting up conditions on isotopies between
an e-plat and a plat or e-plat. This section proceeds in an order similar to Section 3
of [10]. However, it deviates from that proof in a few key places.

Suppose a knot or link K ⊂ S3 has an e-plat projection K ′ and another plat or
e-plat projection K. It follows that the knot K can embed in two ways, determined
by the diagrams K ′ and K, respectively, in ε-neighborhoods of the projection planes
P ′ and P . There is an ambient isotopy ϕ : (S3, K ′) → (S3, K) taking K ′ to K. The
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isotopy will take a vertical sphere S ′ ⊂ (S3, K ′) to a sphere S = ϕ(S ′) ⊂ (S3, K), and
a horizontal bridge sphere Σ′ ⊂ (S3, K ′) to some sphere Σ = ϕ(Σ′) ⊂ (S3, K).

Remark 3.1. As in the odd case, we use the convention that objects relevant to the
K ′ plat will be denoted by a ‘ ′ ’, for example S ′ ⊂ (S3, K ′). Those relevant to (S3, K)
will have no extra mark, for example S ⊂ (S3, K).

Lemma 3.2. Let K ⊂ S3 be a 3-highly twisted knot or link with an e-plat projection K ′

of width 2m, and another plat or e-plat projection K also of width 2m, where m ≥ 3.
Suppose n′, the length of K ′, is greater than 4m(m − 2). Let ϕ : (S3, K ′) → (S3, K)
be an isotopy. Then there exists an isotopy of pairs ψ : (S3, K) → (S3, K) with the
following properties.

(a) Let S ′ be any almost vertical 2-sphere for K ′, and let S = ϕ(S ′) be its image.
The image ψ(S) is a 2-sphere meeting each horizontal bridge sphere of K in a
single essential curve, so that any such curve meets K at most once.

(b) For each horizontal bridge sphere Σ′t for K ′, the image (ψ◦ϕ)(Σ′t) is a horizontal
bridge sphere Σt for K.

Proof. The proof in the case of e-plats is identical to that of Lemma 3.2 of [10], using
Theorem 2.7 in place of [10, Corollary 2.8]. �

Lemma 3.4 below is analogous to [10, Lemma 3.3]. However it requires a new proof
in the even r case. The proof uses the following lemma:

Lemma 3.3. Let S ′ be a vertical 2-sphere with at least two twist regions on either side
in each even row in K ′. Then for each horizontal bridge sphere Σt, the curve S ∩ Σt

separates Σt into two disks, each disk meeting K at least three times.

Proof. This is true in K ′. By Lemma 3.2, the isotopy from (S3, K ′) to (S3, K) takes
horizontal bridge spheres to horizontal bridge spheres, and takes S ′ to S with the same
intersection pattern on Σt. �

Recall that each twist region ti,j of K is the projection of a 1/ai,j tangle to the plane
of projection P . Denote by Bi,j the bounded closed ball in S3 containing the tangle,
where we choose the collection of all balls Bi,j to be disjoint. In addition, we restrict
to a vertical 2-sphere with at least two twist regions on either side in each row. This
is why the hypothesis m ≥ 4 is required.

Lemma 3.4. Assume the same hypotheses on K ′ and K as in Lemma 3.2. In addition
assume that m ≥ 4. Choose a fixed vertical 2-sphere with at least two twist regions on
either side in each even row. Then there is an isotopy ψ2 : (S3, K) → (S3, K) that
preserves properties (a) and (b) of Lemma 3.2, and in addition does the following.

(c) For all i, j, ψ2 takes S to a surface either disjoint from Bi,j or running between
the two strands of K in Bi,j.
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Proof.
Step 1: There is an ambient isotopy of (S3, K) sending horizontal bridge spheres

vertically, up and or down with respect to the height function, so that after the isotopy
all intersections S ∩ K lie outside of Bi,j. This isotopy will induce isotopies in each
bridge sphere depending on the twist coefficients. After applying this isotopy, we may
assume S ∩K lies outside of all balls Bi,j.

Step 2: Fix indices i, j and consider the intersection of S and Si,j = ∂Bi,j. The
components of the intersection are simple closed curves on Si,j. Consider an innermost
such curve of intersection on Si,j and denote it by γ. There are several cases.

Case A: The curve γ lies entirely in a single horizontal bridge sphere Σa for some
height a ∈ (0, 1). In this case, note that, S ∩ Σa is a single simple closed curve, so
S ∩ Si,j = S ∩ Σa by Lemma 3.2 (a).

