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ABSTRACT. The triangulation complexity of a closed orientable 3-manifold M is the minimal
number of tetrahedra in any triangulation of M. The main theorem of the paper gives upper and
lower bounds on the triangulation complexity of any closed orientable hyperbolic 3-manifold that
fibres over the circle. We show that the triangulation complexity of the manifold is equal to the
translation length of the monodromy action on the mapping class group of the fibre S, up to a
bounded factor, where the bound depends only on the genus of S.

1. INTRODUCTION

The triangulation complexity A(M) of a closed orientable 3-manifold M is the minimal number of
tetrahedra in any triangulation of M. Despite its naive definition, it has some attractive properties. An
obvious but important property is that only finitely many 3-manifolds have triangulation complexity
less than a given number. It is also useful in normal surface theory, where it is a natural measure of
complexity for M. However, like other invariants of manifolds that are defined as the minimum of
some quantity, it is neither easy to compute nor of obvious topological significance. Indeed, precise
values for A(M) are known for a few relatively small examples (see for example [23], [25]) and for a
few infinite families [27, 29, 14, 17, 18, 15, 16].

It is the main goal of this paper to establish that triangulation complexity is a good invariant of
3-manifolds that relates to many other key topological and geometric quantities. Our focus will be on
3-manifolds M that fibre over the circle. We will relate A(M) to the geometry of the mapping class
group of the fibre and to its Teichmiiller space. As a consequence, the modern theory of mapping
class groups can be applied to compute A(M) to within a bounded factor, where the bound depends
on the topology of the fibre.

1.1. Translation length and analogous results. There is an obvious analogy between the
triangulation complexity of a hyperbolic 3-manifold M and its volume. Indeed, there is a well-known
inequality due to Gromov and Thurston [32], which states that the hyperbolic volume of M is at
most v3A(M), where vs is the volume of a regular hyperbolic ideal 3-simplex. A beautiful and
important theorem of Brock [6] relates the hyperbolic geometry of a fibred hyperbolic 3-manifold
with the Weil-Petersson geometry of Teichmiiller space. Specifically, suppose that M fibres over the
circle with fibre S and monodromy ¢: S — S. The monodromy induces an action on the Teichmiiller
space of S that is an isometry with respect to both the Weil-Petersson and Teichmiiller metrics.

Whenever one has an isometry h of a metric space (X, d), one can consider its translation length
lx (h), which is defined to be

Ux(h) =inf{d(h(z),z) : 2 € X}.
One can also define its stable translation length {x(h) by
Ix(h) = inf{d(x, hWN(2))/N : N € Z},

where z € X is chosen arbitrarily. This is independent of z € X, the infimum is in fact a limit as
N — o0, and it is at most the translation length; see [4, I1.6.6]. We denote the translation length of
the action of ¢ on the Teichmiiller space of S with the Weil-Petersson metric by lywp(g)().
There are also many simplicial complexes associated with the surface S. Brock considers the
pants complex P(S). This has a vertex for each collection of disjoint simple closed curves on S that
1
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divide it into a union of pairs of pants, and two vertices are joined by an edge when the associated
collections of curves are related by a simple type of move. One can assign a path metric to this
complex by declaring that each edge has length one, and then the monodromy ¢ acts on it by an
isometry. One can again therefore define its translation length £p(g)(¢). The following is Brock’s
theorem [6, Theorem 1.1].

Theorem 1.1 (Brock). Let S be a compact orientable surface. Then the following quantities are all
within bounded ratios of each other, where the bounds only depend on the Euler characteristic of S,
for a pseudo-Anosov homeomorphism ¢ of S':

(1) the hyperbolic volume of the fibred manifold (S x I)/¢;
(2) the Weil-Petersson translation length bywp(s)(®);
(3) the translation length {p(sy(¢) in the pants complex of S;

(4) the stable translation length Up(g) ().

There are many other interesting invariants of hyperbolic 3-manifolds and many other complexes
associated with a compact orientable surface. One is naturally led to ask whether any of these other
quantities are related as in Brock’s theorem. A theorem of Futer and Schleimer asserts that there is
another relationship of this form [11]. This involves the arc complex A(S), which has a vertex for
each isotopy class of properly embedded essential arc in S and where two vertices are joined by an
edge if their associated arcs can be isotoped to be disjoint.

Theorem 1.2 (Futer—Schleimer). Let S be a compact orientable surface with non-empty boundary.
Then the following quantities are all within bounded ratios of each other, where the bounds only
depend on the Fuler characteristic of S, for a pseudo-Anosov homeomorphism ¢ of S':

(1) the volume of a maximal collection of cusps for the hyperbolic manifold (S x I)/p;
(2) the stable translation length { 4(s)(¢) in the arc complex of S.

1.2. Main results. In this paper, we continue this theme by relating the triangulation complexity
A(M) with the discrete geometry of the mapping class group of S and with the Teichmiiller space of
S. The following is our main theorem.

Theorem 1.3. Let S be a closed orientable surface of genus at least two, and let ¢: S — S be a
pseudo-Anosov homeomorphism. Then the following quantities are within bounded ratios of each
other, where the bounds only depend on the genus of S and a choice of finite generating set for the
mapping class group of S':

(1) the triangulation complexity of (S x I)/d;

(2) the translation length of ¢ in the thick part of the Teichmiiller space of S;

(8) the translation length of ¢ in the mapping class group of S;

(4) the stable translation length of ¢ in the mapping class group of S.

We now explain these terms in a bit more detail. The mapping class group of S, denoted MCG(SS),
is well known to be a finitely generated group. Once one picks a finite set of generators, it inherits
a word metric. Different choices of finite generating sets give different metrics, but any two such
metrics remain within a bounded ratio of each other. For the sake of being definite, we can pick a
standard generating set, for example as in [22], which then determines the metric on MCG(S).

The Teichmiiller space of S can be viewed as the space of marked hyperbolic structures on S.
Its thick part is the subset consisting of hyperbolic structures where every geodesic has length at
least some € > 0. A suitable choice of € must be made. One normally uses a version of the Margulis
constant, so that the union of geodesics with length at most € is a union of disjoint simple closed
curves. We will choose € to have the additional property that the thick part of Teichmiiller space is
path-connected. When Teichmiiller space is given one of its usual metrics, say the Weil-Petersson
metric or the Teichmiiller metric, the thick part inherits a path metric. We use either of these metrics.

The mapping class group of S acts properly discontinuously and cocompactly on the thick part.
Thus it is a standard consequence of the Svarc-Milnor lemma that MCG(S) with its word metric
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and the thick part of Teichmiiller space are quasi-isometric; see [4, Proposition 8.19]. Hence, for
any orientation-preserving homeomorphism ¢ of S, the translation lengths of ¢ on MCG(S) and on
the thick part of Teichmiiller space are within a bounded ratio of each other. So, the relationship
between the second and third quantities in Theorem 1.3 is easy and well known. The relationship
between the third and fourth quantities is also probably well known; we give a proof in Section 3.

It is the relationship with the triangulation complexity of the fibred manifold (S x I')/¢ that is new.
One of the main consequences of Theorem 1.3 is that it is now possible to compute the triangulation
complexity of fibred 3-manifolds up to a multiplicative error. This is because the translation length in
MCG(S) is computable up to a bounded factor, by a theorem of Masur, Mosher and Schleimer [24];
see Section 3 for more details.

Analagous to his theorem about the volume of fibred 3-manifolds, Brock [5] also proved a result
about geometrically finite hyperbolic structures on S x [0,1] . He showed that the volume of the
convex core of such a 3-manifold is bounded above and below by linear functions of the Weil-Petersson
distance between the points in Teichmiiller space associated to S x {0} and S x {1}. We also have a
result in this spirit.

Theorem 1.4. Let S be a closed orientable surface of genus at least two and let Ty and Ty be
non-isotopic 1-vertex triangulations of S. Then the following are within a bounded ratio of each other,
the bound only depending on the genus of S':

(1) the minimal number of tetrahedra in any triangulaton T of S x [0, 1] such that the restriction
of T to S x {0} equals Ty, and the restriction of T to S x {1} equals Ty;
(2) the minimal number of 2-2 Pachner moves relating Ty and T7.

In fact, a version of this theorem is the main technical result of the paper, and forms the core of
the proof of Theorem 1.3.

1.3. Applications. Implicit in the statement of Theorem 1.3 is that for a pseudo-Anosov homeo-
morphism ¢: S — S, its translation length £\icq(s)(¢) and its stable translation length ZMC(;(S) (0)
lie within a bounded ratio of each other, where the bound depends only on the genus of S. This is in
fact a rapid consequence of the theorem of Masur, Mosher and Schleimer mentioned above [24], which
interprets translation length in terms of splitting sequences for train tracks. However, a consequence
of Theorem 1.3 is that the triangulation complexity of a fibred 3-manifold and its ‘stable’ triangulation
complexity (when this term is defined in the obvious way using powers of the monodromy) lie within
a bounded ratio of each other. Specifically, we have the following result.

Corollary 1.5. Let S be a closed orientable surface. Then there is a constant k > 0 (depending only

on the genus of S) such that, for any pseudo-Anosov homeomorphism ¢ of S and any positive integer

N,

A((S x I) /o)
N

Our methods can also determine the triangulation complexity of lens spaces. These have also been
extensively studied by Jaco, Rubinstein and Tillmann [14]. They conjectured that the triangulation
complexity of the lens space L(p, q) can be computed in terms of the continued fraction expansion of
p/q. Using Theorem 1.4, we confirm that their conjecture is true, up to a bounded multiplicative
error. This will appear in a forthcoming paper [21].

RA((S x 1)/9) < < A((S x 1)/9).

Theorem 1.6. Let L(p,q) be a lens space, where p and q are coprime integers satisfying 0 < g < p.
Let [aq,...,a,] be the continued fraction expansions of p/q where each a; > 0. Then there is a
universal constant k > 0 such that

kZaz‘ < A(L(p,q) < Zai-
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1.4. Further work. We conjecture that the main result of this paper, Theorem 1.3, should also be
true for compact orientable fibred 3-manifolds with non-empty boundary. It seems likely that the
methods introduced in this paper might lead to a proof of this. However, the generalisation does not
seem to be immediate. One might be tempted to double the bounded manifold to obtain a closed
one, but the resulting monodromy is not pseudo-Anosov. Alternatively, one might attach solid tori
to the boundary to extend the manifold to a closed one, but again the resulting monodromy need
not be pseudo-Anosov and even if it is, then its translation length in the mapping class group of the
closed surface may be much less than the original translation length in the bounded surface. One
might alternatively try to adapt the proof of the main theorem. However, various aspects of the
argument require the fibre to be closed. Nevertheless, this seems to be a promising area for further
research, which would have some attractive applications.

We also believe that the main theorem should hold for arbitrary orientation-preserving homeomor-
phisms ¢: S — S (other than those that are isotopic to the identity), not just pseudo-Anosov ones.
One might attempt to prove such a result by cutting the surface along some disjoint essential simple
closed curves C' into pieces, where on each piece ¢ is either the identity or pseudo-Anosov. This is
possible after possibly passing to a power of the monodromy. These curves in S then determine a
collection of disjoint incompressible tori in the fibred manifold M, and if we cut along these tori, then
we obtain a lower bound on the triangulation complexity of each of the pieces, using the conjectured
version of our main theorem in the case with non-empty boundary. However, this is not enough to
obtain the correct lower bound on the triangulation complexity of the original manifold M. This is
because one loses track of possible Dehn twists along the curves C' in S. Thus, to prove the main
theorem for general homeomorphisms ¢, one either needs to work with a version of the mapping class
group for bounded manifolds, where isotopies of the boundary are not allowed, or one needs to adapt
the techniques of this paper to deal with homeomorphisms that may have invariant multi-curves.

Another useful direction that one might take is to consider manifolds M that are not given as a
fibration, but that are given using a Heegaard splitting. Specifically, one can fix a Heegaard surface
S that separates M into two handlebodies V' and W. In this paper, we consider the spine graph
Sp(S), which has a vertex for each spine of S up to isotopy and where two vertices are joined by
an edge if and only if the corresponding spines are related by the contraction or expansion of an
edge; see Definitions 2.1 and 2.5 for more details. Associated to each of the handlebodies V and W,
there are subsets Dy and Dy of Sp(.S), which we call disc subsets defined as follows. We say that
Dy consists of those spines I in .S with the property that some subset of I' forms the boundary of a
union of disjoint properly embedded discs D in V', such that V\\D is a ball. We define Dy, similarly.

It is reasonable to make the following conjecture.

Conjecture 1.7. Let M be a closed orientable manifold with a Heegaard surface S that divides
M into handlebodies V- and W. Then the complexity A(M) is bounded above and below by linear
functions of the distance in Sp(S) between the disc subsets Dy and Dy .

Our result about lens spaces, Theorem 1.6, is a confirmation of this conjecture in the case where
S is a torus. This is because in this case, the distance between Dy and Dy is coarsely the sum of
terms in the continued fraction expansion. See [21] for more details. Given that the techniques of
this paper rely so heavily on almost normal surface theory, which was specifically designed to deal
with Heegaard splittings, it is tempting to think that this conjecture may be within reach.

1.5. Outline of proof. The first step is to transfer the problem from considering distances in the
mapping class group to considering spines of surfaces, which are more geometric and easier to work
with. In Section 2, we introduce the spine graph Sp(S) for the surface S mentioned above. We show
that the spine graph Sp(S) is quasi-isometric to MCG(S). So, instead of considering fyicq(s)(¢) and
chg(S) (¢) in Theorem 1.3, we can consider £g,(s)(¢) and Zsp(s) (¢). The central part of the proof is
to show that these quantities are within a bounded factor of A(M), where M = (S x [0, 1])/¢.
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It is fairly straightforward to bound A(M) linearly above in terms of £gys)(¢). We achieve this in
Section 2 by building a triangulation of M from a path in Sp(.S) joining a spine to its image under ¢.
The main work is in showing that /g,(s)(¢) is bounded above by a linear function of A(M).

The broad idea is as follows. Start with a triangulation 7 for M where the number of tetrahedra
A(T) equals A(M). Put a fibre S in normal form, taking one with a minimal weight, defined in
Section 4. When we cut along S we obtain a copy of S x [0, 1] that inherits a handle structure H from
the triangulation 7. The surfaces S x {0} and S x {1} inherit handle structures, where each handle
is a component of intersection between S and a handle of . These handle structures determine
cell structures on S x {0} and S x {1} by declaring that each handle is a 2-cell. The gluing map ¢
from S x {1} to S x {0} preserves these handle structures and so is cell-preserving. Pick a spine I" in
S x {0} that is a subcomplex of the 1-skeleton of the cell structure; such a spine is called cellular.

The main part of the proof is to isotope I' across S X [0, 1], making modifications to the spine as
we go, until it is a subcomplex I of the cell structure on S x {1}. The key claim is that the number
of steps in Sp(9) between T and T is at most a linear function of A(T). Of course, the image of T
under the gluing map ¢ will probably not be equal to I'. But both it and I' are subcomplexes of the
same cell structure on S x {0}, and this allows us to relate them by a bounded number of steps in
Sp(S), done in Section 2. By the end of this process, we have found a path in Sp(S) relating T" and
(), with length that is at most a linear function of A(7"). This will prove the main theorem.

We now explain how to find the sequence of steps in Sp(S) taking I" to IV. Using the machinery
of normal and almost normal surface theory, between S x {0} and S x {1} lies a collection of normal
surfaces, almost normal surfaces, and surfaces interpolating between the two. To form this collection,
start with a collection of disjoint non-parallel normal fibres that satisfy a maximality property.
Between each of these, there is an almost normal fibre. Start with any almost normal fibre and apply
weight-reducing isotopies, all in the same transverse direction. We define these isotopies in Section 5,
having introduced the basic definitions and results about normal and almost normal surfaces in
Section 4. If we apply these isotopies to an almost normal surface in our collection, then we show
that we end up at a normal surface. By the maximality of our initial collection of normal surfaces,
this normal surface must be parallel to one in our collection. In this way, we get a collection of fibres
interpolating between S x {0} and S x {1}. Some of these are normal, some are almost normal and,
between these, we have a type of surface that we call nearly normal.

Using usual isotopy moves to simplify surfaces, it will not be the case that we obtain an upper
bound on the number of surfaces in our collection. Thus, even if we were able to bound the number
of steps to transfer a spine between any pair using these usual moves, it would still not be the case
that we could obtain a linear upper bound on the distance in Sp(S) between I and I".

In order to deal with this problem, we introduce isotopies, known as generalised isotopy moves,
that have a more drastic effect on the fibres. These are defined in terms of the parallelity bundles of
the normal and almost normal surfaces. This terminology is recalled in Section 6. A large portion of
the argument of this paper concerns parallelity bundles, and analysing their topology.

For a normal or almost normal surface S, the space between two parallel normal discs of S is an
I-bundle. These I-bundles patch together to form the parallelity bundle for the exterior of S. Its
horizontal boundary is a subsurface of the boundary of the exterior of S, and its vertical boundary is
a collection of properly embedded annuli. It was shown in [20] that this I-bundle may be extended to
a possibly larger I-bundle B with incompressible horizontal boundary, called a generalised parallelity
bundle. Each component of B either is an I-bundle over a disc, an I-bundle over an annulus, or
has incompressible vertical boundary (see Theorem 6.19). In particular, when a component of B
has its entire horizontal boundary in the same side of the same fibre, then it is an I-bundle over
a disc or an annulus. This is a consequence of the way that the vertical annuli can be embedded
in S x [0,1]. In our sequence of isotopies, when a fibre starts to enter such a component of B, we
can perform a generalised isotopy move, which moves it across this component in a single step. By
allowing these larger moves, we can ensure that the number of moves is at most a linear function of
A(T). Properties of such moves are given in Section 7.
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We need to control the number of modifications to the spine when a generalised isotopy move is
performed. This is done for all but one case in Section 8. The difficult part is the move involving an
I-bundle over an annulus. This is called an annular simplification. What is important here is the
width of this annulus, which is the distance between its boundary components, as measured using
the cell structure. Annular simplifications are analysed in Section 9.

In Section 10, we combine these results to give a proof of Theorem 1.4, using a delicate inductive
argument to pick normal fibres carefully.

We give the proof of the main theorem in Section 11. This uses bounds on modifications as we
pass a spine I" from S x {0} to a spine IV in S x {1}. We then need to convert this to ¢(T") in Sp(S).
Using the results in Section 2, the number of moves is bounded above by the number of 1-cells in
I". But unfortunately we do not have a good upper bound on this quantity. In order to circumvent
this difficulty, we consider not the fibred manifold with monodromy ¢, but rather some finite cover
with monodromy some high power ¢”. In order to compare the translation length fg,(s)(¢) and
lsp(s)(@"), we relate them both to the stable translation length Zsp(s)(@. We do this in Section 3,
using the machinery of train tracks.

1.6. Acknowledgements. J. Purcell was partially supported by the Australian Research Council.
M. Lackenby was partially supported by the EPSRC.

2. THE SPINE GRAPH AND TRIANGULATION GRAPHS

In this section, we show that we can transfer the problem of proving Theorem 1.3 from considering
distances in the mapping class group to considering spines of surfaces, which are more geometric
and easier to work with. This is done in Proposition 2.7. Using this, we bound the triangulation
complexity A((S x I)/¢) from above by a linear function of the translation length of ¢ in the mapping
class group, in Proposition 2.8.

2.1. The spine graph. Throughout this paper, our graphs may have multiple edges between vertices
and may have edge loops.

Definition 2.1. A spine for a closed surface S is an embedded graph I" such that S\\I is a disc,
and I' has no vertices with valence 0, 1 or 2. It is a trivalent spine if every vertex has valence 3.

When an embedded graph satisfies the first of the above conditions, but has some vertices of
valence 1 or 2, then there are some easy modifications that one can apply to turn it into a spine. If
there is a valence 1 vertex, then we remove it and its incident edge. We continue until there are no
valence 1 vertices. We can then remove each valence 2 vertex by amalgamating its incident edges
into a single edge. In some of the arguments below, the changes that we make to a spine may create
vertices with valence 2, but in this case, we may immediately perform the above modification to turn
it back into a spine.

Dual to a spine is a cell structure for the surface with a single vertex, in which every 2-cell has at
least 3 sides. When the spine is trivalent, then its dual is a 1-vertex triangulation of the surface.

Lemma 2.2 (Bound on vertices and edges, spine). Let I' be a spine for a closed orientable surface
S. Then T has at most 4g(S) — 2 vertices and at most 6g(S) — 3 edges.

Proof. Let d(v) denote the degree of a vertex v. Let V and E denote the number of vertices and
edges of the spine. Then, because S\\I' is a single disc, we deduce that

X(S):V_E+1:1+Z<1—d(2v))§1—v

where the sum ranges over all vertices v. Hence, V' < 2 — 2x(5) = 4g(S) — 2. So
E=V+1-x(S) <3-3x(S)=6¢(S) —3. O
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FIGURE 1. An edge contraction/expansion
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FIGURE 2. 2-2 and 1-3 Pachner moves

This implies that the sphere does not have a spine, since it cannot have a negative number of
vertices. In a similar spirit, we have the following.

Lemma 2.3 (Bound on triangles and edges, triangulation). Let T be a triangulation of a closed
orientable surface with V' vertices. Then the number of triangles is 2V + 4¢g(S) — 4 and the number
of edges is 3V + 6g(S) — 6.

Proof. Let E and F be the number of edges and triangles. Then 3F = 2F, and so x(S) =V —-E+F =
V — (F/2). Rearranging gives the required formulae. O

We now describe some modifications to spines.

Definition 2.4. In an edge contraction on a spine I', one collapses an edge that joins distinct vertices,
thereby amalgamating these vertices into a single vertex. An edge expansion is the reverse of this
operation. See Figure 1.

Definition 2.5. The spine graph Sp(S) for a closed orientable surface S other than a 2-sphere is a
graph defined as follows. It has a vertex for each spine of .S, up to isotopy of S. Two vertices are
joined by an edge if and only if their spines differ by an edge contraction or expansion.

Closely related is the following concept.

Definition 2.6. The triangulation graph Tr(S) for a closed orientable surface S is a graph defined
as follows. It has a vertex for each 1-vertex triangulation of S, up to isotopy of S. Two vertices are
joined by an edge if they differ by a 2-2 Pachner move.

Recall that a 2-2 Pachner move on a triangulation removes an edge with distinct triangles on each
side of it, thereby forming a quad, and then it introduces the edge that is the other diagonal of this
quad. Similarly, a 1-8 Pachner move subdivides one triangle into three; see Figure 2. A 3-1 Pachner
mowve is the reverse of a 1-3 Pachner move.

More generally, for any positive integer v, define the graph Tr(S;v) as follows. It has a vertex for
each triangulation of S with at most v vertices, up to ambient isotopy. Two vertices of Tr(S;v) are
joined by an edge if the corresponding triangulations differ by a 1-3, 2-2 or 3-1 Pachner move.

A well known application of the Svarc-Milnor lemma, gives the following result.

Proposition 2.7 (Quasi-isometric to MCG(S)). For a closed orientable surface S other than a
2-sphere and a positive integer v, its spine graph Sp(S) and triangulation graphs Tr(S) and Tr(S;v)
are all quasi-isometric to the mapping class group of S.

Proof. This is an application of the Svarc-Milnor lemma; see [4, Proposition 8.19]. We just need to
verify that the hypotheses of this lemma hold.
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The triangulation graph Tr(S) is well-known to be connected. For example, given two 1-vertex
triangulations of S, we can remove their vertices to obtain ideal triangulations of the surface S’ that
has a single puncture. Two such ideal triangulations differ by a sequence of 2-2 Pachner moves, by
[19, Lemma 6]. Hence, the original 1-vertex triangulations differ by a sequence of 2-2 Pachner moves.

A similar argument gives that, for any positive integer v, the triangulation graph Tr(S;v) is
connected. Suppose that we are given two triangulations of S, each with at most v vertices. If they
have different numbers of vertices, then we can apply 1-3 Pachner moves to one of them until they
have the same number of vertices. We can then remove their vertices, creating ideal triangulations of
the same punctured surface S’. As above, these are related by a sequence of 2-2 Pachner moves.

The spine graph is connected, for a similar reason. Given two spines for S, we may apply edge
expansions to each of them until each of their vertices is 3-valent. The resulting spines are dual to
1-vertex triangulations of S. These are related by a sequence of 2-2 Pachner moves. Dual to a 2-2
Pachner move is an operation on a spine that can be achieved by an edge contraction followed by an
edge expansion.

Thus the spine graph and triangulation graphs are geodesic metric spaces. The mapping class
group acts on them properly, using the fact that if a homeomorphism of a surface fixes a spine or
triangulation pointwise, then it is isotopic to the identity. Hence, the subgroup of the mapping class
group that sends a spine or triangulation back to itself, up to isotopy, is finite.

Finally, the actions of the mapping class group on the spine graph and triangulation graphs
are cocompact. That is, up to orientation-preserving homeomorphism of S, there are only finitely
many spines for S and only finitely many triangulations with at most v vertices. This follows from
Lemmas 2.2 and 2.3.

Thus, all the requirements of the Svarc-Milnor are verified, and so the mapping class group of S is
quasi-isometric to the spine graph and to the triangulation graphs. O

We are now in a position to prove one direction in Theorem 1.3, which is that the triangulation
complexity A(M) of a fibred 3-manifold M with monodromy ¢ is bounded above by a linear function
of the translation length of ¢ in the mapping class group of S.

Proposition 2.8 (Upper bound on complexity). Let S be a closed orientable surface, ¢ an orientation
preserving homeomorphism of S, and let M denote the mapping torus (Sx1I)/¢. There exist constants
A and B, depending only on S, such that the triangulation complexity A(M) is bounded above by

A(M) < A-lvcas) () + B.

Proof. Tt suffices to focus on the case where S is not a 2-sphere, since any orientation-preserving
homeomorphism of the 2-sphere is isotopic to the identity. Thus, we may assume that S has a
1-vertex triangulation. Since MCG(S) is quasi-isometric to Tr(.S), it suffices to bound A(M) above in
terms of the translation length in Tr(S). Let 7 be a 1-vertex triangulation of S such that d(¢(T),T)
equals the translation length f1y(g)(¢). First build a triangulation of S x [0, 1] so that the induced
triangulations of S x {0} and S x {1} are both isotopic to T. For example, for each triangle T of T,
take the prism T x [0,1], then triangulate it by coning to a central vertex. This can be achieved so
that the number of tetrahedra is bounded above by a linear function of the genus of S.

A shortest path in Tr(S) joining T to ¢(7T) specifies a sequence of 1-vertex triangulations of S,
each obtained from its predecessor by a 2-2 Pachner move. At each such move, attach a tetrahedron
onto S x {1} so that in the new triangulation of S X [0, 1] the induced triangulation of S x {1} inherits
the new triangulation. In this way, we build a triangulation of S x [0, 1] where the bottom S x {0}
is triangulated using 7 and the top S x {1} is triangulated using ¢(7) and where the number of
tetrahedra is bounded above by the translation length of ¢ in Tr(S) plus a constant. Glue bottom to
top via ¢ and we thereby construct our required triangulation of M. O

2.2. Edge contractions and expansions on the same surface. Proposition 2.8 gives an upper
bound on triangulation complexity in terms of translation length in the mapping class group. We
need a lower bound to finish the proof of Theorem 1.3. We will obtain the lower bound by transferring
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spines of surfaces through the triangulation of the manifold (S x I)/¢$, bounding the number of edge
contractions and expansions along the way. There are two steps for this transfer. First, we will
transfer a spine T’ from S x {0} to a spine I in S x {1}. This step is difficult, and will require most
of the rest of the work in the paper. The second step is to bound the number of edge contractions
and expansions to transfer the spine I'" in S x {1} to ¢(I"). This second step does not require much
additional work, and so we give a bound in this subsection.

We begin with a lemma that bounds the number of edge expansions and contractions taking a
given spine on a surface with boundary to the dual of a fixed ideal triangulation. This is not exactly
the setting we need, since our surfaces are closed, but we can easily convert our problem to this one,
in Lemma 2.10. The ideas of the proof are taken from [19].

Recall that a spine for a compact orientable surface S with non-empty boundary is a graph I’
embedded in the interior of S with no vertices of valence 0, 1 or 2, and such that S\\I is a regular
neighbourhood of 95.

Lemma 2.9 (Replacing spine with the dual of an ideal triangulation). Let S be a compact orientable
surface with non-empty boundary. Let T' be a spine for S and let T be an ideal triangulation with
edges T*. Then there is a sequence of at most 4|x(S)|- ([T NT|+1) edge expansions and contractions
taking T to the dual of T.

Proof. In [19], it was shown how to perform edge expansions and contractions to transform T' to
the dual of T. If one follows this proof, one readily obtains the bound in the lemma. We briefly
sketch the argument. We first convert I' to a spine with only trivalent vertices using edge expansions,
without changing its intersection with 7. Each edge expansion increases the number of edges by 1.
By an argument analogous to that in Lemma 2.2, the number of edges of a spine of S with trivalent
vertices is 3|x(5)|. So, the number of edge expansions is less than 3|x(5)].

The surface S\\TI" is a collection of annuli, one for each component of 9S. The 1-skeleton of T
intersects these annuli in arcs. We may assume that these arcs miss the vertices of I'. No arc can run
from 95 back to 95 (without meeting I'), since every edge of an ideal triangulation is essential in S.
If every arc runs from 95 to I', then T is dual to I". On the other hand, if some arc runs from I"
to I', then an outermost one in S\\I" separates off a disc. This disc lies in a triangle of T', and has
both endpoints on the same edge. Using this disc, we may apply at most 4|x(5)| edge contractions
and expansions to I and reduce [T NT|. So after at most 4|x(S)| - |[I' N T!| edge expansions and
contractions, we end with the spine dual to T O

The following lemma will be used in the proof of Theorem 1.3, to transfer a spine coming from
¢(S x {1}) to a spine on S x {0}.

Lemma 2.10 (Spines in the same cell structure). Let S be a closed orientable surface with a cell
structure C. Let T' and T be spines for S that are both subcomplexes of C. Let n be the number of
1-cells in T'. Then T and I differ by a sequence of edge expansions and contractions with length at
most 48g(S)?n.

Observe that n in the above lemma can be arbitrary, even for a fixed surface, since the 1-cells are
counted in C.

Proof of Lemma 2.10. Form a 1-vertex triangulation T' dual to I, as follows. Pick a point p in the
interior of a 2-cell to be the vertex. For each edge of I/, pick a point in a 1-cell lying in that edge.
Construct arcs coming out from this point, from each side of the edge, and ending at p. The union of
these two arcs will form edges of T'. Since the vertices of I need not be trivalent, we may need to
add further edges to T" to make it a triangulation. We can ensure that the edges of T" are transverse
to the 1-cells of C. We can further ensure that each edge of T intersects each 1-cell of T' at most
once. The number of edges of T is 6g(5) — 3 by Lemma 2.3. So the number of intersections between
the edges of T and T is at most n(6g(S) — 3).
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FiGURE 3. Top: The three types of split; Bottom: A slide

Now apply Lemma 2.9 to the ideal triangulation obtained from T by removing p. We deduce
that there is a sequence of at most 4|x(S\\N(p))| (I N T + 1) < 48¢(S5)?n edge expansions and
contractions taking I' to I". O

3. STABLE TRANSLATION LENGTH IN THE MAPPING CLASS GROUP

In this section, we will collate some useful facts about the mapping class group MCG(S). We
will discuss results of Agol [1], Hamenstadt [12] and Masur, Mosher, and Schleimer [24], which will
demonstrate that the translation length in MCG(S) of a pseudo-Anosov ¢ is readily calculable up to
a bounded factor, where the bound only depends on the genus of S. Hence, as a consequence of our
main theorem, the triangulation complexity of (S x I)/¢ is also calculable up to such a factor.

3.1. Train tracks. We recall some terminology related to train tracks. A pre-track T is a graph
smoothly embedded in the closed orientable surface S where every vertex has degree three and such
that at each vertex of the graph, all three edges coming into that vertex share the same tangent line,
with one edge coming along the line in one direction, and the other two edges entering from the
other direction. The edges of the graph are called branches and the vertices are called switches. See
Figure 3 for some pictures of pre-tracks.

Now let 7 be a pre-track, and consider a component F' of S\\7. Its boundary consists of a union
of arcs, where each arc is identified with a branch of 7. When two such arcs meet in OF, it might or
might not be possible to join them to form a single smooth arc. If they cannot be joined in this way
at a point p in OF, we say that p is a cusp of F. Define the index I(F) of F to be x(F) minus half
the number of cusps in OF. The pre-track 7 in the closed orientable surface S is said to be a train
track if each component of S\\7 has negative index. It is filling if each component of S\\7 is, in
addition, a disc.

Lemma 3.1 (Complement of train track). A train track 7 in a closed orientable surface S has at
most 49(S) — 4 complementary regions.

Proof. The sum of indices I(F') over all components F' of S\\7 is equal to x(5). Because 7 is a train
track, each component has index at most —1/2. Thus the number of components of S\\7 is at most
—2x(S). The lemma follows. O

A train track 7 has a natural thickening N(7) called its fibred neighbourhood, as follows. Each
branch e is thickened to e x [—1,1]. The intervals {*} x [—1,1] are called fibres. At a switch v,
two branches e; and ey approach the switch from one direction and the third branch es approaches
from the other direction. To form N(7), we attach e; x [—1,1] and es x [-1,1] to e x [—1,1] by
identifying v x [-1,1] C ey x [-1,1] and v x [—1,1] C es x [—1, 1] with v x [-1,0] and v x [0, 1] in
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es X [—1,1]. The resulting subset N(7) of S contains 7 but is not actually a regular neighbourhood
of 7. However, it could become a regular neighbourhood after applying a small isotopy.

We say that a lamination £ is carried by the train track 7 if it lies within the fibred neighbourhood
N(7) and is transverse to the fibres. If, in addition, £ intersects every fibre of N(7), then it is fully
carried by 7. When L has a transverse measure, each fibre inherits a measure which is a non-negative
real number called its weight.

A train track 7 is known as recurrent if it fully carries a measured lamination. It is known as
transversely recurrent if there is a union of disjoint simple closed curves that intersects 7 transversely
away from its switches, and that intersects each branch at least once. The train track is said to be
birecurrent if it is recurrent and transversely recurrent.

3.2. Splits and slides. In this subsection, we present some well known modifications that one can
make to a train track 7.

If we pick a point p in the interior of a branch b of 7, the closure of each component of b — p is a
half-branch. Make such a choice of point for each branch, thereby expressing every branch as the
union of two half-branches. We say that a half-branch is large if at the switch to which it is incident,
there is no other half-branch coming in from the same direction. Otherwise, the half-branch is small.

A branch is large if both its half-branches are large. It is small if both its half-branches are small.
Otherwise, it is mized.

A split or a slide is one of the modifications to a train track 7 shown in Figure 3. There are three
possible splits that can take place at a large branch; the middle case is called a central split.

If we forget the tangential structure at each switch of a train track 7, we get a trivalent graph
embedded in S. When 7 is filling, this graph is dual to a triangulation of S. By Lemma 3.1, the dual
triangulation has at most k = 4¢(S) — 4 vertices. When two filling train tracks differ by a slide, the
associated triangulations differ by a 2-2 Pachner move. The same is true of non-central splits. When
two filling train tracks differ by a central split, their dual triangulations also differ by a bounded
number of Pachner moves, where the bound only depends on the genus of S. However, we will not
need to compute this bound. Hence, a sequence of slides and splits can be viewed as determining a
sequence of points in Tr(S; k). The following important result is [24, Theorem 6.2].

Theorem 3.2 (Masur-Mosher—Schleimer). There is a constant Q@ > 0, depending only on the genus
of S, with the following property. Let T; be a sequence of filling birecurrent train tracks in S, each
obtained from its predecessor from a slide or a split. Suppose that, in all subsequences consisting
only of slides, no two train tracks in the subsequence are isotopic. Then this sequence of train tracks
determines a Q-quasi-geodesic in Tr(S; k), where k = 4¢g(S) — 4.

The statement of Theorem 3.2 above is not stated identically to that of [24, Theorem 6.2], but it
follows immediately from that theorem. First, the fact that the train tracks are filling and birecurrent
is implicit in [24]; they define a train-track graph to have vertices consisting only of such train
tracks. Second, in [24, Theorem 6.2], it is shown that a sequence of trains tracks as in Theorem 3.2
determines a Q’-quasi-geodesic in this train-track graph, for some Q' > 0 depending only on the
genus of S. As discussed above, the sequence determines a path in Tr(S; k). Similar to the case of
the triangulation graph and the spine graph, the Svarc-Milnor lemma shows that the train-track
graph is quasi-isometric to MCG(S). The map from the train-track graph to Tr(S;k) that sends a
train track to its dual triangulation is MCG(S)-equivariant. Hence it is a quasi-isometry. Therefore,
a sequence in the train-track graph that forms a Q’-quasi-geodesic gives rise to a Q-quasi-geodesic in
Tr(S; k), for some @ > 0 depending only on the genus of S.

3.3. pseudo-Anosov homeomorphisms. Let ¢ be a pseudo-anosov homeomorphism of the closed
orientable surface S. Recall that there are two associated measured singular foliations (Fs, ps) and
(Fu, 1) and a real number A > 1 such that ¢(Fs, ps) = (Fs, Mis) and ¢(Fu, pta) = (Fuy A" ay).
The measured singular foliations are known as the stable and unstable measured singular foliations
for ¢, and A is the dilatation.
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Remark 3.3. There are differing conventions in the literature [33, 9, 7, 10, 1] as to whether the stable
lamination satisfies ¢(Fs, s) = (Fs, Mts) or (Fs, A" 1ug). We chose to adopt the former convention,
since this makes (Fj, us) an attracting fixed point in projective measured lamination space for the
action of ¢. This follows Casson and Bleiler’s presentation [7], and is consistent with the conventions

used by Agol [1].