The curve γ bounds a disk D in Si,j that intersects K either 0, 1, or 2 times. In all
cases, the curve γ also bounds a disk E in Σa. We claim that E meets K the same
number of times as D meets K. This is because E ∪D is a sphere, with E horizontal.
However K is monotonic with respect to the height function, so if a strand of K meets
E, the strand must exit the sphere E ∪D by meeting D. In all cases, this contradicts
Lemma 3.3. Thus γ cannot lie in a single horizontal level.

Case B: The curve γ does not lie entirely in a single horizontal level. In this case,
we claim that γ has a single maximum and a single minimum with respect to the
height function. For consider the intersection γ ∩Σt for some level t. Because γ is not
horizontal, the intersection is a finite even set of points. If γ ∩ Σt is nonempty, then
there is an arc αt of S ∩ Σt completely contained on one side of Si,j, connecting two
points of γ ∩Σt. Sweep up through Σ× [t, b], where b is the maximal point of Si,j. By
continuity, as we sweep up we obtain arcs αs for s ∈ (t, b) with endpoints on γ ∩ Σs.
The endpoints of αs form two arcs in (Σ × [t, b]) ∩ (S ∩ Si,j) that must merge into a
single arc, since S becomes disjoint from Si,j. Similarly, sweeping down, the endpoints
of αs ⊂ γ must form two arcs that merge into one as S sweeps through Σ× [c, t], where
c is the minimal point of Si,j. These form a closed curve, hence form all of γ.

We can assume therefore that γ lies in the range Σ × [a, d] for some a, b satisfying
c ≤ a < d ≤ b, and as γ is a curve on Si,j with one maximum and one minimum, γ∩Σt

consists of two points for t ∈ (a, d), and these points separate the closed curve S ∩ Σt

into two arcs αt and βt.

Case B-1: The curve γ bounds a disk D on Si,j that does not meet K. This case is
illustrated in Figure 4, left. Then for all t ∈ (a, d), D ∩ Σt is an arc ηt disjoint from
K, and αt ∪ ηt and βt ∪ ηt are closed curves that bound disks in Σt. Suppose one of
the closed curves, say αt ∪ ηt, bounds a disk that does not meet K. Then as we sweep
up and down through Σ × (a, d), the arcs αs ∪ ηs bound disks that cannot meet K
for any s ∈ (a, d); this is because Step 1 implies no αs meets K and by assumption,
no ηs meets K. Thus we conclude that the union of αs ∪ ηs over all s ∈ [a, d] forms
a 2-sphere bounding a ball disjoint from K. We may isotope S through the ball in a
level-preserving manner, satisfying the conclusions of Lemma 3.2, to remove the curve
γ from the intersections.



10 YOAV MORIAH AND JESSICA S. PURCELL

αs

βs

ηs

S

Si,j

γ

Σa

Σd

αs

βs

γ

ηs

Si,jS

Σa

Σd

Figure 4. Left: The curve γ bounds a disk D on Si,j that does not
meet K. Right: γ bounds a disk D meeting K once.

Assume therefore that for fixed t ∈ (a, d), both closed curves αt∪ηt and βt∪ηt bound
disks intersecting K, say nt ≥ 1 and mt ≥ 1 times, respectively. Let ns and ms denote
the number of times the disks bounded by αs ∪ ηs and βs ∪ ηs meet K, respectively,
at level s ∈ (a, d). Note that for any s, values ns = nt and ms = mt since K does not
meet S in these levels, nor does it meet D ⊂ Si,j. Now consider the maximal (highest)
point of γ, on Σd. Since γ ∩ Σd is a single point, it separates S ∩ Σd into a single arc.
By continuity, as s → d one of the closed curves αs ∪ ηs or βs ∪ ηs converges to the
single point γ ∩ Σd and the other curve converges to S ∩ Σd. Thus on the one hand,
disks bounded by αs ∪ ηs and βs ∪ ηs meet K a total of ns ≥ 1 and ms ≥ 1 times,
respectively, but on the other hand, one of these disks converges to a point disjoint
from K as s→ d. This is a contradiction.

Case B-2: The curve γ bounds a disk D on Si,j meeting K exactly once, as illustrated
in Figure 4, right. Let t ∈ (0, 1) be such that D ∩ Σt meets K. Again let ηt denote
the arc D ∩ Σt. Consider again the closed curves αs ∪ ηs and βs ∪ ηs for s ∈ (a, t)
and s ∈ (t, d). For s > t, one of the closed curves, say αs ∪ ηs, bounds a disk in Σs