We only focus on the stable foliation F;. One may split its leaves to form a measured lamination
(L, 1), which is then fully carried by a train track 7. The transverse measure of each branch is a
positive real number. These numbers satisfy simple linear constraints, which assert that at each
switch, the weight of the large half-branch coming into it is equal to the sum of the weights of two
small half-branches. Such an assignment of positive real numbers to the branches of 7 makes it a
measured train track (7,p). This data can be computed, via the following result of Bestvina and
Handel [3].

Theorem 3.4 (Bestvina—Handel). Let ¢ be an element of the mapping class group of S, given as a
product of standard generators. If ¢ has a pseudo-Anosov representative, then there is an algorithm
to compute a measured train track (7,u) for the stable measured foliation of ¢ and to compute the
dilatation of ¢, as an exact algebraic number.

Indeed, it is worth emphasing that 7 and p are readily computable in practice. For example, in the
closely related case of a pseudo-Anosov on a punctured surface, the program flipper [2] is a helpful
practical method of doing this.

3.4. Eventually periodic train track sequences. The stable measured lamination satisfies the
condition ¢(L, ) = (£, \u). Hence, the measured train tracks (7, ) and (¢(7), \=111) both carry the
same measured lamination. When two measured train tracks carry the same measured lamination,
then they differ by a sequence of measured splits, slides and their inverses, up to isotopy [28, Theorem
2.8.5]. This terminology is defined as follows. Suppose that (7, ) is a measured train track and that
b is a mixed branch. Then one may slide along b, as defined in Section 3.2, and the new train track
7/ inherits a measure. If b is a large branch, then one may split 7 at b, but in order that the new
train track naturally inherits a measure, only one of the three ways of doing this is permitted; this is
determined by the weights of the incoming small half-branches. We call this a measured split or slide.

A mazimal split of a measured train track (7, ) is the operation of simultaneously performing a
measured split along all the branches of maximal weight. Note that the branches of maximal weight
are necessarily large branches. As any two large branches cannot share any switches, there is no
concern about performing all these measured splits simultaneously.

It is important to note that there is one and only one possible maximal split that can be applied
to a measured train track.

The following was proved by Agol [1, Theorem 3.5], based on work of Hamenstadt [12].

Theorem 3.5 (Agol). Let ¢ be a pseudo-Anosov homeomorphism of a closed orientable surface S.
Let (1, 1) be a measured train track that fully carries the stable measured lamination of ¢. Then
there exists a sequence of measured train tracks (7, ) = (70, po), (71, 41), - - -, each obtained from the
predecessor by a mazximal split, such that the sequence is eventually periodic. That is, there exist
n>0,m >0 such that Tyim = &(Tn) and pinim = X", with X the dilatation of ¢.

It was also shown by Agol [1, Corollary 3.4] that if (7', ') and (7, u) are measured train track
fully carrying the stable measured lamination, then after sufficiently many maximal splits applied to
(7', 1), the resulting measured train track ends up in the periodic sequence for (7, ). This implies
that the train tracks in the periodic sequence are all transversely recurrent. This is because there is
certainly some measured train track (77, ) that carries the stable measured lamination and that is
transversely recurrent [28]. Transverse recurrence is preserved when a slide or split is performed on a
train track. Hence, the periodic sequence consists of transversely recurrent train tracks. They are
also recurrent, because they fully carry the stable measured lamination. Hence, they are birecurrent.
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Note also that the train tracks in Theorem 3.5 are all filling. For if not, then there is some essential
simple closed curve in their complement. This curve therefore lies in the complement of the stable
lamination. But it is well known that each complementary component of the stable lamination is
simply-connected (see [7, Lemma 5.3] for instance).

3.5. Stable translation length. Using the results in the previous subsections, we will prove the
following result, which is presumably well known.

Theorem 3.6 (Translation length and stable translation length). Let S be a closed orientable surface.
Then, there is a constant k > 0, depending only on the genus of S and a choice of finite generating
set for MCG(S), such that for any pseudo-Anosov homeomorphism ¢ of S,

klvca(s) (@) < bucas)(9) < bucas)(@)-
As a consequence, the translation length in the spine graph ls,(s)(¢) and the stable translation length
in the spine graph ZSp(S)(¢) also lie within a bounded ratio of each other.

Proof. The stable translation length of an isometry is always at most the translation length; see [4,
I1.6.6]. So we focus on the first inequality.

By Proposition 2.7, for each positive integer v, Tr(S;v) and Sp(S) are quasi-isometric to MCG(S).
It therefore suffices to prove that Zﬂ(s;v)(qﬁ) > k' lry(s,0)(¢) for some positive integer v and some
k' > 0 depending only on the genus of S.

Let (7,u) be a measured train track carrying the stable measured lamination for ¢. Let (r,p) =
(7o, f40), (T1, 1), - . . be the sequence of measured train tracks, each obtained from its predecessor by
a maximal split. By Theorem 3.5, there are integers n > 0 and m > 0 such that 7,4, = ¢(7,,) and
tntm = A1, The train tracks in the periodic sequence are birecurrent and filling. By forgetting
the smoothing information at each vertex, and taking the dual of the resulting graph, each train
track determines an element of Tr(S;v) for v = 4g — 4, by Lemma 3.1. Thus, we obtain a sequence
X0y -y Tptm 0 Tr(S;v) where @, 4m = ¢(x,). Each train track is obtained from its predecessor by
a maximal split, which is a composition of splits, each of which occurs at a branch, dual to an edge.
By Lemma 2.3, there are at most 18¢(S) — 18 edges in the triangulation. Hence this is a composition
of at most 18¢(S) — 18 splits.

From 7,, and beyond, no central splits are performed, because any central split reduces the number
of complementary regions by 1, whereas the equality 7,4, = ¢(7,) implies that the number of
complementary regions is unchanged. Hence, for i > n, ;11 is obtained from z; by at most 18¢(S)—18
Pachner moves. If we continue this sequence by setting z,,+; = ¢(x;), we can obtain a sequence of
elements of Tr(S;v) of length Nm, say, joining z,, to ¢~ (x,). By Theorem 3.2, this is a Q-quasi-
geodesic, for a constant @ that depends only on the genus of S. So, d(z,,d™ (z,)) > (Nm/Q) — Q.
So, letting N tend to infinity, we deduce that the stable translation length satisfies

z"I‘I'(S’;1J)(¢) > m/Q
But lry(s;0)(¢) < (18¢(S) — 18)m, and so setting k' = (18¢(S) — 18)7'Q !, we have proved

Ure(s30) (@) = Kby (,0) (D). U

Note that the integer m in the previous proof is calculable, as follows. By Theorem 3.4, (7, u)
may be constructed from an expression of ¢ as a product of standard generators of MCG(S). We
start with the train track (7,u) = (70, 0) and then start to perform maximal splits, creating a
sequence of measured train tracks (7, u;). Each time we create a new measured train track (7;, ),
we search for all possible homeomorphisms h: S — S taking 7; to some earlier 7;. This is clearly
algorithmically possible, because 7; and 7; induce cell structures on S, and the search for A is
the search for homeomorphisms that preserves this cell structure and that respects the smoothing
information at each switch. Hence, up to cell-preserving isotopy, there are only finitely many such
h. For each one, we check whether h is isotopic to our given homeomorphism ¢ and whether its
action on the measure p is just multiplication by A~'. According to Theorem 3.5, for some train
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FI1GURE 4. Normal and almost normal pieces, left to right: triangle, square, octagon,
tubed piece.

tracks (Ty4m, tntm) and (7, 1) in our sequence, such a homeomorphism h with these properties
will eventually be found. Since m is therefore calculable, qur( s50) (@) and £y, () are also calculable
to within a bounded factor. As Tr(S;v) and MCG(S) are quasi-isometric, this also implies that
ZMcg( 5)(¢) and lyica(s)(@) are also calculable to within a bounded factor. Unfortunately, this factor
itself is not known to be calculable.

4. NORMAL AND ALMOST NORMAL SURFACES

Road map: For M the mapping torus of ¢, we are trying to prove that there exist constants
A, B depending only on the genus of S such that A(M) > Alg,(5)(¢) + B. The idea of the proof
will be to cut M along a (nice) fibre S into S x [0, 1], then transfer a spine I' from S x {0} to a
spine I'' from S x {1}, and then use Lemma 2.10 to bound the distance in Sp(S) between ¢(I') and
I". Of course, S x [0,1] is a product and so we could simply isotope I" onto IV, but we will retain
greater control over these spines by ensuring that they are subcomplexes of suitable cell structures
on S. We will transfer the spine in S x {0} to the spine in S x {1} by passing it along a sequence
of normal surfaces, almost normal surfaces, and surfaces interpolating between them. This section
reviews definitions and results from normal and almost normal surface theory.

Throughout, M will be a compact orientable 3-manifold with a triangulation 7. To simplify later
arguments, we will also introduce a handle structure on M dual to 7. We will therefore extend
results on normal and almost normal surfaces in triangulations to those in a handle structure #.

Definition 4.1 (Normal surface, triangulation). An arc properly embedded in a 2-simplex is normal
if it is disjoint from the vertices and has endpoints on distinct edges.

A disc properly embedded in a tetrahedron is a triangle if its boundary consists of three normal
arcs. It is a square if its boundary consists of four normal arcs. See Figure 4, left.

A surface properly embedded in M is normal if its intersection with each tetrahedron of 7T is a
union of disjoint triangles and squares.

Definition 4.2 (Almost normal surface, triangulation). An almost normal piece properly embedded
in a tetrahedron is either a disc with boundary equal to eight normal arcs (known as an octagon) or
an annulus that is obtained from two disjoint normal triangles or squares by attaching a tube that
runs parallel to an edge of the tetrahedron (known as a tubed piece). See Figure 4.

A surface properly embedded in M is almost normal if it intersects each tetrahedon in a collection
of triangles and squares, except in precisely one tetrahedron, where it is a collection of triangles and
squares and exactly one almost normal piece.

For many of our results it is actually easier to consider a handle structure arising from a triangulation
T rather than the triangulation itself.

Remark 4.3 (Handle structure). In this paper, a handle structure on a 3-manifold or a 2-manifold
will always satisfy the following conditions:
(1) each i-handle D' x D*~% (k = 2 or 3) intersects the handles of lower index in dD? x D*~%;
(2) any two i-handles are disjoint;
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FIGURE 5. A handle structure arising from a triangulation. Shown also is a shaded
surface that respects the handle structure.

(3) in the case of a 3-manifold, the intersection of any 1-handle D' x D? with any 2-handle
D? x D' is of the form D' x a in D! x D? where « is a collection of arcs in D2, and of the
form 8 x D! in D? x D! where 3 is a collection of arcs in 9D?;

(4) any 2-handle runs over at least one 1-handle.

Definition 4.4 (Associated handle structure on a 0-handle, or 9M). Let H be a handle structure of
a 3-manifold M. Suppose each 0-handle has connected intersection with the union of the 1-handles
and the 2-handles.
(1) The boundary of each 0-handle inherits an associated handle structure. The 0-handles of
this structure are the components of intersection between the 0-handles and the 1-handles.
The 1-handles of the associated handle structure are the components of intersection between
the 0-handles and the 2-handles. The 2-handles of the associated handle structure are the
remainder of the boundary of the 0-handles, which are discs by assumption.
(2) The boundary of the 3-manifold also inherits a handle structure, where the i-handles are the
components of intersection between M and the i-handles of H.

Definition 4.5 (Dual handle structure to triangulation). Given a triangulation 7 of a compact
3-manifold M, there is a handle structure for M with a thin open collar neighbourhood of OM
removed. This is called the dual handle structure and is obtained as follows. Each tetrahedron
gives rise to a 0-handle, which is obtained from the tetrahedron by removing a thin open regular
neighbourhood of its boundary. Each face of 7 not lying wholly in M gives rise to 1-handle, which
we take to be a thin open regular neighbourhood of the face with a thin open regular neighbourhood
of the edges of 7 removed. Each edge of T not lying in M forms a 2-handle, by taking a regular
neighbourhood of the edge and removing a small open regular neighbourhood of the endpoints of the
edge. Finally, regular neighbourhoods of the vertices in the interior of M correspond to 3-handles.
See Figure 5.

Consider a normal surface in a triangulation, intersecting the tetrahedra in triangles and squares.
When we cut along the normal surface, tetrahedra are not necessarily split into tetrahedra; the cut
also creates pieces with quadrilateral faces, or parallel triangle faces. However, normal surfaces can
be defined in handle structures, and cutting along a normal surface in a handle structure will still
give rise to a handle structure. The boundaries of the 0-handles will inherit handle structures, such
those shown in Figure 6. See also Figure 7. We now define these more formally.

Definition 4.6 (Pre-tetrahedral handle structure). Let M be a compact 3-manifold, possibly with
boundary, with a handle structure H. We will define various types of 0-handle of . Each 0-handle
will have connected intersection with the union of the 1-handles and 2-handles and so its boundary

will have an associated handle structure. Let Hy be a O-handle of H.
(1) The handle Hy is tetrahedral if 9Hy inherits a handle structure as shown on Figure 6 left;
that is, it inherits the same handle structure as the boundary of a 0-handle coming from
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FIGURE 6. Pre-tetrahedral handle structures. Left to right: tetrahedral, semi-
tetrahedral, product handle of length three, parallelity handle of length four. The
shaded handles arise either from 3-handles or 9M. The striped arise from M only.
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FIGURE 7. Shows a tetrahedral handle cut along some normal discs, and the resulting
handles. 1 is a product handle of length three; 2 is a parallelity handle of length
three; 3 is semi-tetrahedral; 4 is a parallelity handle of length four; and 5 is semi-
tetrahedral.
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a tetrahedron. The 2-handles in 0H(, which are shaded in the figure, may arise either as
intersections of OHy with 3-handles of H, or as intersections of dHy with OM.

Hy is semi-tetrahedral if the intersection of dHy with 1-handles, 2-handles, 3-handles, and
OM is as shown in Figure 6 second from left; that is, it has the handle structure of the
boundary of a thickened tetrahedron cut along a single square. Two of the 2-handles, shaded
in the figure, may arise either as intersections of 0 Hy with 3-handles or with OM. The third
2-handle, which meets four 1-handles, arises only as a component of intersection between
0Hy and OM.

Hy is a product handle of length 3, if it is as shown in the middle right of Figure 6. That is,
OHy meets exactly three 1-handles of H and exactly three 2-handles, connected in a cycle.
Furthermore, it is a parallelity handle of length 3 if it meets OM only and no 3-handles.
Hy is a parallelity handle of length 4 if it is as shown in Figure 6 right; that is it intersects
four 1-handles and 2-handles of H in a cycle, and meets OM on either side of the cycle.

Parallelity handles arise, for example, when a 0-handle dual to a tetrahedron is cut along parallel
normal triangles or squares. Again see Figure 7, and Lemma 4.14 below.

We say that the handle structure H is tetrahedral if each of its O-handles is tetrahedral. We say
it is pre-tetrahedral if each of its 0-handles is tetrahedral, semi-tetrahedral, a product handle or a
parallelity handle, as above.

The following definitions give analogues to Definition 4.1.

Definition 4.7 (Surface respects a handle structure). A closed surface S embedded in M respects a
handle structure H of M if

(1) its intersection with each 1-handle D! x D? is of the form D! x a, where « is a properly

embedded 1-manifold in D?;

(2) it intersects each 2-handle D? x D! in a collection of discs of the form D? x p, where p is a

point in the interior of D';

(3) it is disjoint from the 3-handles.
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FIGURE 8. Left to right: A surface that respects a handle structure but is not
standard; a surface that is standard but not normal; a surface that is normal.

Any surface properly embedded in M that is in general position with respect to a triangulation 7
gives rise to a surface that respects the dual handle structure H and vice versa.

Definition 4.8 (Normal, handle structure). If a closed surface S embedded in M respects a handle
structure H and, in addition, it intersects each 0-handle and each 1-handle in a collection of properly
embedded discs, it is standard. If, furthermore, S has the property that for each 0-handle Hy of H,
each component of S N Hy runs over any component of intersection between Hj and the 2-handles in
at most one arc, then S is called normal with respect to H.

Observe that a surface that is normal is also standard, and one that is standard also respects the
handle structure. See Figure 8.
We also define a notion of standard for 1-manifolds in surfaces with handle structures, as follows.

Definition 4.9 (Standard 1-manifold). Let S be a compact surface with a handle structure H. Then
a l-manifold properly embedded in S is standard if

(1) it intersects each 0-handle in a collection of properly embedded arcs;

(2) it intersects each 1-handle in a collection of arcs, each of which runs parallel to the core of
the 1-handle and respects its product structure; and

(3) it is disjoint from the 2-handles.

Definition 4.10 (Normal 1-manifold). Let S be a compact surface with a handle structure H. An
arc properly embedded in a 0-handle Hj is normal if its endpoints lie in distinct components of
intersection between Hy and the 1-handles of H. A closed 1-manifold properly embedded in S is
normal if it is standard and each arc of intersection with each O-handle is normal.

Definition 4.11 (Triangles and squares in a O0-handle). Let H be a handle structure of a 3-manifold
M. Let S be a closed normal surface properly embedded in M. Then a component F' of intersection
between a 0-handle Hy of H and S is a triangle (respectively, square) if it is a disc and OF is a
normal curve that runs over the 1-handles of 0Hj exactly three (respectively, four) times.

Recall that the 1-handles on the boundary of a 0-handle Hj arise from 2-handles of H. When H
is dual to a triangulation, its 2-handles can be viewed as thickened edges of this triangulation. Thus
Definition 4.11 is completely analogous to Definition 4.1. The following result is easily checked.

Lemma 4.12 (Normal surface meets 0-handles in triangles and squares). Let H be a pre-tetrahedral
handle structure of a 3-manifold M. Let S be a closed normal surface properly embedded in M. Then
any component of intersection between S and a 0-handle of H is a triangle or square. (|

We may define the complexity of a handle structure by analogy with that of a triangulation.

Definition 4.13 (Tetrahedral complexity, handle structure). Let H be a pre-tetrahedral handle
structure of a 3-manifold M, and let Hy be a 0-handle of H. Let a denote the number of intersections
of Hy with the 3-handles of H. Define the complexity of Hy to be («/8) + 3, where

e 5 =1/2if Hy is tetrahedral,
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e 3 =1/4if Hy is semi-tetrahedral, and
e 3 =0if Hy is a product handle or parallelity handle.

Define the tetrahedral complexity A(H) to be the sum of the complexities of its 0-handles.