meeting K at least once: This intersection corresponds to the arc of K running up
from K ∩D. For s < t, the other closed curve βs ∪ ηs bounds a disk in Σs meeting K
at least once, corresponding now to the arc of K running down from K ∩D. As in the
previous case B-1, if there are any other intersections of these disks with K, then there
are the same number of intersections for s ∈ (a, t) and for s ∈ (t, d). However, as in
the previous case consider the maximum and minimum points of γ. At the maximum,
βd ∪ ηd collapses to a single point. Hence for s ∈ (t, d), the curve βs ∪ ηs cannot bound
a disk meeting points of K. Thus for s ∈ (a, t), the curve βs∪ηs bounds a disk meeting
only one point of K, coming from the intersection of K with D. By a symmetric
argument, for s ∈ (a, t), the curve αs ∪ ηs bounds a disk that cannot meet K, and for
s ∈ (t, d), the curve αs∪ηs bounds a disk that meets K only once. Then it follows that
αt∪βt = S ∩Σt bounds a disk meeting K exactly once, in D∩K. But this contradicts
Lemma 3.3.

Case B-3: The curve γ bounds a disk D on Si,j meeting K exactly twice. Note that
the four intersection points of Si,j ∩ K occur on two levels where each level contains
exactly two points. Denote these levels by Σr and Σt with r < t. Again there are two
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αs

βs

γ

ηs

Si,j
S

Σa

Σd

Si,j

γηt
Σa

Σd

Figure 5. Left: γ bounds a disk D on Si,j that meets K twice on
different levels. Right: disk D meets K twice on the same level.

cases, namely that the two intersection points of D ∩K are on different levels, or that
the two intersection points are on the same level.

Case B-3-a: The intersections D ∩K occur on different levels Σr and Σt. This case
is illustrated in Figure 5, left. Again let ηs denote D ∩ Σs. Then K meets ηs when
s = r and when s = t. Note that the minimum height a of γ satisfies a < r and the
maximum satisfies d > t. The closed curves αs ∪ ηs and βs ∪ ηs bound disks on Σs

meeting K. For s ∈ (t, d), one of the curves, say αs ∪ ηs, bounds a disk meeting the
arc of K running up from D. For s ∈ (r, t), the other curve βs ∪ ηs bounds a disk
meeting an arc of K. This arc is on the opposite side of D in this range. Finally, for
s ∈ (a, r), again αs ∪ ηs must bound a disk meeting the arc of K running down from
D. It follows by continuity that at the minimum point of γ the curve βa ∪ ηa collapses
to a single point, and similarly βd∪ηd collapses to a single point at the maximum of γ.
By a similar argument as above, it follows that βs ∪ ηs bounds a disk meeting K only
once in the range (r, t), and not at all in the range (a, r) ∪ (t, d). This configuration
determines a disk running between the two strands of K in the twist region, as desired.

Case B-3-b: The intersections D∩K occur on the same level, say on the level Σt, as
illustrated in Figure 5, right. Then the maximum height d of γ must occur at a level
above t, and the minimum height a of γ must occur at a level below t but above r.
Again consider the closed curves αs ∪ ηs and βs ∪ ηs for s ∈ (a, d). Note that no arc αs

or βs intersects K for s in this range, and ηs intersects K only when s = t, and then ηt
intersects K twice. Thus for s > t, one of the curves αs∪ηs or βs∪ηs, say αs∪ηs, bounds
a disk meeting K two more times than the disk bounded by αs∪ηs for s < t. Similarly
βs ∪ ηs for s > t bounds a disk meeting K two fewer times than the disk bounded by
βs ∪ ηs for s < t. Again consider the heights a and d. At level d, Σd meets γ in a
single point, and ηd collapses to that single point. Thus βd collapses to a single point
and αd closes up to be a closed curve meeting this point. As above, it follows that for
s ∈ (t, d), βs ∪ ηs bounds a disk disjoint from K. A similar argument at level a implies
that for s ∈ (a, t), αs ∪ ηs bounds a disk disjoint from K. It follows that for s ∈ (t, d),
αs ∪ ηs bounds a disk meeting K exactly twice, and at level d, αd = S ∩Σd is a closed
curve bounding a disk meeting K exactly twice. This contradicts Lemma 3.3. �
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We now use the previous lemmas to show that ϕ(S ′) does not meet twist regions.
The proof is similar to that of [10, Proposition 3.4]. Since it is a fundamental argument
in the paper, we include it again here.

Proposition 3.5. Let K ′ be a 2m e-plat projection of a knot or link K ⊂ S3, where
m > 4, the length n′ of K ′ is greater than 4m(m− 2), and K ′ is 3-highly twisted. Let
K be another 2m plat or e-plat projection of K ⊂ S3 and assume that K is 1-highly
twisted. Suppose S ′ is a vertical 2-sphere for K ′ which has at least two twist regions
on each even row. Then the isotopy of Lemma 3.4 takes S ′ to a 2-sphere S that does
not meet any twist regions.