When H is dual to a triangulation T of a closed 3-manifold M, then A(H) = A(T). This is
because every 0-handle of H is tetrahedral and has four components of intersection with the 3-handles.

Lemma 4.14 (Complexity unchanged under cutting along normal surface). Let H be a pre-tetrahedral
handle structure of a 3-manifold. Let S be a closed normal surface properly embedded in M. Then
MA\\S inherits a pre-tetrahedral handle structure H' with A(H') = A(H).

Proof. Each tetrahedral 0-handle of H is decomposed into one of the following:

(1) a single tetrahedral O-handle plus possibly some parallelity and product handles;
(2) two semi-tetrahedral 0-handles plus possibly some parallelity and product handles.

A semi-tetrahedral 0-handle is decomposed into exactly one semi-tetrahedral 0-handle plus possibly
some parallelity and product handles. A product or parallelity 0-handle is decomposed into product
and parallelity 0-handles. In every case, the components of intersection between the 0-handle and
the 3-handles are shared out among the resulting 0-handles of H'. O

Analogous to Definition 4.2, we also define almost normal surfaces in pre-tetrahedral handle
structures.

Definition 4.15 (Almost normal surface, handle structure). Let H be a pre-tetrahedral handle
structure of a 3-manifold.

(1) An octagon is a disc properly embedded in a 0-handle Hy of H with boundary that is a
normal curve that runs over eight 1-handles and eight 0-handles of 0Hj.

(2) A tubed piece is an annulus in a 0-handle Hj obtained by tubing together two disjoint triangles
or squares. The 0-handle is required to be tetrahedral or semi-tetrahedral. The tube runs
parallel to an arc in 0Hy that is a co-core of a 1-handle of 9Hj.

An almost normal piece is an octagon or tubed piece.

A closed surface properly embedded in a 3-manifold M with a pre-tetrahedral handle structure
H is almost normal if it respects the handle structure, it intersects each 0-handle in a collection
of triangles and squares, except in precisely one 0-handle, where it is a collection of triangles and
squares and exactly one almost normal piece.

One motivation for this definition arises from the following lemma. The corresponding statement
for triangulations is well known [30, Proof of Claim 2, Section 2.2].

Lemma 4.16 (Non-normal has length at least eight). Let H be a pre-tetrahedral handle structure of
a 3-manifold and let Hy be a 0-handle of H. Let D be a disc properly embedded in Hy with boundary
that is a normal curve C in Ho N (H* UH?). Then if D is not a normal disc, then it runs over H?
at least 8 times. Furthermore, each component of 0Hy\\C' intersects some component of Hy NH? at
least twice.

Proof. We say that each component of dHp\\(H! U H?) is a hole. Since H is pre-tetrahedral, there
are at most 4 holes. Note that C is disjoint from the holes. The curve C divides OHy into 2 discs,
D; and D5. The proof divides according to the number of holes in each disc.

Suppose first that one of these discs D; contains no holes. It therefore inherits a handle structure
from Hy N (H! UH?), as a union of 0-handles and 1-handles. Since D; is a disc, these 0-handles and
1-handles form a thickened tree. A leaf of the tree is a O-handle of D; that is incident to a single
1-handle. But this implies that an arc of C N Hy NH' has endpoints on the same component of
H° NH?, contradicting the assumption that C' is normal in H.

Now suppose that one disc D; contains a single hole. Then, removing this component from D;
gives an annulus, which again admits a handle structure with 0-handles and 1-handles. Again, this is
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a thickened graph. As the graph has no leaf, we deduce that the graph consists of a single cycle.
Hence, C' is normally parallel in 9Hg N (H' U H?) to a boundary component of 9Hy N (H! U H?).
This implies that C has length three or four and hence D is normal.

Thus, we are reduced to the case where D; and Dy each contain 2 holes. This implies that there
are 4 holes in total, and hence Hy is tetrahedral. There are six components of Hy N H?2, each one
joining two distinct holes. Consider any pair of holes. If C' separates these holes, then C' must
run over the component of Hy N H? incident to the two holes an odd number of times. Because
C separates each hole from two others, in particular C' runs over four components of Hy N H? at
least once, hence at least four times in total. Now consider a pair of holes not separated by C, and
consider the component of Hy N H? incident to them. We claim that this component of Hy N H?2 is
not disjoint from C. If it were, then this component of Hy N H? would lie in some D;. Removing
the two holes in D; from D; gives a pair of pants P. Again this has a handle structure, which is a
thickened graph. Each vertex of this graph has degree at most 3, since each component of Hy N H!
is incident to at most three components of Hy N H2. This graph is therefore topologically either a
f-graph or an eyeglass. In the case where P is a thickened 6-graph, the total length of C is equal to
the sum of the lengths of the other two components of 9P minus 2, where the latter subtraction is
due to a component of P N H? being incident to both components of P — C. Each component of
OP — C' is the boundary of a hole and so has length 3. Hence, in this case, C has length 4 and so is a
square, and in particular D is normal. When P is a thickened eyeglass, there is some component of
P NH? incident to a single component of P. This component of 9P must be C, since no component
of Hy NH? runs over the same hole twice. But then C is incident to every handle in the handle
structure on P, and so there is no component of Hy NH? N P disjoint from C, which contradicts our
assumption.

As C runs over four components of Hy N H? at least once each, and C runs over the remaining
two components of Hy N'H? at least twice each, we deduce that the total length of C' is at least eight.

Now consider any component D; of 0Hy\\C. In the case where D is not normal, we have shown
that D; must contain two holes. Consider the component of Hy N H? joining these two holes. We
have shown that C runs over this component of Hy N H? at least twice. Hence, D; intersects this
component of Hy NH? at least twice, as required. O

Definition 4.17 (Handle structure, cutting along almost normal). Let M be a 3-manifold with a
pre-tetrahedral handle structure. Suppose S is almost normal. Then in the case where S has an
octagonal piece, M\\S inherits a handle structure, where each i-handle is a component of intersection
between M\\S and an i-handle of M. In the case where S has a tubed piece, this does not quite work
because one component of intersection between M\\S and a 0-handle of M is a solid torus V. This
solid torus is naturally the union of a 0-handle and a 1-handle as follows. There is a disc D in the
0-handle Hy containing the tubed piece such that DN S is an arc in D running over the tubed piece,
and the remainder of D is part of the co-core of a 1-handle of 9Hy. Then a regular neighbourhood
of D is the 1-handle of V, and the remainder of V is the 0-handle. The remaining handles of the
handle structure are defined in the same way as previously, where each i-handle is a component
of intersection between M\\S and an i-handle of M. We say that this handle structure is the one
that M\\S inherits from M. Observe that the handle structure is not necessarily pre-tetrahedral
anymore.

We now recall a few definitions and results from normal surface theory, and their analogues for
handle structures.

Definition 4.18 (Weight). If S is a surface properly embedded in M, in general position with
respect to a triangulation 7, then its weight is defined to be the number of intersections between S
and the edges of T.

If S is a surface properly embedded in M that respects a handle structure H, define its weight to
be the number of components of intersection between S and the 2-handles of H.
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FIGURE 9. Left: Discs that are of the same type but that are not normally parallel.
Right: Normally parallel disks in a handle structure. The region between is the
union of parallelity regions in 0, 1, and 2-handles.

Definition 4.19 (Topologically parallel surfaces). Two disjoint closed surfaces Sy and S; properly
embedded in M are topologically parallel if there is an embedding of S x [0,1] in M such that
SOZSX{O} andS1:S><{1}.

When we are dealing with surfaces that respect a triangulation or a handle structure of M, there
is a stronger notion of parallel surfaces, as follows.

Definition 4.20 (Normally parallel surfaces, tetrahedra). For a triangulation 7 of M, a normal
isotopy of M is an isotopy F': M x [0, 1] — M such that, for each ¢ € [0, 1], the map F;: M x {t} - M
is a homeomorphism that preserves each simplex of 7 and such that Fj is the identity on M. We
say that two surfaces Dy and D; properly embedded in a tetrahedron of 7 have the same type
if there is a normal isotopy taking one to the other. More specifically, there is a normal isotopy
F: M x[0,1] = M such that Fy(Dg) = Dy. We say that Dy and D; are normally parallel if there is
a normal isotopy F': M x [0,1] — M taking Dy to D; such that the restriction of F' to Dy x [0,1] is
an embedding into M. Similarly, disjoint surfaces Sy and S; properly embedded in M are normally
parallel if there is a normal isotopy F: M x [0,1] — M taking Sy to S1, such that the restriction of
F to Sy x [0,1] is an embedding into M.

In Figure 9, left, two discs properly embedded within a tetrahedron are shown. They are of the
same type but are not normally parallel.

Definition 4.21 (Normally parallel surfaces, handle structure). Let H be a handle structure of a
3-manifold M. Let S be a properly embedded surface that respects H. An elementary piece of S is a
component of intersection between S and some handle of H.

Two elementary pieces Do and Dy are normally parallel if there is an isotopy F': M x [0,1] — M
that preserves all the handles of H and sends Dy to D, and such that the restriction of F' to
Dg x [0,1] is an embedding into M.

Two disjoint surfaces Sy and S; properly embedded in M are normally parallel if there is an
isotopy F': M x [0,1] — M taking Sy to Sp, preserving all the handles of H, such that the restriction
of F to Sy x [0,1] is an embedding into M.

Between normally parallel elementary pieces lie parallelity regions, defined as follows.

Definition 4.22 (Parallelity regions). Let S be a surface properly embedded in M that respects
the handle structure H. For any handle H of #H, a component of H\\S is a parallelity region if it
lies between two normally parallel elementary pieces Dy and Dy of S N H. There is an identification
between this region and Dy x [0, 1], where Dy = Dy x {0} and D; = Dy x {1}. The projection map
for this region is the map Dy x [0,1] — Dy onto the first factor. See Figure 9, right.

Theorem 4.23 (Stocking’s theorem). Let M be a compact orientable 3-manifold equipped with
a pre-tetrahedral handle structure H. Let Sy and S1 be disjoint normal closed connected surfaces
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embedded in M that are not 2-spheres and that are topologically parallel but not normally parallel.
Then there is an almost normal surface between them that is topologically parallel to each of them.

The proof of Theorem 4.23 is essentially contained within the arguments of [30]. There, Stocking
considers a closed triangulated orientable 3-manifold, and shows that any strongly irreducible
Heegaard surface for the manifold may be isotoped into almost normal form. The argument also
applies to compact orientable 3-manifolds with boundary. In that situation, the right structure to use
is more general than a triangulation. We call it a generalised triangulation, and define it as follows.

If a tetrahedron is cut along a union of disjoint triangles and squares, each resulting component is
called a sub-tetrahedron. It inherits a cell structure, with a single 3-cell, and where the 2-cells arise
as components of intersection with the faces of the original tetrahedron and as copies of the triangles
and squares. We call the latter type of 2-cells J-faces.

A generalised triangulation for a compact 3-manifold M is a cell structure for M with the following
properties. Each 3-cell is a copy of a sub-tetrahedron. The O-faces of these sub-tetrahedra form the
2-cells in OM . The other faces of these sub-tetrahedra are identified in pairs so that they form 2-cells
with interior lying in the interior of M. Generalised triangulations are exactly the dual concept to a
pre-tetrahedral handle structure.

Many of the familiar concepts for normal surfaces in triangulated 3-manifolds apply equally well
to 3-manifolds with a generalised triangulation. One can speak of a triangle, square, octagon or
tubed piece in a sub-tetrahedron, as long as one requires that these are disjoint from the J-faces.
One can also therefore speak of a closed normal or almost normal surface. Furthermore, a closed
surface in a generalised triangulation is normal if and only if it is normal in the dual pre-tetrahedral
handle structure. The same is true of almost normal surfaces, except that in the case of a handle
structure, we require that a tubed piece does not lie in a product or parallelity handle.

Proof of Theorem 4.23. Stocking’s argument for closed triangulated 3-manifolds applies just as well
to compact orientable 3-manifolds with a generalised triangulation (see [30, Section 6]). In fact, in
her argument, one cuts along closed normal surfaces and considers the complementary pieces. These
inherit a generalised triangulation, which is what Stocking works with.

We are given a pre-tetrahedral handle structure 7. Cutting this along Sy and S7, we obtain
pre-tetrahedral handle structures on each of the pieces. In particular, the copy of S x [0, 1] between
So and S; inherits such a handle structure H’. Let 7 be the generalised triangulation dual to H'.
Let 7! be the union of the 1-cells of 7 not lying in S x {0,1}. Now S x [0, 1] admits a Heegaard
splitting where S x {1/2} is the Heegaard surface, dividing the manifold into two I-bundles. Thus,
we can apply Stocking’s methods to this splitting.

Stocking’s argument started by finding within S x [0, 1] a maximal collection S of disjoint properly
embedded normal 2-spheres, no two of which are normally parallel. The proof divides into the case
where S is empty or non-empty.

If S is non-empty, then one component M’ of (S x [0,1])\\S is homeomorphic to S x [0, 1] with
a single open 3-ball removed ([31, Lemma 2]). No vertices of T lie in the interior of M’, because
the link of each such vertex is a normal 2-sphere that can be made disjoint from all other normal
2-spheres and that is therefore parallel to a sphere in S. Hence the intersection between 7' and M’
is a disjoint union of properly embedded arcs. Since one obtains a cell structure on M’ by starting
with OM’ U (M’ N'T') and adding only 2-cells and 3-cells, we deduce that there must be some arc of
T'N M’ that joins S x {0} to the boundary of the ball. If we attach a tube that follows this arc, we
obtain a tubed almost normal surface, as required.

So suppose that S is empty. One can view the product projection map S x [0,1] — [0,1] as a
height function. One can then place 7' into thin position with respect to this height function. This
is defined as follows. For each level S x {t}, where ¢ € [0, 1], one considers the number of intersections
between 7' and S x {t}, and this gives a function [0,1] — N. Since S x {0} and S x {1} are normal,
{0} and {1} are local minima for this function. Since S x {0} and S x {1} are not normally parallel,
the function is not constant. Hence, there is some local maximum realised by a surface S x {t}
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that is in general position with respect to the 1-skeleton. It is shown (see [30, Lemma 5]) that one
may isotope and compress S x {t}, keeping its intersection with 7' unchanged, taking it to an
octagonal almost normal surface. However, since S x {t} is, in our case, incompressible, and S x [0, 1]
is irreducible, this implies that no compressions are required. Thus, this almost normal surface is
topologically parallel to Sy and S;.

We now convert this almost normal surface in 7 to one in H'. It will then be almost normal in
‘H. The only extra condition that needs to be ensured is that if the almost normal surface contains
a tubed piece, then this must miss the product and parallelity handles in #’. Now, the union of
the product and parallelity handles and any incident 1-handles and 2-handles is an I-bundle. The
tube is vertical in this I-bundle. When the tube is compressed, the resulting normal surfaces are
horizontal in the I-bundle. Note that this I-bundle is not all of S x [0, 1] because then H’' would
consist entirely of product and parallelity handles and so Sy and S; would be normally parallel.
Thus, we can slide the tube, pulling it away from the I-bundle into an adjacent 0-handle that is not
a product or parallelity handle. The resulting surface is then almost normal in H. O

A useful feature of pre-tetrahedral handle structures that is not always true of triangulated
3-manifolds is the following. Its proof is immediate.

Lemma 4.24 (Boundary surface is normal). Let H be a pre-tetrahedral handle structure of a compact
3-manifold M. When OM is pushed a little into the interior of M, it becomes a normal surface. 0O

As a consequence of the above lemma and of Theorem 4.23, we have the following theorem.

Theorem 4.25 (Almost normal surface exists). Let H be a pre-tetrahedral handle structure of
S x [0, 1], where S is a closed orientable surface, such that A(H) > 0. Then H contains an almost
normal surface that is isotopic to S x {1/2}.

Proof. By Lemma 4.24, when S x {0} and S x {1} are pushed a little into the interior of the manifold,
they become normal surfaces. They are not normally parallel, because then every handle of H would
be a parallelity handle and hence A(H) would be zero. Hence, by Theorem 4.23, there is an almost
normal surface between them that is topologically parallel to each. O

5. NORMALISING ALMOST NORMAL SURFACES

Road map: We are still trying to build a sequence of surfaces between S x {0} and S x {1} in a
manifold M\\S = S x [0,1]. So far, we have defined normal and almost normal surfaces. But we do
not yet know enough to transfer spines between such surfaces in a way that will allow us to bound
from above the number of edge expansions and contractions. In this section, we introduce nearly
normal surfaces and moves between them. These will give us a first sequence of surfaces on which we
can transfer spines.

Throughout this section M is a compact orientable irreducible 3-manifold and S is a closed
incompressible surface properly embedded in M. The moves we describe are easiest to visualise when
M is equipped with a triangulation 7. However, we will need to apply them in the case that M
admits a pre-tetrahedral handle structure . Thus we will define the moves first in the triangulation
setting, and then explain how to define them for a handle structure.

Definition 5.1 (Edge compression disc, triangulation). An edge compression disc for S is a disc
D lying in a tetrahedron A of 7 such that 9D is the union of two arcs o C S and  C 0A, where
a=DnNS, =DNAOA is a sub-arc of an edge of A, and a N p = da = Jp.

Definition 5.2 (Face compression disc, triangulation). A face compression disc for S is a disc D
lying in a 2-simplex F' such that 0D is the union of two arcs o C SNF and 8 C JF, where a« = DN S,
B8 =DNAJF is a sub-arc of an edge of F, and aN f = da = 9.

Figure 10 left shows an edge or face compression disc. Observe that by pushing a face compression
disc slightly into an adjacent tetrahedron, it becomes an additional instance of an edge compression
disc.
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FI1GURE 10. Isotopy along an edge compression disc.

Definition 5.3 (Isotopy ball, triangulation). Given an edge or face compression disc D for a properly
embedded surface S, its associated isotopy ball B is a small regular neighbourhood of D in M\\S.
Thus, 9B N S is a regular neighbourhood of D NS in S. The remainder of OB is obtained by taking
two parallel copies of D and attaching a band that goes around the edge of T incident to D.

An isotopy along D is the isotopy that moves S across this ball. When S is transversely oriented,
we require that this transverse orientation points towards D and hence that the isotopy moves S in
that direction. See Figure 10.

Definitions 5.1, 5.2, and 5.3 arise when applying normalisation moves to a surface in a triangulation
T. While they are not as natural in a handle structure, they can be easily moved to this setting as
in the following definitions, which assume that S respects a handle structure H.

Definition 5.4 (Edge compression disc, handle structure). Let S be a closed surface S embedded in
M that respects a pre-tetrahedral handle structure H on M. An edge compression disc for S in ‘H is
a disc D lying in a 0-handle Hy of H such that 0D is the union of two arcs a C S and 8 C dH,,
where « = DN S, = DNOHy is an arc on the boundary of a 2-handle Hy C H that is vertical in
its product structure, and a N g = da = Jp.