Proof. Let ϕ : (S3, K ′) → (S3, K) be an isotopy satisfying the conclusions of Lem-
mas 3.2 and 3.4 for S ′. Assume by way of contradiction that S runs through a twist
region. By Lemma 3.4, it runs between the two strands of the twist region. Let Σc

and Σd be horizontal bridge spheres just below and above the twist region, respec-
tively. The region between Σc and Σd is homeomorphic to Σ× [c, d], where Σ is a 2m
punctured disk. Again by Lemma 3.4, since S does not meet K in twist regions, we
can choose c and d so that S does not meet K in the region Σ × [c, d]. There is an
isotopy ζ from Σc to Σd given by sweeping through the horizontal bridge spheres. The
isotopy can be arranged to be the identity away from disks bounding points of K in
a twist region. It is a nontrivial Dehn twist, twisting an amount equal to the number
of crossings in the twist region, inside a disk bounding points of K in a twist region.
In particular, the isotopy ζ takes the simple closed curve γ = S ∩ Σc in Σ × {c} to a
distinct curve ζ(γ) in Σ× {d}, given by a Dehn twist.

Now consider the effect of ϕ−1 on Σ × [c, d]. By Lemma 3.2, the isotopy takes this
region to a region Σ′ × [a, b], with Σ′a the image of Σc, and Σ′b the image of Σd. The
portion of the surface S between levels c and d is taken to a portion of the surface S ′

between levels a and b. By Definition 2.9, the surface S ′ does not run through any
twist regions. Moreover, since S avoids K in Σ× [c, d], region, S ′ must avoid K ′ in the
region Σ′ × [a, b].

But again, there is an isotopy ζ ′ from Σ′a to Σ′b given by sweeping through horizontal
bridge spheres, and again this isotopy can be taken to be the identity away from twist
regions. Because S ′ does not run through any twist regions, it must take the curve
γ′ = S ′ ∩ Σ′a on Σ′ × {a} to the same curve ζ ′(γ′) = γ′ on Σ′ × {b}.

On the other hand, we know

ζ(γ) = ϕ ◦ ζ ′ ◦ ϕ−1(γ) = ϕ ◦ ζ ′(γ′) = ϕ(γ′) = γ.

But this implies that the Dehn twist ζ is trivial. This contradicts the fact that K is
1-highly twisted. �

Remark 3.6. The above proof uses crucially the fact that the diagram of K ′ is fixed,
and the twist regions are reduced. In general, an isotopy between bridge surfaces in
an arbitrary diagram could first spin around a twist region, then spin in the opposite
direction, undoing the twists. However, this would result in a twist region that is not
reduced. The map ζ ′ above is completely determined by the reduced diagram, and
cannot create crossings that can be removed in a different level.
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From here, given an isotopy ϕ : (S3, K ′) → (S3, K) satisfying the hypotheses of
Proposition 3.5, we may take another isotopy satisfying the conclusions of Lemmas 3.2
and 3.4. Therefore, from now on, we will compose the initial isotopy ϕ with this
new isotopy, and denote the composition by ϕ. Thus we assume that ϕ satisfies the
conclusions of previous lemmas for a fixed S ′.

Lemma 3.7. Let K ′ be a 2m e-plat projection of a knot or link K ⊂ S3 so that
m ≥ 4, the length n′ of K ′ is greater than 4m(m − 2) and K ′ is 3-highly twisted.
Let K be another 2m plat or e-plat projection of K ⊂ S3 and assume that K is 1-
highly twisted. Let S ′ be a vertical 2-sphere for K ′ and let ϕ : (S3, K ′) → (S3, K) be
an isotopy (satisfying the conclusions of isotopies above), with S = ϕ(S ′). Then in
any level between twist regions, S meets the diagonal segments of K at most once. In
particular, S cannot meet a segment of K in a point on the outside of an odd level.

Proof. The proof is identical to that of [10, Lemma 3.8]: the argument takes place
within the braid, on levels between rows of twist regions, and there is no difference
between diagrams of plats and e-plats there. �

We now introduce names for regions of the e-plat diagram. The definition below
agrees with [10, Definition 4.2], except there is an additional region.

Definition 3.8. Let K ⊂ S3 be a knot or link with a 2m e-plat projection K ′. Enclose
every twist region of K ′ in a box ti,j = (twist region)× [−ε, ε]. This divides P r (K ∪
(∪
i,j
ti,j)) into regions, for example the regions shown in Figure 3. Up to symmetry, there

are five different types:

(1) A unique unbounded region, denoted by U .

(2) Regions with four edges that are segments of K. We call such a region generic,
and denote it by Q.

(3) One region with m edges at the very bottom denoted by M.