Note that because S respects the handle structure, its intersection with the 2-handle Hy = D? x D!
contains the discs D? x da. Thus when an edge compression disc exists, we actually have the product
D? x B lying in the adjacent 2-handle Hy = D? x D', with (D? x 8) NS = D? x 3 = D? x da.

Definition 5.5 (Face compression disc, handle structure). A face compression disc for S in a
pre-tetrahedral handle structure H is a disc D lying in the intersection of a 1-handle H; with a
0-handle Hy of H, such that 9D is the union of two arcs & C S and 8 C d(H; N Hp), where a« = DNS,
and 8 = DNOI(H; N Hp) is an arc on the boundary of a 2-handle Hy C H, and a N B = da = 0.

As in the case of an edge compression disc, because S respects the handle structure H, its
intersection with the 1-handle H; = D! x D? contains D' x «a, and its intersection with the 2-handle
H, = D? x D' contains D? x 0. Thus when a face compression disc exists, in fact there is a product
D' x D ¢ H, with D! x a ¢ SN H;, and D? x 8 C Hy with D? x 88 C SN H,.

Definition 5.6 (Isotopy along edge or face compression disc). Let D be an edge or face compression
disc for a properly embedded surface S that respects a pre-tetrahedral handle structure H. Thus 9D
is the union of arcs a and 3, as in Definition 5.4 or 5.5. Let H; = D! x D? be the incident 1-handle
in the case of a face compression disc.

When D is an edge compression disc, its associated isotopy ball B is a small regular neighbourhood
in M\\S of the union of D and the incident 2-handle of M\\S. When D is a face compression
disc, its associated isotopy ball B is a small regular neighbourhood in M\\S of the union of D, the
incident 2-handle Hy of M\\S and D! x D C D! x D? = Hy. Then as in the triangulation case,
OB N S is a regular neighbourhood of D N S in S that contains D! x « in S N H; and contains
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FIGURE 11. A compression isotopy.

D? x 9B in SN Hy, and the remainder of OB is obtained by taking two parallel copies of D (that are
disjoint from H;j in the face compression case) and attaching a band that goes around the 2-handle
Hs incident to D.

An isotopy along D is the isotopy that moves S across this ball. When S is transversely oriented,
we require that this transverse orientation points towards D and hence that the isotopy moves S in
that direction.

Another isotopy that is applied to normalise surfaces in triangulations is a compression isotopy,
defined below.

Definition 5.7 (Compression isotopy, triangulation). Let S be a transversely oriented surface
properly embedded in M, in general position with respect to a triangulation 7. Let D be a disc
embedded in the interior of a face F' of T, such that D NS = dD and so that S points into D.
Suppose that 9D bounds a disc D’ in S, and that D U D’ bounds a ball B with interior disjoint from
S. Then the isotopy induced by D is the isotopy that moves S across B and then a little further so
that the curve 9D is removed from S N F. We call this a compression isotopy in T. See Figure 11.

As before, we adapt Definition 5.7 to the handle structure case.

Definition 5.8 (Compression isotopy, handle structure). Let S be a transversely oriented surface
properly embedded in M, that respects a pre-tetrahedral handle structure H on M. Suppose a disc
D lies in the interior of the intersection F' = 9Hy N Hy, for a 0-handle Hy and a 1-handle Hy, with
D NS =0D and S pointing into D. Suppose D bounds a disc D’ in S, and that D U D’ bounds
a ball B with interior disjoint from S. Then the isotopy induced by D is the isotopy that moves S
across B and then (if necessary) a little further so that the annulus D! x D is removed from SN Hj.
We call this a compression isotopy in H.

When we move between almost normal and normal surfaces, isotoping along edge and face
compressing discs, we obtain surfaces that are not necessarily normal. However, they still have a nice
form, described by the following definition.

Definition 5.9 (Nearly normal, triangulation). Let F be a connected transversely oriented surface
properly embedded in a tetrahedron A in general position with respect to the 1-skeleton of A. Then
F divides A into two components. Let B be the component into which F' points. We say that F' is a
nearly normal piece if all the following conditions hold:

(1) B is a 3-ball;

(2) A\\B forms a product region between F' and a subsurface of JA: such a product region is

obtained by pushing a subsurface of A into A, keeping its boundary fixed;
(3) the intersection between B and any face of A is either empty or a disc;
(4) B intersects each edge of A in at most one component.
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FIGURE 12. A nearly normal disc. This might have been created from three normal
triangles by performing isotopies along face compression discs in nearby faces.

We say that a surface S properly embedded in M is nearly normal if it has a transverse orientation
which makes each component of S N A a nearly normal piece for each tetrahedron A of 7.

Triangles and squares form nearly normal pieces. However, neither an octagon nor a tubed piece
is nearly normal.
The analogous definition for handle structures is the following.

Definition 5.10 (Nearly normal, handle structure). Let H be a pre-tetrahedral handle structure for
a compact 3-manifold M, and let S be a transversely oriented surface properly embedded in M that
respects H. Let Hy be a 0-handle of H and let F' be a component of S N Hy. Then F' divides Hy
into two components; let B denote the component into which F' points. We say that F is a nearly
normal piece if the following hold:

(1) F is disjoint from OM N IHy,

(2) B is a 3-ball,

(3) Hp\\B forms a product region between F and a subsurface of 9Hj,

(4) for any component of intersection between Hj and a 1-handle Hy, its intersection with B is
either empty or a disc,

(5) for any component E of intersection between Hj and a 2-handle, BN F is either empty or
connected.

The surface S is nearly normal if each component of SN Hy is a nearly normal piece for each 0-handle
H() of H.

Lemma 5.11 (Bound on nearly normal pieces). A tetrahedral or semi-tetrahedral 0-handle contains
only finitely many nearly normal pieces up to normal isotopy. Moreover, each nearly normal piece
intersects the union of the 1-handles in at most 12 arcs or curves.

Proof. A nearly normal piece in a 0-handle Hj is parallel to a subsurface of 0Hy. This surface F is
determined by its boundary curves OF, up to two choices. For any 1-handle H;, the intersection
between a component of Hy N Hy and OF is at most three arcs or is a simple closed curve, because
otherwise the 3-ball B in the definition of a nearly normal surface would intersect this component
of HyN H; in more than one component or in something other than a disc. Hence, there are only
finitely many possibilities for 0F up to normal isotopy. Since Hj intersects the 1-handles in at most
4 discs, we deduce that the number of components of intersection between OF and these 1-handles is
at most 12. (]
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We will see that the isotopies we have introduced either take an almost normal surface to a nearly
normal one, or take a nearly normal surface to a nearly normal one. We prove this here for the case
of the compression isotopy. We will save the proof for isotopies along face and edge compression
discs for a slightly more general setting in the next section.

Lemma 5.12 (Compression isotopy preserves nearly normal). Let S be a nearly normal surface,
and let S" be the result of applying a compression isotopy along a disc D that lies in the interior of
the intersection of a 1-handle Hy with a 0-handle Hy. Then S’ is nearly normal.

Proof. Nearly normal pieces are removed in their entirety if they were a subset of the disc in S
bounded by D, but removing pieces does not affect whether a surface is nearly normal. One of the
two nearly normal pieces that are incident to (D! x D) N H; is removed, the other is modifed. Let F
be the nearly normal piece of S that is changed, by adding a parallel copy of D. This piece divides
the O-handle Hy that contains it into two components, one of which is the 3-ball B. The topology
of B remains a ball after this modification. The other component Hy\\B remains a product. The
intersection between B and any 1-handle or 2-handle remains unchanged, except for the component
of Hy N Hy containing D, where the intersection becomes empty. These are the only changes that
are made to the surface, and so the surface S’ is nearly normal. ]

Recall from Definition 4.18 that the weight of a surface is its number of components of intersection
with the 2-handles.

Lemma 5.13 (Effect on weight, compression isotopy). Suppose S’ is obtained from S by a compression
isotopy. Then the weight of S’ is at most that of S.

Proof. For a compression isotopy, a disc D parallel to the compression disc replaces a disc D’ on the
surface S, and otherwise S’ agrees with S. Thus no new intersections with 2-handles are introduced.
If D’ meets 2-handles, the components of intersection with these 2-handles are removed. In any case,
the weight does not increase. |

There is one more move on almost normal surfaces that we need to introduce, as follows.

Definition 5.14 (Tube compression). Suppose S is an almost normal incompressible surface with a
tubed piece. Suppose S is transversely oriented in the direction that points into the tube. Due to
the incompressibility of S and the irreducibility of M, compressing this tube yields a 2-sphere plus
an isotopic copy of S, which we denote by S’. The isotopy that we perform moves S across to S’.
We call this a tube compression.

Lemma 5.15 (Tube compression gives normal). A tube compression takes an almost normal surface
to a normal surface, hence a nearly normal surface.

Proof. Compressing a tubed piece gives two normal discs, one of which belongs to the surface after
tube compression. Since the remaining pieces are unchanged, the result is normal. O

We generally assume that if S contains a tubed piece, then its orientation points out of the tube,
because otherwise we immediately perform a tube compression and no longer have such a piece.

Proposition 5.16 (Unsimplifiable implies normal). Let S be a closed incompressible surface properly
embedded in a compact orientable irreducible 3-manifold M equipped with a pre-tetrahedral handle
structure H. Suppose that S is a transversely oriented nearly normal surface that admits no face
compression disc in the specified transverse orientation and admits no compression isotopies. Suppose
also that S has no component that is a 2-sphere lying in a 0-handle. Then S is normal.

Proof. We check the conditions of Definition 4.8. First, by definition of nearly normal, S respects
the handle structure #.

Consider a 0-handle Hy. We first show that for any 1-handle H; incident to Hy, S intersects
H{ N Hy in normal arcs. Suppose not. Then at least one component of intersection with Hy; N Hy
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is a simple closed curve or an arc with endpoints on the same 2-handle meeting H;. Consider an
innermost simple closed curve in H; N Hy. This bounds a disc D. The component of SN Hy containing
0D is a nearly normal piece. This divides Hy into two components, one of which is the 3-ball B
in the definition of nearly normal. The intersection between B and the face is a disc, and hence it
must be D. So, S points into D and so we can perform a compression isotopy, which is contrary to
assumption.

So now consider an arc of intersection between S and H1 N Hy with endpoints on the same 2-handle
H, that is outermost, in the sense that it separates off a face compression disc D with interior
disjoint from S. This arc lies in a nearly normal piece, which again divides H; into two components,
one of which is the 3-ball B. Since B has connected intersection with each component of Hs N Hy, we
deduce that D lies in B. Hence, we have a face compression disc in the specified transverse direction,
which again is a contradiction.

Now consider any piece F' of S N Hy for some 0-handle Hy. We claim that F is a disc. Since F' is
nearly normal, it is parallel to a subsurface of 0Hy and hence it is planar. We are assuming that F'
is not a 2-sphere. So if F' is not a disc, then it has at least two boundary components. These are
normal curves, and hence we may find a component ¢ of intersection between Hy and a 1-handle
that intersects two different boundary components of F'. We may find an embedded arc « in o with
interior disjoint from F' and with endpoints lying on two different components of 0F. Let B be the
3-ball in the definition of nearly normal. Then « lies in B because otherwise B N ¢ is disconnected.
We may find an arc 8 properly embedded in F joining the two endpoints of a. Then aU 3 is a simple
closed curve in OB that intersects the two boundary components of F' in one point each. This is a
contradiction, because any simple closed curve in a sphere is separating.

We now show that S is normal. We have shown that each component F' of SN Hj is a disc and
that its boundary curve is a union of normal arcs. If F' runs over any of the 2-handles meeting H in
more than one arc, then Lemma 4.16 implies that its boundary has length at least 8, and for each
component of Ho\\F, we can find a 2-handle meeting Hy that intersects this component in at least
two discs. This contradicts the definition of being nearly normal. |

5.1. Canonical Handle Structures. We have defined isotopy moves of surfaces that take almost
normal surfaces through nearly normal surfaces to normal surfaces. Each of these surfaces intersects
the handle structure of the larger 3-manifold in well-understood ways. Recall that eventually, we
wish to count edge contractions and expansions on spines of surfaces as we pass from S x {0} to
S x {1}. Some of the normal, almost normal, and nearly normal surfaces we have encountered under
the above isotopy moves will be the surfaces we analyse. In order to transfer spines, however, we
need to determine how a cell structure on the surface itself changes. We start the process in this
subsection.

Definition 5.17 (Canonical handle structure, embedded surface). Let H be a handle structure for a
3-manifold M, and let S be an incompressible surface properly embedded in M that respects H and
that has no 2-sphere components. Let F' be the intersection between the 0-handles of H and S. If any
component of F' is not a disc, then its boundary curves all bound discs in S, since .S is incompressible.
These discs may be nested. Under these circumstances, enlarge F' by including these discs, forming a
surface F'T. The canonical handle structure on S has 0-handles equal to the components of F+*. The
1-handles are the components of intersection between the 1-handles of % and S\\F*. The 2-handles
are the components of intersection between the 2-handles of H and S\\F™.

Examples of canonical handle structures before and after an isotopy along an edge compression
disc are shown in Figure 13. Note that, by Lemma 5.11, each 0-handle of the canonical handle
structure on a nearly normal surface has at most 12 components of intersection with the 1-handles
and at most 12 components of intersection with the 2-handles.

Lemma 5.18 (Compression isotopy and canonical handle structure). Let S be an incompressible
nearly normal surface with no 2-sphere components, and let S’ be obtained from it by a compression
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FIGURE 13. On the left is the surface S admitting an edge compression disc. At
the top, it is shown in M, below is shown its inherited canonical handle structure.
On the right is the surface S’ after isotopy along the edge compression disc, with its
canonical handle structure.

isotopy. Then the compression isotopy takes the canonical handle structure on S to the canonical
handle structure on S’.

Proof. Let D and D’ be the discs in Definition 5.8. Let Hy be the 0-handle of H containing D. The
disc D forms a compression disc for a component of Hg NS, and hence D’ lies in the interior of a
0-handle of the canonical handle structure on S. The isotopy moves D’ across to D and then pushes
it a little further off the 1-handle containing D. Thus after this isotopy, the image of D’ lies within a
0-handle of the canonical handle structure on S’. The remainder of the canonical handle structures
on S and S’ are equal. a

Lemma 5.19 (Edge or face compression and canonical handle structure). Suppose S is an incom-
pressible almost normal or nearly normal surface with no 2-sphere components, and S’ is a nearly
normal surface obtained from S by isotopy along an edge or face compression disc D, with 0D = aU
as in Definitions 5.4 and 5.5. Suppose that a does not lie entirely in the interior of a 0-handle of the
canonical handle structure of S, in other words, that o does not lie in the interior of a component of
F. as in Definition 5.17. Suppose also that we are not performing an edge compression to a tubed
piece. Then the canonical handle structure of S’ is obtained from that of S as follows:

(1) Remowve the 2-handles at the end of «.

(2) If « lies in the boundary of a 0-handle of S (i.e. D is a face compression disc), remove the
1-handle containing o.

(8) Join each 1-handle at one end of o to a 1-handle at the other end, pairing those that lie in
the same 1-handle of H.

(4) The spaces between these 1-handles become part of 0-handles in the new handle structure.

(5) However, if this results in any regions that are not discs, these are replaced by discs that each
form a single 0-handle.

Proof. The proof follows from the definition of isotopy along an edge or face compression disc,
Definition 5.6. See Figures 13 and 14. ]

We now consider the cases excluded in the above lemma.

Lemma 5.20 (Edge or face compression in 0-handle). Suppose S is an incompressible almost normal
or nearly normal surface with no 2-sphere components, and S’ is a nearly normal surface obtained
from S by isotopy along an edge or face compression disc D, with 0D = « U 8 as in Definitions 5.4
and 5.5. If « lies entirely in the interior of a 0-handle of the canonical handle structure of S, then the
isotopy taking S to S’ transfers the canonical handle structure of S to the canonical handle structure

of S'.
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FI1GURE 14. How the canonical handle structure on S is affected by an isotopy along
a face compression disc.

Proof. The assumption of the lemma implies that « lies in a disc in S with boundary lying in a
0-handle of H. The isotopy from S to S’ takes this disc to a corresponding disc in S’. Hence, the
0-handle of the canonical handle structure containing « is sent to a O-handle of S’, and all the other
handles remain unchanged. |

Lemma 5.21 (Edge compression in tubed piece). Suppose S is an incompressible almost normal
surface with a tubed piece and no 2-sphere components, and S’ is a nearly normal surface obtained
from S by isotopy along an edge compression disc D, with 0D = aU 8 as in Definitions 5.4 and 5.5.
Then the canonical handle structure on S’ is obtained from that of S as follows. Let E be a disc in
S whose boundary OF is a simple closed curve forming a core curve of the tube. Components of
intersection between E and the 1-handles and 2-handles of H have been removed to form the canonical
handle structure on S. These are reinstated as 1-handles and 2-handles. Then steps (1) to (5) of
Lemma 5.19 are applied.

Proof. Definition 5.17 ensures that £ C S lies in a 0-handle of the canonical handle structure of .S,
with all 1-handles and 2-handles of E removed. Applying the isotopy along the edge compression
disc may adjust this structure. However, after reinstating the 1- and 2-handles of F, the adjustment
will then be identical to that of Lemma 5.19. |

Lemma 5.22 (Tube compression and canonical handle structure). Suppose S is an incompressible
almost normal surface with a tubed piece and no 2-sphere components. Let S’ be obtained from S by
a tube compression. Then the isotopy taking S to S’ takes the canonical handle structure on S to the
canonical handle structure on S’.

Proof. Let C be a simple closed curve in S that is the boundary of the compression disc for the
tube. Then C lies in an annular component of S N #H. This annulus is a subset of a 0-handle in the
canonical handle structure. The surface S’ is obtained from S by removing the disc in .S bounded
by C and replacing it by the compression disc. Hence, this compression disc also ends up as part
of a 0-handle in the canonical handle structure of S’. Away from these discs, the canonical handle
structures of S and S’ agree. |

6. PARALLELITY BUNDLES AND GENERALISED ISOTOPY MOVES

Road map: We are working towards a bound on the number of edge expansions and contractions
required to transfer a spine on S x {0} to S x {1}. We will be transferring the spines along a sequence
of surfaces that consist of normal, almost normal, and nearly normal surfaces as defined in the
previous section, and we will bound the number of edge contractions and expansions at each step.
A consequence of Proposition 5.16 is that compression isotopies and isotopies along edge and face
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FIGURE 15. A two-dimensional example of the inefficiency of isotoping across a
face compression disc. There is no bound on the number of times such a move must
be performed, since there is no bound on the number of parallel normal segments.

compression discs take an almost normal surface to a normal one. So this will give us a complete
sequence of surfaces to work with. Unfortunately, using these moves alone gives far too many surfaces.
There is no good way to bound the number of such surfaces in a sequence; without a bound on the
number of surfaces, having a bound on edge expansions and contractions at each step will not lead
to the bound we need. Therefore, we need to introduce more drastic moves. This section introduces
the moves and the necessary terminology.

6.1. Parallelity bundles. Consider an isotopy across a face compression disc, as in Definition 5.6.
This pushes a surface S past a 2-handle. If on the other side of that 2-handle, S cuts the handles of
M into parallelity handles, then this isotopy move will give rise to new face compression discs, and
the move must be repeated to slide S. There is no good bound on the number of parallelity handles
that M\\\S may contain, and it could be the case that each one leads to a required isotopy across
a face compression disc. For example this is shown one dimension down in Figure 15. Instead of
performing these isotopies one by one, we want to perform them all in a single step that depends on
the parallelity handles adjacent to the face compression disc.

In this subsection, we define parallelity bundles and their generalisations, which will allow us to
define the more general isotopy moves that we need. These bundles first appeared in [20]. The idea
is as follows. Normal surfaces are made up of triangles and squares in tetrahedra. We cannot bound
the number of normal triangles and squares in the intersection of a normal surface S with a given
tetrahedron. But if S intersects a single tetrahedron many times, then it must do so in more and
more parallel triangles and squares. These cut the tetrahedron, and hence the 3-manifold M\\S,
into I-bundles.

Throughout this section, let H be a handle structure of a 3-manifold M. Let S be a surface
properly embedded in M that respects the handle structure.

Definition 6.1 (Parallelity bundle for S). The parallelity bundle B for S is the submanifold of
M\\S that is the union of the parallelity regions, as in Definition 4.22.

When H is dual to a triangulation 7 of M, then it is possible to visualise the parallelity bundle
for a surface S in T without specifically having to pass to the dual handle structure. If we have two
adjacent normally parallel pieces of S in a tetrahedron, the space between them forms a parallelity
region in M\\S. Similarly, if the intersection between S and a face of T contains two adjacent
parallel arcs, the space between them, thickened a little, forms a parallelity region. When S intersects
an edge of T, it divides the edge into arcs, and all but the outermost two arcs produce parallelity
regions in the dual 2-handle of H. See Figure 16.

We also define parallelity handles in more general handle structures H’ for a 3-manifold M’ that
is not necessarily of the form M\\S, and where a specified subsurface F of M’ is given.
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FIGURE 16. A portion of the parallelity bundle

Definition 6.2 (Parallelity bundle, handle structure). Let H' be a handle structure of a compact
orientable 3-manifold M’, and let F' be a subsurface of 9M’ such that OF is standard. A handle H
of H' is a parallelity handle if it admits a product structure D? x I such that

(1) D2 x0l =HNF=HNOM'

(2) each component of intersection between H and another handle is 3 x I for a subset 3 of 9D?.

The parallelity bundle B for H' is the union of the parallelity handles.

It is shown in [20, Lemma 5.3] that the product structures on the parallelity handles can be chosen
so they make the parallelity bundle into an I-bundle over a surface F.

Definition 6.3 (Horizontal and vertical boundary). The horizontal boundary OpB is the (0I)-bundle
over E. It is a subsurface of F'. The vertical boundary 0, B is the I-bundle over OF. It is an orientable
I-bundle properly embedded in M’, and hence it is a collection of annuli.

We will want to expand the parallelity bundle to include not just the parallelity handles, but also
other simple I-bundles whose fibring matches that of the parallelity bundle. This is done by the
following definition.

Definition 6.4 (Generalised parallelity bundle). Let M’ be a compact orientable 3-manifold with
a handle structure H'. Let F be a subsurface of M’ such that OF is standard. A generalised
parallelity bundle B is a 3-dimensional submanifold of M’ such that

(1) B is an I-bundle over a compact surface;

(2) the horizontal boundary of B is the intersection between B and F;

(3) B is a union of handles of H';

(4) any handle of B that intersects 9,5 is a parallelity handle, where the I-bundle structure on
the parallelity handle agrees with the I-bundle structure of B;

(5) whenever a handle of H’ lies in B then so do all incident handles of H' with higher index;

(6) the intersection between 9B and the non-parallelity handles lies in a union of disjoint discs
in the interior of 9, B.

We also say that B is a generalised parallelity bundle for (M’, F), when we wish to emphasize the
manifold and surface. When we do not specify F, we take F to be all of OM’.

A generalised parallelity bundle is mazimal if it is not a proper subset of another generalised
parallelity bundle.

Of course, the parallelity bundle for H' is a generalised parallelity bundle. But the more general
concept is useful. For example, suppose that a vertical boundary component of the parallelity bundle
B separates off a component of M’\\B that is an I-bundle over disc, with the (0T)-bundle lying in
F, and that this I-bundle structure extends that on B. Then it is natural to enlarge B by including
the I-bundle over the disc. The result is a generalised parallelity bundle.

Note that condition (6) in the above definition is new to this paper; it does not appear in [20,
Definition 5.2].
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FIGURE 17. A generalised isotopy move across an I-bundle over a disc

6.2. Isotopy moves across /-bundles over discs. We now generalise Definition 5.6. Let H be a
pre-tetrahedral handle structure of M =S x [0,1]. Let S be a normal or almost normal fibre. Let B
be a maximal generalised parallelity bundle for M\\S.

We suppose that we have performed some isotopies to S, all in the same transverse direction,
taking it to a nearly normal surface S’. We also allow the possibility that no isotopies have been
performed, and hence that S’ = S, which is normal or almost normal.

Definition 6.5 (Generalised isotopy move across I-bundle over disc). Suppose S’ is nearly normal
and D is a face compression disc for S’, or suppose S’ is almost normal and D is an edge compression
disc for S’. Suppose that the interior of D is disjoint from B, but D meets B. Its intersection with a
2-handle is an arc (denoted § in Definition 5.5) in the vertical boundary of B. Let W be the isotopy
ball for D. Let B be the component of B incident to D. Suppose that B is an I-bundle over a disc
and that its horizontal boundary lies in S’. Then the generalised isotopy move across B moves S’
across the ball W U B. Thus, it removes the horizontal boundary of B from S’, together with S"NW,
and it replaces it with 9, B\\W together with two parallel copies of D, isotoped slightly so that the
result respects the handle structure. See Figure 17.

We also call this move a generalised isotopy along D, where D is an edge compression disc or face
compression disc. We also occasionally refer to it for short as a generalised edge or face compression.

Note that the 2-handle meeting the arc [ is a parallelity handle. If this handle is not adjacent to
any other parallelity handles, then the usual isotopy along an edge or face compression disc, as in
Definition 5.6, is an example of a generalised isotopy along D, where the component B consists just
of the parallelity 2-handle meeting (.

The effect on the canonical handle structure on the surface is nearly identical to that in the usual
isotopy along D, as follows.

Lemma 6.6 (Effect of generalised isotopy on canonical handle structure). Suppose S” is an incom-
pressible nearly normal or almost normal surface without 2-sphere components, and S is a nearly
normal surface obtained from S’ by a generalised isotopy along an edge or face compression disc D,
with 8D = aU B as in Definitions 5.4 and 5.5. Then the canonical handle structure of S is obtained
from that of S’ as follows:

o If « lies entirely in the interior of a 0-handle of the canonical handle structure of S’, then
the handle structure of S” is unchanged.

e [f the generalised isotopy is not along an edge compression disc running over a tubed piece,
then the canonical handle structure of S” is obtained completely analogously to steps (1) to
(5) of Lemma 5.19:

(1) Remove from S’ all handles in the horizontal boundary O, B of B in S'.

(2) If D is a face compression disc, remove the 1-handle containing c.

(3) Each 1-handle adjacent to one component of On B is paired with a 1-handle adjacent to
the other component of On B, where the two handles lie in the same handle of H, both
adjacent to the same parallelity handle on 0B.
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FIGURE 18. Left: A component of the generalised parallelity bundle that is an
I-bundle over a disc. Right: The effect on the canonical handle structure of a
generalised isotopy move across this component. The numbers show the index of
the handles. The shaded region is the horizontal boundary of the bundle.

(4) The spaces between these 1-handles become part of 0-handles in the new handle structure.
(5) However, if this results in any regions that are not discs, these are replaced by discs that
each form a single 0-handle.
o If the generalised isotopy is along an edge compression disc running over a tubed piece, then
as in Lemma 5.20, reinstate 1-handles and 2-handles in a disc on S’ with boundary a core
curve of the tube, and then apply steps (1) through (5) above.

Proof. This follows by definition. See Figure 18. g

We now show that these moves result in a nearly normal surface.

Lemma 6.7 (Generalised face compression preserves nearly normal). Let S” be a nearly normal
surface, and let D be a face compression disc for S’. Let S” be the result of a generalised isotopy of
S’ along D. Then S” is nearly normal.

Proof. Let Hy denote the 1-handle containing D, and Hs the 2-handle meeting an arc 8 of dD. The
surface S” is obtained from S’ by modifying it in the two 0-handles incident to H;, and in all handles
in a component W of a generalised parallelity bundle that is an /-bundle over a disc, and in handles
adjacent to 9, W.

Within Hy and W, all intersections are removed in all handles. Within H;, the component of
H; N S incident to D is removed. So there is nothing to consider in these handles.

Let us first consider a 0-handle H, that intersects D! x D € H;. Assume for now that Hy meets
Hy and W only once, so ((D! x D) U (D? x 3)) intersects Hy only in a disc in a single component of
H; N Hy and an adjacent component of Hy N Hy. Let F' be the nearly normal piece of S’ incident
to D in Hy. Then, by the definition of nearly normal, F' divides Hy into two components, one of
which is a 3-ball B containing D. When we perform the isotopy, B is reduced by removing a thin
regular neighbourhood of (D' x D) N dHy, and of (D? x 3) N dHy, but it remains a 3-ball B’ say.
The intersection between B’ and the 1-handle H; meeting D is now empty. There will be another
1-handle adjacent to Hy on 0Hy. Again we assume for now that there is only one such 1-handle.
The intersection of B’ with this 1-handle has shrunk, by removing a small regular neighbourhood of
D? x 8 C Hy, but it remains a disc.

The region Hy\\B' is obtained from Hy\\B by attaching a thin regular neighbourhood of (D' x
D) N dHy and (D? x ) N 0Hy, and hence it remains a product region. A region of B meeting
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D? x B C Hy is removed in this operation, but the remaining components of intersection with
2-handles are unchanged. Thus, the resulting piece of S” is still nearly normal.

Let us now consider a 0-handle Hy that is incident to the I-bundle over a disc W, but does not
meet D! x D. Consider any nearly normal piece F of S’ in Hy that is modified. It is altered by
banding it onto another nearly normal piece F’ in Hy, or possibly banding it to itself. Then F
(respectively F’) divides Hy into two regions, one of which is a ball B (respectively, B’) and the
other of which is a product region. The transverse orientations on F' and F’ point into B and B’,
by the definition of a nearly normal piece. So the band is disjoint from the product regions, and
hence when the band is attached to form a piece F”, one component of Hy\\F" is again a product
region between F”' and a subsurface of 9Hy. Hence, the other component is homeomorphic to Hy
and therefore a ball B”. The intersection between B” and any component o of intersection between
Hy and a 1-handle must be empty or connected, for the following reason. The intersection between
B and o is empty or a disc, by hypothesis, as is B'No. Thus B’ N BN o is empty or a disc. The
intersection B” N ¢ either is equal to B’ N B N o or is obtained from B’ N B N ¢ by removing a thin
strip running along o N 9, , and hence remains empty or a disc. The intersection between B and
any other 2-handle H) meeting 0Hj is empty or a product [0, 1] X a, where a is an arc. The same
is true for B’ N Hj. Hence, B’ N BN H} is empty or a product [0,1] x (aNa’), and therefore so is
B" N H),.

In the above argument, we assumed that the intersection of ((D! x D) U (D? x 8)) with Hy was
either equal to a disc in a single 1-handle H; N Hy and an adjacent 2-handle Hy N Hy, or to a subset
of a single 2-handle, (D? x 3) N dHy. However, the boundary of the 0-handle Hy might actually
meet the same 1-handle H; twice, or W multiple times. Thus (D! x D) U (D? x ) may actually
have several components of intersection on 0Hj of this form. But the conclusion of the argument
remains unchanged, because we can view the modification from S’ N Hy to S” N Hy as being achieved
in several steps, each of the form discussed above. (]

Lemma 6.8 (Generalised edge compression gives nearly normal). Let S be a transversely oriented
almost normal surface. If S contains a tubed piece, suppose that its orientation points out of the tube.
Let 8" be obtained from S by a generalised isotopy along an edge compression disc. Then S’ is nearly
normal.

Proof. The edge compression disc D must be incident to the almost normal piece of S. The effect on
this almost normal piece yields a nearly normal piece. Other pieces of S are also affected, if they
are incident to the I-bundle over a disc that is adjacent to D. A band is added to these pieces. As
argued above in the proof of Lemma 6.7, attaching a band in this way does not alter the fact that
the pieces are nearly normal. (|

Lemma 6.9 (Generalised isotopy along a disc reduces weight). Suppose S” is obtained from S’
by applying a generalised isotopy along an edge or face compression disc. Then the weight of S is
strictly less than that of S’.

Proof. Let B denote the I-bundle over a disc in Definition 6.5. It is a component of a generalised
parallelity bundle B, and by definition whenever a handle lies in B, so do all incident handles of
higher index. Since 2-handles are the highest index parallelity handle, B must meet a 2-handle. Then
S’, which runs over the horizontal boundary of B, must meet the same 2-handle. When we apply the
isotopy move, the new surface S becomes disjoint from all 2-handles in B, and does not meet new
2-handles. Thus the weight strictly decreases. O

6.3. Parallelisation isotopy. Again let H be a pre-tetrahedral handle structure of M = S x [0, 1].
Let S be an almost normal fibre.

Definition 6.10 (Parallelisation isotopy). Let S’ be a normal fibre that is topologically parallel
to S. Suppose that there is a copy of D? x [0,1] in M\\(S U S’) such that D? x {0} is a subset of
S, D? x {1} is a subset of S’, and 9D? x [0, 1] is a vertical boundary component of the parallelity
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bundle of M\\(S U S’"). Then a parallelisation isotopy moves S across D? x [0,1], taking it to S’.
That is, replace S with (S\ (D? x {0})) U (D? x {1}) U (0D? x [0, 1]), perturbed to respect the handle
structure. When S has transverse orientation, we require that this points into D? x [0, 1] so that the
isotopy moves S in this direction.

We do not require that a parallelisation isotopy reduces the weight of .S, and so there is no analogue
of Lemma 6.9 in this setting. By assumption, S’ is normal, and so the conclusion of Lemma 6.8
trivially holds.

The motivation for introducing parallelisation isotopies comes from the following.

Lemma 6.11 (Almost normal piece in bundle). Let H be a pre-tetrahedral handle structure for
M =8 x[0,1]. Let S be an almost normal fibre, transversely oriented in some way. Let B be a
mazximal generalised parallelity bundle for the component of M\\S into which S points. Suppose that
the almost normal piece of S intersects the interior of Op3. Then S admits a parallelisation isotopy.

Proof. The almost normal surface S has only one almost normal piece P. Hence, P cannot be part
of the parallelity bundle of M\\S. However, we are assuming that it intersects the interior of the
horizontal boundary of the maximal generalised parallelity bundle B. By (6) in the definition of a
generalised parallelity bundle, Definition 6.4, the surface that is obtained by removing the parallelity
handles from 0B lies in a union of disjoint discs in the interior of J;B. The almost normal piece P
must lie in one of these discs. The I-bundle structure on B gives a copy of D? x [0, 1] in B, where
D? x {0} is the disc containing P, D? x {1} also lies in 9,8 and dD? x [0, 1] is a vertical boundary
component of the parallelity bundle. Thus, we can perform the paralleliation isotopy that moves S
across D? x [0,1]. O

6.4. Annular simplification. In addition to isotopy moves across I-bundles over a disc and
parallelisation isotopies, we also need moves that can be applied to generalised parallelity bundles
that are I-bundles over annuli. The simplification will be applied both to 3-manifolds and to surfaces;
both definitions are below.

Definition 6.12 (Annular simplification). Let M’ be a compact orientable irreducible 3-manifold
with a handle structure #’, and let F' be an incompressible surface of M’ such that OF is standard
and F' is not a 2-sphere.

Suppose M’ contains the following:

e an annulus A’ that is a vertical boundary component of a generalised parallelity bundle B;

e an annulus A contained in F such that 04 = 0A’;

e a 3-manifold P with 9P = AU A’ such that P either lies in a 3-ball or is a product region
between A and A’.

Suppose also that P is a union of handles of H’, that whenever a handle of H’ lies in P, so do all
incident handles with higher index, and that any parallelity handle of H’ that intersects P lies in P.
Finally, suppose that apart from the component of the generalised parallelity bundle incident to A’,
all other components of B in P are I-bundles over discs.

An annular simplification of the 3-manifold M’ is the manifold obtained by removing the interiors
of P and A from M’. When P lies in a 3-ball, it is a trivial annular simplification. When A is an
essential subsurface of OM’, it is an essential annular simplification. See Figure 19. Note that the
resulting 3-manifold is homeomorphic to M’, even though P may be homeomorphic to the exterior
of a non-trivial knot.

Suppose that the component F’ of F' containing A is transversely oriented, with orientation
pointing into M’. An annular simplification of the surface F’ is obtained by replacing A in F’ by
A’, and then isotoping slightly past the handles containing A’, in the direction of the orientation,
obtaining a surface S’.

We often apply this definition in the situation where S C M is a surface that respects the handle
structure on M with no 2-sphere components, and M’ = M\\S and F’ is a copy of S in IM’.
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FIGURE 19. An annular simplification removes P and replaces A with A’. Left:
a trivial annular simplification. Right: a cross-section of an essential annular
simplification. Note that the parallel lines in 5 represent I-fibres, here and onwards.

Suppose M’ admits an annular simplification, with annulus A C S. Let S’ be the surface obtained
from F’ by annular simplification, i.e. replacing A by an annulus A’. Viewing S’ as a surface in M,
we say S’ is obtained from S by an annular simplification.

Lemma 6.13 (Annular simplification and canonical handle structure). Let M be a compact, orientable,
wrreducible 3-manifold with a handle structure. Let S be an incompressible nearly normal surface
without 2-sphere components. Let S’ be obtained from S by an annular simplification, replacing an
annulus A in S with an annulus A’ in S’. Then the effect on the canonical handle structure of S is
as follows:

(1) Remove all handles in A.

(2) Adjacent to each component of 0A, in S\\A, there are 0-handles and I1-handles in an
alternating fashion. FEach such 0-handle or I1-handle adjacent to one component of OA
corresponds to a 0-handle or 1-handle adjacent to the other component of A, where the
correspondence arises from the I-bundle structure on A’. Combine each pair of 0-handles
into a single 0-handle of S’, and do the same for each pair of 1-handles.