(4) Regions with three edges that are segments of K. These appear on the top,
just aboveM on the bottom, and on the left-most or right-most sides, but not
in a corner. These regions will be called triangular, and we denote them by T t,
T b, T l, and T r respectively.

(5) Two regions with two edges that are segments of K. These appear in the top
corners and are denoted Bt,l, Bt,r.

Lemma 3.9. Let K ′ be a 2m e-plat projection of the knot or link K ⊂ S3 such that
m ≥ 4 and K ′ is 3-highly twisted. Let K be a 2m plat or e-plat projection for K ⊂ S3

and assume and K is 1-highly twisted. Let S ′ be a vertical 2-sphere for K ′ which has
at least two twist regions on either side in each even row. Let ϕ be an isotopy between
K ′ and K satisfying the conclusions of Lemmas 3.2 and 3.4. Then in each row of twist
regions, S = ϕ(S ′) meets exactly one region of the diagram of K besides U . Similarly,
it meets M exactly once.
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Proof. Note that S intersects K in n′ points because S ′ intersects K ′ in n′ points. Thus
S must meet some region besides U . If S meets a generic region, then by Lemma 3.7 it
must enter and exit the region on different rows of diagonal segments. Thus S meets
a region in the row just above that generic region and one in the row just below.

If S meets a triangular region on the left or right, then it cannot meet the arc of K
to the left or right (respectively), so it must enter and exit the region by meeting the
diagonal segments on the rows above and below. Thus S meets a region besides U just
above and just below the region in this case as well.

If S meets a triangular region on the top or on the bottom, it must enter along the
top or bottom and exit through a different segment of the diagram. Thus it will meet
a region besides U just below or above (respectively) in this case.

If S meets the region M, it must meet it by intersecting two different arcs of K,
thus it must run into a triangular region. In all cases, S must meet at least one region
besides U on every row.

Finally, Lemma 3.7 implies S cannot meet two distinct regions besides U in any level,
else it would meet K in the same row of diagonal segments between twist regions. �

Corollary 3.10. Let K ′ be a 2m e-plat projection of the knot or link K ⊂ S3 such that
m ≥ 4 and K ′ is 3-highly twisted. Let K be a 2m plat or e-plat projection for K ⊂ S3

that is 1-highly twisted. If n, n′ are the respective lengths of the plats K and K ′, with
n′ satisfying n′ > 4m(m− 2), then n = n′. In particular K is an 2m e-plat.

Proof. Let S ′ be a vertical 2-sphere for K ′ with at least two twist regions on each even
row. Let ϕ be an isotopy and let S = ϕ(S ′) as usual. Since S ′ meets K ′ a total of
n′ times, S also meets K a total of n′ times. Note by the pigeonhole principle and
Lemma 3.7, n ≥ n′ and by Lemma 3.9, n′ = n. �

The proof of the following corollary avoids using incompressibility of vertical 2-
spheres.

Corollary 3.11. If S ′ is a vertical sphere, and S = ϕ(S ′), then the intersection of
S with the projection plane P contains precisely one simple closed curve δ so that
δ ∩K 6= ∅ and contains all n points of intersection with K.

Proof. The proof follows immediately from Lemma 3.9. �

4. Images of plats

As in [10], this section is divided into subsections. In the first, we show that we may
take our isotopy between the 2m e-plat projections to take all almost vertical 2-spheres
to almost vertical 2-spheres simultaneously. In the second, we use vertical 2-spheres
to isolate twist regions, and we show that they must map under the isotopy to twist
regions with the same relative position. This allows us to complete the proof.

4.1. Images of vertical 2-spheres. The main result of this subsection is the following
theorem:
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Theorem 4.1. Let K ′, K be 2m e-plat projections of the same knot or link K. Assume
m ≥ 4, the length n′ of K ′ satisfies n′ > 4m(m− 2), and K ′ is 3-highly twisted. Then
we may isotope ϕ : (S3, K ′)→ (S3, K) so that it maps all almost vertical 2-spheres in
(S3, K ′) to almost vertical 2-spheres in (S3, K) simultaneously.

To prove the theorem, we first need some preliminary definitions and results.

Lemma 4.2. Let K ′ be a 2m e-plat projection of the knot or link K ⊂ S3 such that
m ≥ 4 and K ′ is 3-highly twisted. Let K be a 2m plat projection of K ⊂ S3 and assume
K is 1-highly twisted. Suppose n′ and n are the respective lengths of K ′ and K with n′

satisfying n′ > 4m(m−2). Finally, let S ′ ⊂ (S3, K ′) be a vertical 2-sphere which has at
least two twist regions on each even row, and let ϕ : (S3, K ′)→ (S3, K) be an isotopy
satisfying Lemmas 3.2 and 3.4. Then ϕ(S ′) = S is a vertical 2-sphere in (S3, K).