(8) If this results in any regions that are not discs, these are replaced by discs that each form a
single 0-handle F'*, as in Definition 5.17.

Proof. This follows from the definition. |

Analogous to other isotopy moves, an annular simplification preserves nearly normal surfaces and
decreases weight.

Lemma 6.14 (Annular simplification preserves nearly normal). Let M be a compact orientable
irreducible 3-manifold with a handle structure. Let S be an incompressible nearly normal surface
without 2-sphere components, and let S" be obtained from S by applying an annular simplification.
Then S’ is nearly normal.

Proof. We use the terminology of Definition 6.12: P is a submanifold of M\\S, lying between an
annulus A in S and an annulus A’ properly embedded in M\\S. The modification to S is the removal
of A and the addition of A’. This annulus A’ is a vertical boundary component of the parallelity
bundle of M\\S, and the component of the parallelity bundle that contains A’ lies in P. The effect
of the removal of A and P is to remove some nearly normal pieces of S. We must consider what
happens when we add A'.

Let Hy be a 0-handle of H that has non-empty intersection with A’. The intersection between A’
and Hy is a union of fibres in the I-bundle structure on A’. These therefore form bands that are
added to nearly normal pieces of SN Hy. In the definition of an annular simplification, the transverse
orientation on the new surface S’ is such that it points out of P along A’. Thus, just as in the case
of a generalised isotopy along a face compression disc, Lemma 6.7, the new surface S’ remains nearly
normal. (Il
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Lemma 6.15 (Annular simplification reduces weight). Suppose S is obtained from S by an annular
simplification. Then the weight of S’ is strictly less than that of S.

Proof. Let A’ be an annulus as in the definition of an annular simplification, which replaces the
annulus A in S. If A’ meets any 2-handles, then since A = 9A’ C S, the surface S meets the
same 2-handles. When we replace A with A’, and then isotope past the handles containing A’,
we will remove those intersections with 2-handles without adding any additional intersections with
2-handles. Thus if we can show that A’ runs through some 2-handle, we will have shown that the
weight decreases strictly. But A’ lies in the vertical boundary of a generalised parallelity bundle
B, and by definition whenever a handle lies in B, then so do all incident handles of higher index.
Hence, as one travels around A’ the handles of B that are incident to A’ are alternately 1-handles
and 2-handles. In particular, A’ meets at least one 2-handle. (Il

The left side of Figure 19 shows a special type of parallelity bundle, which we now define.

Definition 6.16 (Boundary-trivial). Let M’ and F be as in Definition 6.4, and let 53 be a generalised
parallelity bundle for (M’, F'). A component P of B is boundary-trivial if the following all hold.

(1) P lies within a 3-ball B such that BN dM’ is a single disc lying in F,
(2) the disc 9B\\OM' is disjoint from any component of B that is not an I-bundle over a disc,
(3) and P is not an I-bundle over a disc (with respect to the I-bundle structure of B).

Note in the above definition, dy P lies in F', so 0, P must be annuli properly embedded in B with
boundary on BN F.

Lemma 6.17 (Boundary-trivial bundles are annular). Let M’ and F be as in Definition 6.12. Let B
be a mazximal generalised parallelity bundle for (M', F). Then every boundary-trivial component of B
is an I-bundle over an annulus.

Proof. Let P be a component of B that is boundary-trivial. By definition, P lies within a 3-ball B
such that BN OM’ is a single disc lying in F. The horizontal boundary of P lies in the disc BN oM’
and so it is a planar surface. By definition, P is not an I-bundle over a disc. Suppose that it is not
an I-bundle over an annulus.

Note first that P cannot be a twisted I-bundle, because it would then contain a Mébius band with
boundary in 0B, which is impossible. Hence, P is a product I-bundle over a planar surface with at
least three boundary components. Let F} and F5 be the two horizontal boundary components. Each
F; has one boundary component C; that bounds a disc in B N dM’ containing F;, but the remaining
components of F; bound discs in B N M’ with interior disjoint from F;. Since the base of the
I-bundle P has at least three boundary components, there is a component A’ of 9, P disjoint from
C7 and Cs. Assign a transverse orientation to A’ that points out of P. Let E; and F5 be the two
components of 0A’, where E; = A’ N F;. Each curve E; bounds a disc D; in B N OM’ with interior
disjoint from F;. We claim that these discs are not nested. Suppose that, on the contrary, they
are, with Dy lying in D1, say. The transverse orientation on F; points out of P and hence into D;.
Thus, we can form a closed curve in B that intersects A’ once transversely, by starting in D near
E;, then running through D;\\ D2 to Fs, then through Es, then along a curve parallel to A’. This
contradicts the fact that A’ must separate the 3-ball B. Thus, D1 and D5 are disjoint, and therefore
we can form the 2-sphere D U A’ U Dy. This bounds a 3-ball in B, and we can extend the I-bundle
structure of P over this 3-ball. This contradicts the assumption that B is maximal. |

Lemma 6.18 (Boundary-trivial admits annular simplification). Let M’ and F be as in Definition 6.12.
Let B be a mazimal generalised parallelity bundle for (M', F). Suppose that a component of B is
boundary-trivial. Then M’ admits an annular simplification. In particular, a vertical boundary
component A’ C 9, P has boundary components A’ cobounding an annulus A on F.

Proof. Let P be a component of a maximal generalised parallelity bundle B that is boundary-trivial.
By definition, P lies within a 3-ball B such that B N9M’ is a single disc lying in F, and 0B\\OM' is
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disjoint from any component of B that is not an I-bundle over a disc. Choose P so that it is furthest
from OB\\OM’, in the sense that if P’ is any other component of B in B that is not an I-bundle
over a disc, then P does not separate P’ from 9B\\OM’.

By Lemma 6.17, P is an I-bundle over an annulus. So, 8, P is two annuli. Let A’ be the component
of the vertical boundary of P that is closer to 9B\\OM’. Then A’ is properly embedded in M’
with both boundary components in the disc BN IM’'. If the components of 9A’ are parallel within
BNOM’, then they cobound an annulus A, and all the conditions on A and A’ of Definition 6.12 are
satisfied. Thus it admits an annular simplification.

If the components of A are not parallel within BN OM’, then they bound disjoint discs. But then
the two discs must form the horizontal boundary of an I-bundle over a disc with vertical boundary
A’. Thus because B is maximal, this I-bundle makes up P, and P is not boundary-trivial. O

6.5. Generalised isotopy moves. At this point we have described four isotopies that involve drastic
changes along parallelity bundles, namely generalised isotopies along edge or face compression discs,
parallelisation isotopies and annular simplifications. In this section, we show that these isotopies are,
in some sense, exactly the right isotopies to move an almost normal surface to a normal surface in the
presence of large parallelity bundles. We do this by first classifying all components of the maximal
generalised parallelity bundle in Theorem 6.19. We then investigate properties of parallelity bundles
that admit a simplification under one of our isotopy moves. We show that any such parallelity bundle
either is boundary-trivial, or an I-bundle over a disc or annulus, in Proposition 6.21, which means
that if the surface admits a simplification through a parallelity bundle, it will occur under one of the
isotopies we have defined.
The following is a version of [20, Corollary 5.7].

Theorem 6.19 (Classification of generalised parallelity bundles). Let M’ be a compact orientable
irreducible 3-manifold with a handle structure H', and let F' be an incompressible surface of OM’ such
that OF is standard and F is not a 2-sphere. Let B be a generalised parallelity bundle for (M', F)
that is maximal, in the sense that it is not a proper subset of another generalised parallelity bundle.
Then B contains every parallelity handle of H'. Moreover, every component of B is either

e an I-bundle over a disc, or
e boundary-trivial, or
e has incompressible vertical and horizontal boundary.

Proof. Note first that B must contain every parallelity handle of H’, as otherwise we may take any
component of the parallelity bundle of (M’, F') that does not lie wholly in B and add it to B. It is
easy to check that the result is still a generalised parallelity bundle, which contradicts the hypothesis
that B is maximal.

We divide B into three subsets, each of which is a union of components of 5:

(1) the union of the I-bundles over discs, denoted Bp;
(2) the union of the boundary-trivial components, denoted By;
(3) the union of the remaining components, denoted B;.

We will show that B; has incompressible vertical boundary and incompressible horizontal boundary.

Our first task is show that we may find a collection of disjoint properly embedded discs that
separate By from Bj. These discs may intersect Bp. The boundary of the discs will lie in F'.

Let D be a collection of disjoint compression discs for F' — 9;,(Bs U By) in the complement of
By U By, which is maximal in the sense that any other compression disc that is disjoint from D is
parallel to a component of D. Since F' is incompressible and M’ is irreducible, each component of D
is parallel to a disc in F', via a 3-ball. Any two of these 3-balls must be disjoint or nested, because
otherwise F' is a 2-sphere. Hence the union of these 3-balls is a collection of balls B, each of which
intersects F' in a single disc. Note that 0B\\F is disjoint from By U B.

Any component of B lying within B that is not an /-bundle over a disc must be boundary-trivial
by definition. We now show that B contains By. Suppose that, on the contrary, there is a component
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of By that is disjoint from B. By definition, this lies in a ball B’ such that 9B"\\OM’ is a disc
disjoint from By U B;. By cutting and pasting, we may modify B’ so that dB"\\OM' is disjoint
from D. By maximality of D, 9B’\\OM' must be parallel into D, via a product region disjoint
from By U Br. But then B’ can be isotoped into B, without moving By U By, which contradicts our
assumption that this component of By is disjoint from B.

Suppose that the vertical boundary of B; is compressible. Let D’ be a compression disc, with
boundary lying in an annular component A of d,B;. The interior of D’ is disjoint from B; because
no component of By is I-bundle over a disc. By cutting and pasting, we may assume that D’ is
disjoint from the discs 9B\\F. Then A compresses to two discs Dy and Ds. These are disjoint from
By U B;. They are parallel to discs D} and Dj in F, and for ¢ = 1 and 2, D; U D} bounds a 3-ball
B;. The balls By and By are either disjoint or nested. We consider these two cases separately. The
argument is illustrated in Figure 20.

If By and B, are disjoint, then the union of By, By and a regular neighbourhood of D’ forms
a copy of D? x I, with interior disjoint from B; and with (D? x I) N F = D? x dI. Therefore, we
may enlarge B by attaching D? x I, forming a larger generalised parallelity bundle than B. This
contradicts the assumption that B is maximal.

Suppose now By and Bj are nested. Say that Bs lies in B;. Then because D’ is disjoint from the
interior of Bj, we deduce that the component of B; containing A lies in B;. This implies that this
component is boundary-trivial, which is a contradiction.

Thus, we have shown that every component of B either is an I-bundle over a disc, is boundary-trivial,
or has incompressible vertical boundary.

We will show that the horizontal boundary of B; is incompressible. We can assume that a
compression disc D’ is disjoint from the discs D = dB\\F. It must necessarily intersect the vertical
boundary of B;. Then consider the curves of intersection between D’ and 9,B;. Any curve can either
be removed by an isotopy, or it bounds a disc in D’ that forms a compression disc for 9,8;. But we
have just shown that 9,8 is incompressible. So 0, B; is incompressible. O

One of our goals is to show that generalised isotopy moves are powerful enough to isotope an
almost normal surface to a normal one. In order to show this, we need to understand the way that
generalised parallelity bundles can lie in S x [0,1]. We are therefore led to the following definition.

Definition 6.20 (Coherent, incoherent I-bundle). Let B be a connected I-bundle embedded in
S x [0,1] with 9, B = BN (S x {0,1}). Then B is coherent if it intersects both S x {0} and S x {1}.
Otherwise, it is incoherent. See Figure 21.

Note that isotopy moves along edge and face compression discs move a surface through an
incoherent I-bundle. Similarly, an annular simplification occurs in an incoherent I-bundle. The
following proposition shows that these are essentially the only moves needed to reduce a surface.

Proposition 6.21 (Incoherent is boundary-trivial or I-bundle over disc or annulus). Let H be a
handle structure for S x [0,1] where S is a closed orientable surface. Let B be a mazimal generalised
parallelity bundle for S x [0,1]. Let B be an incoherent component of B. Then B is either boundary-
trivial or an I-bundle over a disc or an annulus.
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FIGURE 21. Schematic pictures of coherent and incoherent /-bundles

Proof. Suppose that B is neither boundary-trivial nor an I-bundle over a disc. By Theorem 6.19,
the horizontal and vertical boundaries of B are incompressible. Any vertical boundary component
A of B is an incompressible annulus properly embedded in S x [0, 1] with A lying in S x {0}, say.
Hence, it is parallel to an annulus in S x {0}. It cannot be the case that, for every vertical boundary
component of B, the product region between it and the corresponding annulus in S x {0} has interior
disjoint from B. Hence, there is some vertical boundary component A with the property that the
product region between A and the annulus in S x {0} contains B. Therefore, 0, B lies in this annulus
in S x {0}. By the incompressibility of 9, B, we deduce that each component of 95 B is an annulus.
Therefore, B is an I-bundle over an annulus or Mobius band. The proof is concluded by observing
that a Mébius band does not properly embed in a copy of S x [0, 1], as follows. Suppose not. Then a
Mobius band would have its single boundary component embedded in S x {0} or S x {1}. Double
along that boundary component to obtain a copy of the Klein bottle embedded in S x [—1,1]. But
now S x [—1, 1] embeds in the 3-sphere, so the Klein bottle embeds in the 3-sphere, and that is a
contradiction. (]

Definition 6.22 (Essential annular I-bundle). Let B be a connected I-bundle embedded in S x [0, 1]
with 9, B = BN (S x {0,1}). Then B is annular if it is an I-bundle over an annulus. It is essential
if its vertical boundary is incompressible.

Note that by Proposition 6.21, any incoherent component of the maximal generalised parallelity
bundle that is neither boundary-trivial nor an I-bundle over a disc must be both annular and
essential.

We now list all the isotopy moves that we will use in this paper.

Definition 6.23 (Generalised isotopy moves). Let S be a normal or almost normal fibre in M =
S x [0,1]. Give it a transverse orientation. Let B be a maximal generalised parallelity bundle for
the component of M\\S into which S points. Let S’ be either S or a nearly normal surface in M,
on the side of S towards which S points. A generalised isotopy move is one of the following moves
applied to S’

(1) a generalised isotopy along an edge compression disc, provided S’ is almost normal (Defini-
tion 5.4 and Definition 6.5);

(2) a parallelisation isotopy, provided S’ is almost normal (Definition 6.10);

(3) a compression isotopy, provided S’ is nearly normal (Definition 5.8);

(4) an annular simplification, on the side into which S’ points (Definition 6.12);

(5) a generalised isotopy along a face compression disc (Definition 6.5);

(6) a tube compression, if S’ is a tubed almost normal surface that is oriented into the tube.

Remark 6.24. Observe that if S is an almost normal or nearly normal surface with a transverse

orientation, then performing any of the generalised isotopy moves above to .S, and then isotoping

slightly in the direction in which S points, yields a surface that:

e is disjoint from S,
e lies in the component of M\\S to which S points, and
e admits a transverse orientation, pointing away from .S.
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Thus repeatedly applying generalised isotopy moves yields a sequence of pairwise disjoint, transversely
oriented surfaces.

Remark 6.25. Many of the generalised isotopy moves are only applicable to almost normal surfaces.
So if S’ is nearly normal, then the only possible moves that might be applied to S’ are compression
isotopies, annular simplifications and generalised isotopy along a face compression disc. Thus, if S’ is
normal, the only posssible move that might be applicable is an annular simplification.

Proposition 6.26 (Nearly normal preserved). Let S be a transversely oriented almost normal surface.
Let S’ be obtained from S by an isotopy along an edge compression disc, a generalised isotopy along
an edge compression disc, a tube compression or a parallelisation isotopy, followed by a sequence of
generalised isotopy moves. Then S’ is nearly normal.

Proof. By Lemmas 6.8 and 5.15, a first isotopy that is a generalised isotopy along an edge compression
disc, or a tube compression yields a nearly normal surface. By definition, a parallelisation isotopy
takes S to a normal surface, which is therefore nearly normal. By Lemmas 5.12, 6.7 and 6.14, any
compression isotopies, generalised isotopies along face compression discs, and annular simplifications
leave the surface nearly normal. So the result is nearly normal. O

6.6. Avoiding the interior of the generalised parallelity bundle. We have defined generalised
isotopy moves. They are defined in terms of an initial normal or almost normal surface S and a
maximal generalised parallelity bundle B for M\\S. Note that as we perform the generalised isotopy
moves, we obtain a sequence of surfaces, but we continue to work with the parallelity bundle B for
MA\\S where S is the initial surface. There is an important property that we would like these surfaces
to satisfy. We would like to ensure that each surface in this sequence is disjoint from the interior of
B. The following lemma nearly achieves this. It also places the moves into a convenient order.

Lemma 6.27 (Almost normal to normal, mostly disjoint from B). Let S be an almost normal surface
that is transversely oriented. Let B be a maximal generalised parallelity bundle for the component
of M\\S into which S points. Then there is a sequence of generalised isotopy moves, all in the
direction specified by the transverse orientation of S, taking S to a normal surface, with the following
properties:

(1) If a generalised isotopy along an edge compression disc is performed, this is the first move of
the sequence.

(2) If a tube compression or a parallelisation isotopy is performed, this is the only move of the
sequence.

(8) If any compression isotopies are performed, these all take place at the end of the sequence.

(4) For each surface in the sequence before the compression isotopies, the surface is disjoint from
the interior of each component of B, except possibly in a reqular neighbourhood of the edge
compression disc, where it is allowed to go a little into a component of B that is an I-bundle
over an annulus.

(5) From the second surface onwards, all surfaces in the sequence are nearly normal.

Proof. Suppose first that the initial surface .S has a tubed piece, and the transverse orientation points
into the tube. Then we perform a tube compression and end with a normal surface. Similarly, if S
admits a parallelisation isotopy, then we perform this and end with a normal surface.

Suppose now that if S contains a tubed piece, then the transverse orientation points out of the
tube. Suppose also that S does not admit a parallelisation isotopy. The initial almost normal surface
S has an edge compression disc D on the side into which S points. By Lemma 6.11, the almost
normal piece is disjoint from the interior of J;B, and hence D is disjoint from the interior of B. This
disc D is incident to a 2-handle, which is part of B. If the 2-handle is an entire component of 5,
then perform an edge compression along D. If this component of B is a larger I-bundle over a disc,
then perform a generalised isotopy along the edge compression disc D. If this component of B is
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an I-bundle over an annulus, then we just perform the edge compression along D and allow the
resulting surface to go slightly into this component of B.

After this process, the result is a nearly normal surface. By Proposition 6.26, any later surfaces in
the sequence will be nearly normal. Let S’ be the surface that has been obtained so far.