Proof. By Corollary 3.11, S intersects the projection plane P in precisely one simple
closed curve δ. By Lemma 3.7, that curve δ meets diagonal segments of K at most
once in any level between twist regions. By Corollary 3.10, the number of intersections
|S∩K| = |S ′∩K ′| = n′ = n, and by Lemma 3.3, δ has two twist regions on either side.
Thus the curve must be exactly the intersection of a vertical 2-sphere for K with the
projection plane, and S must be obtained by capping off disks in front of and behind
the projection plane with boundary on δ. Thus S is a vertical 2-sphere with at least
two twist regions on either side. �

The vertical and almost vertical 2-spheres form a collection of surfaces that iso-
late twist regions of the diagram. This motivates the following definition, which was
originally [10, Definition 4.6].

Definition 4.3. Let S ′1 = S ′1(c1, . . . , ci, . . . , cn−1) ⊂ (S3, K ′) be a vertical or almost
vertical 2-sphere and let S ′2 ⊂ (S3, K ′) be an almost vertical 2-sphere that is different
from S ′1 by a single twist region in the i-th row. Without loss of generality, S ′2 =
S ′2(c1, . . . , ci + 1, . . . , cn−1). The bounded component B′ of S3 r (S ′1 ∪ S ′2) is a rational
2-tangle B′i,ci+1 as in Figure 6, containing the t′i, ci+1 twist region. Vertical 2-spheres S ′1
and S ′2 intersect in a disk, and S ′1 r (S ′1 ∩ S ′2) is a disk ∆′1 meeting K ′ in two points.
Similarly, S ′2 r (S ′1 ∩ S ′2) is a disk ∆′2 meeting K ′ in two points. Let Ω′ denote the
union ∆′1 ∪ ∆′2. We say Ω′ is an isolating 2-sphere. Note it is a 2-sphere meeting K ′

four times.

By Lemma 4.2, there is at least one vertical 2-sphere S ′1 in K ′ that is mapped by
isotopy to a vertical 2-sphere in K. The following proposition considers almost vertical
2-spheres which is different from such a 2-sphere by one twist region.

Proposition 4.4. Let K ′ and K be two 2m e-plat projections of the same knot or link.
Let ϕ : (S3, K ′) → (S3, K) be an isotopy taking a fixed almost vertical 2-sphere S ′1 to
an almost vertical 2-sphere S1 = ϕ(S ′1), and satisfying the conclusions of Lemmas 3.2
and 3.4. Let S ′2 be an almost vertical 2-sphere that differs from S ′1 in one twist region
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a′i,ci+1

S ′1 S ′2

Σ′b

Σ′a

Figure 6. An isolating 2-sphere Ω′. Figure originally from [10]

in one row. Let Σ′a and Σ′b denote the horizontal bridge spheres at the top and bottom
of that row. Then there exists an isotopy ψ : (S3, K)→ (S3, K) that satisfies:

(1) ψ preserves the conclusions of Lemma 3.2 and 3.4,

(2) it fixes the tangle outside S1, ϕ(Σ′a), and ϕ(Σ′b), and

(3) it takes ϕ(S ′2) to an almost vertical 2-sphere that differs from S1 in one twist
region in one row.

Proof. The proof begins the same as the proof of [10, Proposition 4.8]. Take disks ∆′1
and ∆′2 as in Definition 4.3. The image ϕ(S ′1 ∩ S ′2) is a disk in the almost vertical
2-sphere ϕ(S ′1) = S1.

Let Σ′a and Σ′b denote horizontal bridge spheres meeting ∂∆′1 and ∂∆′2 in a single
point at the bottom and top, respectively, as in Figure 6. By Lemma 3.2, ∆1 = ϕ(∆′1)
and ∆2 = ϕ(∆′2) lie in a region between horizontal bridge spheres Σc = ϕ(Σ′a) and
Σd = ϕ(Σ′b). Since ∆1 ⊂ S1 meets K twice, Σc and Σd must bound a region Ξ
homeomorphic to S2 × I in (S3, K) containing a single row of twist regions. Both ∆1

and ∆2 lie in Ξ between Σc and Σd.
There is exactly one almost vertical 2-sphere S that differs from S1 in a single twist

region in Ξ, and we will show that we may isotope S2 = ϕ(S ′2) to S in Ξ. The
argument given in [10] shows this using the incompressibility of vertical 2-spheres, but
as mentioned above this is not true for e-plats, so the proof is modified to deal with
this case.

Ensure that S meets K exactly in the points that S2 meets K; we do this by ensuring
S ′2 and S ′1 meet K ′ at the same levels where they differ, and so map to the same levels in
K. Now denote the tangle containing the twist region between S1 and S by (Br,s, tr,s),
and let ∆ = S r (S ∩S1). We may assume the sphere ∂Br,s is disjoint from the sphere
∆1 ∪∆, with ∂Br,s in the interior of the ball bounded by ∆1 ∪∆.

Now we show ∆2 is disjoint from ∂Br,s. For suppose not. Then ∆2 ∩ ∂Br,s is a
collection of closed curves.
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Suppose one curve of ∆2∩∂Br,s bounds a disk on ∂Br,s that does not meet K. Then
there is an innermost such disk E on ∂Br,s. First suppose that ∂E bounds a disk D on
∆2, disjoint from K. Then E ∪D bounds a 3-ball in Ξ rN (K) between Σc and Σd.
Isotope horizontally in the ball, preserving levels, to remove this intersection. Next,
note the disk D ⊂ ∆2 cannot intersect K in a single point, for then E ∪D intersects
K in a single point. So D intersects K in two points, namely the two points of K ∩∆,
and ∂D is isotopic in Ξ rN (K) to ∂∆2 = ∂∆ ⊂ S. But this is impossible: ∂D = ∂E
bounds a disk disjoint from K in ∂Br,s. No such disk exists.

So suppose each curve of ∆2∩∂Br,s bounds a disk on ∂Br,s that meets K; suppose an
innermost such disk E meets K exactly once. Then ∂E cannot bound a disk D ⊂ ∆2

with D ∩K = ∅, or with D meeting K in two points. So ∂E bounds a disk D ⊂ ∆2

meeting K exactly once. Then E ∪D rK is a twice punctured sphere, punctured by
the same segment K1 of K ∩ Ξ. Thus the tangle (E ∪D,K1) is a trivial 1-tangle and
the disk E is isotopic to the disk D. Isotope in a level-preserving manner to remove
the intersection.

So if there are curves of intersection of ∆2 ∩ ∂Br,s, they each bound a disk on ∂Br,s

meeting two points of K. Note that ∆2 is disjoint from the plat K in (Br,s, tr,s) as all
possible intersections K ∩∆2 have been accounted for. Thus if ∂Br,s∩∆2 is nonempty,
the only possibility is that ∆2 is parallel to the unique compressing disk for the tangle
(Br,s, tr,s) separating the tangle into two trivial tangles. Since K is 1-highly twisted,
∂∆2 must meet the interior of ∆1. This contradicts the fact that the interior of ∆′1 is
disjoint from ∆′2.

It follows that ∆2 is disjoint from ∂Br,s, hence from Br,s. A similar argument to that
above implies that ∆2 can be isotoped in a level-preserving manner to be disjoint from
other tangles (Bj,s, tj,s) in Ξ. Then ∆2 lies in the trivial tangle between Σc, Σd, and
disks outside of twist regions in Ξ. It has boundary meeting ∂∆1 = ∂∆, and meets K
in the points K ∩ ∆. It follows that ∆2 is parallel to ∆. Since both ∆2 and ∆ meet
each level in a single arc, we may isotope ∆2 horizontally to ∆.

Note all the isotopies above satisfy (1) and (2) of the lemma, so their composition
satisfies the lemma. �

Proof of Theorem 4.1. Since m ≥ 4, there is a vertical 2-sphere S ′ = S ′(c1, . . . , cn−1) ⊂
(S3, K ′) with at least two twist regions on each side. By Lemma 4.2 the 2-sphere
S = ϕ(S ′) ⊂ (S3, K) is a vertical 2-sphere.

Let S ′v be an almost vertical 2-sphere that differs from S ′ by a single isolating 2-
sphere. By Proposition 4.4, we may adjust the isotopy ϕ to take S ′v to an almost
vertical 2-sphere differing from ϕ(S ′) by a single isolating 2-sphere. By induction,
adjust ϕ one twist region at a time to obtain an isotopy taking each almost vertical
2-sphere to an almost vertical 2-sphere, fixing the previously adjusted vertical and
almost vertical 2-spheres. This proves the theorem. �

4.2. Matching twist regions to twist regions. From now on, the proof of Theo-
rem 1.1 follows the proof of the odd case r, as we have overcome the problems that
could be caused by the possible compressibility of vertical 2-spheres when r is even.
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Definition 4.5. An allowable twist region is a twist region that can be isolated by
Ω′ = ∆′1 ∪ ∆2 for ∆′1, ∆′2 coming from vertical 2-spheres. Allowable twist regions do
not lie on the far left or far right of the diagram. An almost allowable twist region is
one that lies on the far left or far right, but not in one of the top corners. That is, it is
a twist region t′i,j ∈ K ′ such that either i is odd with 3 ≤ i ≤ n− 3 and j ∈ {1,m− 1}
or i is even with 4 ≤ i ≤ n− 4 and j ∈ {1,m}.

The only twist regions which are not allowable or almost allowable are the extreme
right and left twist regions in rows 1, 2, n− 2 and n− 3. These twist regions are called
extreme twist regions.

Corollary 4.6. If t′i,j ∈ K ′ is an allowable or almost allowable twist region isolated by

vertical 2-spheres S ′1 and S ′2, then the bounded component of S3 r (ϕ(S ′1) ∪ ϕ(S ′2)) in
(S3, K) is a rational 2-tangle containing a single twist region tr, s. �

Corollary 4.7. Let t′i,j be an allowable twist region in K ′. Then the allowable and
almost allowable twist regions adjacent to t′i,j in K ′ are mapped to twist regions adjacent

to ϕ(t′i,j) = tr,s in (S3, K) in the same order, up to rotation along a vertical axis through
the tr,s twist region.

Proof. Let S ′1 and S ′2 be vertical 2-spheres that isolate t′i,j. As in Corollary 4.6, the
images ϕ(S ′1) and ϕ(S ′2) isolate the twist region tr,s in K. Each allowable or almost
allowable twist region adjacent to t′i,j (at most four in the general case) shares a segment
of K ′ with t′i,j. This segment intersects only one of the vertical 2-spheres S ′1 or S ′2, so
it must be mapped to a segment meeting the image of the same vertical 2-sphere in
(S3, K). Thus adjacent allowable and almost allowable twist regions are mapped to
adjacent allowable and almost allowable twist regions. Twist regions are symmetric
with respect to rotations in the vertical and horizontal axis. However the long bridge
at the bottom of the braid prevents a rotation in the horizontal axis. �

Lemma 4.8. If t′i,j is an allowable or almost allowable twist region in (S3, K ′) that

is mapped to tr,s in (S3, K) then the number of crossings in the twist regions agree:
ar,s = a′i,j.

Proof. The proof is identical to that of [10, Lemma 4.11]. �

In light of Lemma 4.8, it remains to check that the extreme twist regions are also
fixed. Again the argument is just as the argument in the odd r case. First, we define
isolating spheres for extreme twist regions. Let γ′ be a curve encircling the top left
twist regions t′1,1 and t′2,1, as in Figure 7. Cap γ′ by disks in front of and behind P to
obtain a 2-sphere S ′` bounding the rational 2-tangle 1/(a′1,1 + 1/a′2,1). Similarly form
S ′r in the top right.

Lemma 4.9. The 2-sphere ϕ(S ′`) bounds a rational 2-tangle corresponding to the con-
tinued fraction expansion 1/(a1,1+1/a2,1) (or 1/(a1,m−1+1/a2,m)). Thus, up to rotation,
a1,1 = a′1,1 and a2,1 = a′2,1. Similarly for the right corner.
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a1,1

a2,1

a1,2

a2,2

γ

Figure 7. The γ curve for an isolating sphere for the extreme twist
regions. Figure originally from [10].

Proof. Because a sub-arc of γ′ lies on the vertical 2-sphere S ′(1, . . . , 1), the image ϕ(S ′`)
shares a sub-disk with the vertical 2-sphere ϕ(S ′(1, . . . , 1)). By Corollary 4.7, without
loss of generality ϕ(S ′(1, . . . , 1)) = S(1, . . . , 1). Since points K ∩ ϕ(S ′`) are fixed on
S(1, . . . , 1), it follows that ϕ(S ′`) is a sphere bounding the extreme tangle in the top left
corner of K. Thus 1/(a′1,1 +1/a′2,1) = 1/(a1,1 +1/a2,1). Then a1,1 = a′1,1 and a2,1 = a′2,1,
and similarly for the extreme twist regions in the right corner of the plat. �

4.3. Proof of Theorem 1.1. We have now assembled all the required pieces.

Proof of Theorem 1.1. Let K ⊂ S3 be a knot or link with a 2m′ e-plat projection K ′,
where m′ ≥ 4, K ′ is 3-highly twisted, and length n′ > 4m′(m′ − 2). Assume further
that K has an additional 2m plat projection or e-plat projection K. Then Theorem 2.7
implies m ≥ m′. If m′ = m, and K is 1-highly twisted, then Corollary 3.10 implies
that the length n of K equals the length n′. So K is an e-plat projection.

It then follows from Corollary 4.6 through Lemma 4.9 that the twist regions in both
plats are equal, namely ti,j = t′i,j up to rotation along a vertical axis, and ti,j and t′i,j
contain the same number of (signed) crossings, i.e. ai,j = a′i,j. Thus up to rotation in
a vertical axis, K = K ′ and the plat is unique. �
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