Suppose that there is an incoherent component B of B on the side of S’ into which it points, such
that B is not an I-bundle over a disc. Then B is boundary-trivial or an I-bundle over an essential
annulus, by Proposition 6.21. If there is a boundary-trivial component, then S’ admits an annular
simplification by Lemma 6.18. If there is an essential incoherent annular I-bundle, then we may
perform an annular simplification along an extrememost one in M\\S".

So, we may assume that every incoherent component of B on the side of S’ into which it points is
an I-bundle over a disc. If S” has a face compression disc, pick one, called D. Let 8 be the arc as
in Definition 5.5. This lies in a 2-handle D? x D' with D? x 9D"' in S. Hence, this 2-handle is a
parallelity 2-handle, and is therefore part of a component B of B. By assumption, B is an I-bundle
over a disc, and so we can perform a generalised isotopy move across B.

Each of these moves reduces the weight of S’, by Lemmas 6.9 and 6.15. Thus, this process
eventually terminates at a surface S’. This is nearly normal but does not have a face compression
disc. If S’ is not normal, then by Proposition 5.16, S’ admits a compression isotopy. Perform this
compression isotopy. This does not create any new face compression disc. Hence, we may repeat,
performing compression isotopies at each stage. Each compression isotopy reduces the number of
annular components of intersection between S’ and the 1-handles. Hence, this process eventually
terminates with a surface that must be normal. O

In the sequence of surfaces taking S to a normal surface, we want to ensure that the surfaces are
disjoint from the interior of B. The reason is that this will enable us to provide upper bounds on the
number of edge swaps taking a spine in one surface to a spine in the other. These bounds will mostly
be in terms of the length of the vertical boundary of B. A formal definition of this length will be
given in Definition 8.11 but it is roughly the number of handles of H that d,5 runs through.

Unfortunately, Lemma 6.27 is not quite sufficient for our purposes. One reason for this is that
in (4), the surface is allowed to go a little into the interior of B. We now develop an extension to
Lemma 6.27 that will allow us to improve (4). However, first we need a definition.

Definition 6.28 (Clean annular simplification). Let M be a compact orientable 3-manifold with a
pre-tetrahedral handle structure. Let S be a transversely oriented normal or almost normal surface
properly embedded in M. Let B be a maximal generalised parallelity bundle for the component of
M\\S into which S points.

Suppose S’ is obtained from S by a sequence of generalised isotopy moves satisfying Lemma 6.27,
all in the given transverse direction. Suppose that S” is obtained from S’ by an annular simplification
that moves S’ across a boundary-trivial or essential annular component B of B. Suppose that this
sequence of moves taking S to S also satisfies Lemma 6.27. That is, we think of S’ as occurring
after a sequence of steps in the process of Lemma 6.27, and S” as a further step.

The annular simplification from S’ to S” isotopes an annulus A’ in S’ across to a vertical boundary
component A” of B. We claim the sequence of isotopy moves from S to S’ does not move S N Jy, B,
except possibly in the first step if that step is an edge compression isotoping slightly into B. This is
because these isotopy moves are followed by a further annular simplification and so, by the ordering
in Lemma 6.27, none are a tube compression, a parallelisation isotopy, or a compression isotopy. All
other generalised isotopy moves remove the component of B that they meet. Thus the isotopy taking
S to S’ does not move S N O B.

Hence, there is a corresponding annulus A in S with boundary equal to 9A”. We say that
this annular simplification is clean if the isotopies restricted to A, taking A to A’, are all annular
simplifications. Therefore the notion of clean depends on the entire sequence of generalised isotopy
moves taking S to S”.
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For example, if an edge compression takes a surface a little into a component of B that is an
I-bundle over an annulus B, and then B is adjusted immediately after by an annular simplification,
the annular simplification is not clean.

On the other hand, the annular simplification moves an annulus across a 3-manifold P’ bounded by
A’ and A”. If we adjust P’ by taking the union of P’ and a neighbourhood of the edge compression
disc of the first isotopy, then it becomes a 3-manifold P bounded by an annulus A C S and A”.
Performing a single annular simplification from A to A” eliminates the edge compression, and gives
a clean annular simplification. We generalise this in the following lemma.

Lemma 6.29 (Isotopy to normal, extra properties). In the sequence of generalised isotopy moves in
Lemma 6.27, we may in addition ensure that the following properties hold:

(1) The annular simplifications are all clean.

(2) For each surface in the sequence before the compression isotopies, the surface is disjoint from
the interior of each component of B, unless the first isotopy is a parallelisation isotopy or a
tube compression, in which case it is the only generalised isotopy move that is performed.

Proof. We suppose that a parallelisation isotopy or a tube compression is not performed, as in this
case, it is the only move in the sequence and the lemma is automatically true.

We now explain how to make all the annular simplifications clean. Suppose that in the sequence
of Lemma 6.27, there is some annular simplification that is not clean. Consider the first such annular
simplification. This involves an annular component B of B. It moves an annulus A’ in S" across
to a vertical boundary component A” of B. Let S” be the resulting surface. By definition of an
annular simplification, A’ U A” bounds a 3-manifold P’ that lies in a 3-ball or is a product region
between A’ and A”. Now, S is isotopic to S’, and before the annular simplification, this has not
moved S N3Oy B, except possibly in the first step if that step is an edge compression isotoping slightly
into B. Hence, there is a corresponding annulus A in S and a corresponding 3-manifold P bounded
by A” U A. As we are considering the first annular simplification that is not clean, all previous ones
were clean. Hence, we can perform these, taking S to some surface S'. For any generalised isotopies
that were applied to S outside of P, we apply the same isotopies to s, giving a surface S’. We can
then perform the annular simplification involving B taking S’ to S”. This involves exactly the same
number of annular simplification as before, but it involves no other generalised isotopies within P.
Thus, it is clean. Hence, we have created a shorter sequence of generalised isotopy moves satisfying
the conclusions of Lemma 6.27. So in a shortest such sequence, all annular simplifications are clean.

This actually implies that before the compression isotopies, the surfaces are disjoint from the
interior of each component of B. For the only way that this can be violated is at the first move, when
an isotopy is performed along an edge compression disc, taking the surface a little into an annular
component of B. Such a component must be incoherent. Therefore, at some stage, the surface must
be isotoped across this annular /-bundle, necessarily by an annular simplification. But this annular
simplification is then not clean, because the isotopy along the edge compression disc precedes it. [

Remark 6.30. A consequence of the above proof is that the sequence of generalised isotopy moves
does not necessarily start with an isotopy along an edge compression disc. Instead, we may start
with annular simplifications which end up by removing the almost normal piece of S. Alternatively,
we may perform a parallelisation isotopy or a tube compression.

The following result is similar to Lemma 6.27 but where we start with a normal surface and apply
an annular simplification.

Lemma 6.31 (Normal to normal, disjoint B). Let S be a normal surface that is transversely oriented.
Let B be a mazimal generalised parallelity bundle for the component of M\\S into which S points.
Suppose that S admits an annular simplification in this direction. Then there is a sequence of
generalised isotopy moves, all in the direction specified by the transverse orientation of S, taking S to
a normal surface, with the following properties:
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(1) The annular simplifications are all clean, and at least one annular simplification is performed.

(2) If any compression isotopies are performed, these all take place at the end of the sequence.

(8) For each surface in the sequence before the compression isotopies, the surface is disjoint from
the interior of each component of B.

(4) All surfaces in the sequence are nearly normal.

(5) Each incoherent component of B incident to S that is not an I-bundle over a disc is isotoped
across in this sequence.

Proof. This is very similar to the proof of Lemma 6.27. Consider all the incoherent components of B
that are not I-bundles over discs and that are incident to .S. Since S admits an annular simplification,
there is at least one such component of B. If there is a boundary-trivial component, then the surface
admits an annular simplification by Lemma 6.18. If there is an essential incoherent annular I-bundle,
then we may perform an annular simplification along an extrememost one. Since these annular
simplifications occur before any other generalised isotopy moves, they are clean. We keep doing
this until we end with a surface S’ such that every incoherent component of B on the side of S’
into which it points is an I-bundle over a disc. If this surface has a face compression disc, we apply
a generalised isotopy move across it. We keep doing this until the resulting surface has no face
compression discs. We then apply compression isotopies as many times as possible. The result is the
final normal surface. |

Lemmas 6.29 and 6.31 start with a normal or almost normal surface S and they work with a fixed
maximal generalised parallelity bundle B for M\\S. Thus, the generalised isotopy moves are defined
in terms of B and they mostly keep this sequence of surfaces disjoint from the interior of B.

There are some circumstances where we might need to iterate this procedure. The following lemma
is an application of Lemmas 6.29 and 6.31 multiple times until no further generalised isotopy moves
are possible.

Lemma 6.32 (Iterating generalised isotopy moves). Let S be an almost normal or normal surface
that is transversely oriented. Then there is a sequence of disjoint transversely oriented surfaces
S = So,...,5, with the following properties:

(1) Each S; points towards S;+1, and the final surface S, points away from the others.
(2) For all i >0, S; is normal.
(8) The final surface S, admits no generalised isotopy moves.

For each i, let B; be a maximal generalised parallelity bundle for the manifold between S; and S;41.
Then there is a sequence of generalised isotopy moves taking S; to S;+1 with the following properties:

(1) If a generalised isotopy along an edge compression disc is performed, this is the first move of
the sequence.

(2) If a tube compression or a parallelisation isotopy is performed, this is the only move of the
sequence.

(3) If any compression isotopies are performed, these all take place at the end of the sequence.

(4) For each surface in the sequence before the compression isotopies, the surface is disjoint from
the interior of each component of B;, unless the first isotopy s a parallelisation isotopy or a
tube compression, in which case it is the only generalised isotopy move that is performed.

(5) From the second surface onwards, all surfaces in the sequence are nearly normal.

(6) The annular simplifications are all clean.

(7) When S; is normal, for every incoherent component B of B; incident to S; such that B is
not an I-bundle over a disc, we isotope across B in this sequence.

Proof. We start with S = Sy. If Sy is normal and admits no annular simplifications, then we set
n = 0 and stop. Otherwise, we may apply Lemmas 6.27 and 6.29 or Lemma 6.31 to get a sequence of
generalised isotopy moves taking Sy to a normal surface Sy. If this admits an annular simplification,
we apply Lemma 6.31 again. We repeat until we reach a normal surface S,, that admits no annular
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simplifications. This must exist because at each stage when going from S; to S;11 (except possibly in
the parallelisation isotopy which happens only once), the weight of the surface strictly decreases. O

7. SURFACES AND GENERALISED ISOTOPY MOVES

Road map: The generalised isotopy moves defined in Section 6 will give us a sequence of surfaces
in S x [0,1]. Eventually, we want to show that there is a bounded number of moves required to
transfer a spine on S x {0} to S x {1}. These spines will step through a sequence of surfaces produced
by generalised isotopy moves.

Each of the generalised isotopy moves is defined in terms of a given fibre S in S x [0, 1] and a
maximal generalised parallelity bundle B for M\\S. In this section, we gather results that determine
properties of this bundle B. These will be used in the proof of the main theorem.

Definition 7.1 (Normally cylindrical/acylindrical). A properly embedded normal or almost normal
2-sided surface S in M is normally cylindrical if there exists an annulus A embedded in M with the
following properties:

(1) AnS = 0A4;

(2) each curve of JA is essential in S

(3) A lies in the parallelity bundle of M\\\S and is vertical in it;

(4) near both components of A, A emanates from the same side of S.

We also say that S is normally cylindrical on the side containing A. If no such annulus exists as
above, then we say that S is normally acylindrical. A surface can also be normally acylindrical on
one side.

Definition 7.2 (Coherently bundled). Let H be a handle structure for S x [0,1]. Then H is
coherently bundled if no vertical boundary component of its maximal generalised parallelity bundle is
an incompressible annulus with both boundary components in .S x {0} or both boundary components
in S x {1}.

The following lemmas are immediate consequences of the definitions and Theorem 6.19.

Lemma 7.3 (Coherently bundled alternative). Let H be a handle structure for S x [0,1]. Then H is
coherently bundled if and only if it admits a mazimal generalised parallelity bundle with the property
that every incoherent component either is an I-bundle over a disc or is boundary-trivial. (Il

Lemma 7.4 (Acylindrical fibre gives coherently bundled). Let H be a handle structure for a closed
orientable 3-manifold M that fibres over the circle. Let S be a normal fibre. Then the handle structure
that M\\S inherits is coherently bundled if and only if S is normally acylindrical. O

Lemma 7.5 (Acylindrical fibre in product gives coherently bundled). Let H be a coherently bundled
handle structure for M = S x [0,1]. Let S” be a normal fibre. Then the handle structure that M\\S’
inherits is coherently bundled if and only if S" is normally acylindrical. ]

Lemma 7.6 (Acylindrical one side gives coherent one side). Let H be a coherently bundled handle
structure for M = S x [0,1]. Let S’ be a normal fibre that is normally acylindrical on one side. Let H'
be the handle structure for the component of M\\S' on that side. Then H' is coherently bundled. [

Suppose H is a pre-tetrahedral handle structure of M = S x [0,1]. Then the maximal generalised
parallelity bundle for H, which we will denote by B(#), has components that can be partitioned into
three subsets, by Theorem 6.19:

e Bp(H), the I-bundles over discs;

e B5(H), the boundary-trivial components;

e Br(H), the remaining components, which have incompressible horizontal boundary and
incompressible vertical boundary.
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FIGURE 22. Left: Schematic picture of annuli A in S x [0,1], A— and A, in A, and
A_ and A, in S. Right: S is the normal sum of S’ and the torus A_ U A,

Lemma 7.7 (Incoherent components for M\\S in coherent bundle for M). Let H be a pre-tetrahedral
handle structure of M = S x [0, 1], with components of its mazimal generalised parallelity bundle
partitioned into Bp(H), Ba(H), and Br(H) as above. Let BS°M(H) denote the coherent components
of Br(H). Suppose that A(H) > 0.
o If H contains a normal fibre that is not normally parallel to a boundary component, then let
S be one such fibre with least weight.
o [f every normal fibre in H is normally parallel to a boundary component, then let S be an
almost normal fibre with least weight.

Let B be a mazximal generalised parallelity bundle for the handle structure obtained by cutting along
S. Let By be the union of the incoherent essential annular components of B that are incident to S.
Then B4 is disjoint from BSR(H).

Remark 7.8. On notation, observe that B.(H) denotes a union of components of the maximal
generalised parallelity bundle for all of M, whereas B 4 denotes components of the maximal generalised
parallelity bundle for M\\S.

Proof. We first show that no component of B4 lies in the interior of B°"(#). For suppose instead
that a component B of B4 lies completely in the interior of B$°"(#H). The component of B (H)
containing B consists of a component P of the parallelity bundle for #, possibly with some D? x I
pieces attached to it. Now B cannot intersect P, since S would have to be horizontal within P
and hence B would intersect 9,85°"(H). Hence, B lies within the D? x I pieces of this component
of B2 (H), which is a collection of 3-balls. But this implies that the horizontal boundary of this
component of B4 is inessential in S, which contradicts the definition of B 4.

We now show that B4 is disjoint from B$"(#H). To do this, it suffices to show that it is disjoint
from 0, B5°"(H), because, in the previous paragraph, we showed that no component of B4 lies in
the interior of BSP(H). Suppose that B4 intersects a component A of 9,B5°"(H). Thus A is an
annulus with boundary components on S x {0} and S x {1} by Definition 6.20. Then SN A would be
at least two parallel core curves of A. In fact, because B°" () is coherent and because S separates
S x {0} from S x {1}, we deduce that any essential arc in A must intersect S an odd number of
times. Hence S N A is at least three core curves of A. Pick three such core curves that are adjacent
in A, and let A_ and A, be the annuli between them in A. Since S is separating, we may choose
a transverse orientation on S so that, near 9A_, it points into A_, and near JA, it points out of
A, . Because A is incompressible, 9A_ bounds an annulus A_ in S, and similarly A, bounds an
annulus fl+ in S. See Figure 22, left.

Suppose first that A_ and ;Lr emanate from the curve A_ N A, in opposite directions in .S. Then
the interiors of A_ and A+ are disjoint, unless S is a torus. So suppose for the moment that .S is not
a torus. Then we may remove A_ U A, from S and attach the boundary components of the resulting
surface, to obtain a normal or almost normal fibre S’. We claim that S is not normally parallel to
a boundary component of M. One way to see this is to note that S is the normal sum of S’ and
a torus. This torus is obtained from A_ and /~1+ by perturbing using a small normal isotopy and
then gluing their boundary components together in pairs, as in Figure 22, right. (The normal sum is
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obtained by cutting along the parallel normal curves and reconnecting into the surface S; see, for
example [13] for information on normal sums.) If S’ is normally parallel to a boundary component,
then this normal sum would just be a disjoint union, which is a contradiction. Now, S’ is a fibre and
it has smaller weight than S. If S was normal, then so is S’. If S is almost normal, then S’ may be
normal or almost normal. But in all cases, this contradicts our hypotheses.

Suppose now that A_ and fhr emanate from the curve A_ N A, in opposite directions in S, but
that the interiors of A_ and A, overlap. Then S is a torus and the three curves dA_ U A, are
parallel curves on S. Hence, we may consider S\\A_ instead of A_ and consider S\\ A, instead of
/Lr. These annuli then have disjoint interiors, and we may then argue as above to deduce that S is
the normal sum of a fibre S’ and a torus, and thereby reach a contradiction.

Suppose now that A_ and A, emanate from A_ N A, in the same direction in S. Because the
other curves of A_ and A, are disjoint, we deduce that A_ and A, are nested. Say that A_ C A,
Note that near its two boundary curves, A_ emanates from the same side of A. For otherwise,
A_ U A_ is the union of two annuli embedded in S x [0,1] with matching boundary components.
This union is a Klein bottle, because the transverse orientations on S at the two components of 9A_
are oppositely oriented. But a Klein bottle does not embed in .S x [0, 1], which is a contradiction. The
same argument proves that A, emanates from the same side of A. But then the annulus A, \\A_
emanates from opposite sides of A near its boundary. We can reglue the boundary components of
A{\\A_ to form an embedded torus 7. The surface S is the normal sum of 7" and another normal
or almost normal fibre S’. As argued above, this has smaller weight than S and is not normally
parallel to a boundary component of M. This is again a contradiction. O

Lemma 7.9 (Least weight surface is acylindrical). Let M be a closed orientable 3-manifold that
fibres over the circle. Then, for any pre-tetrahedral handle structure H of M, there is a normal fibre
that is normally acylindrical. Indeed, any normal fibre that has least weight in its isotopy class is
normally acylindrical and admits no annular simplifications.

Proof. Let S be a fibre that is standard with respect to H and that has least weight among all such
fibres. Then we may isotope S to a normal surface without increasing the weight: the fact that such
an isotopy exists is well-known. See, for example [26, Theorem 3.4.7] or [20, Proposition 4.4].
Suppose that S admits an annular simplification. Then this reduces the weight of S by Lemma 6.15,
which is a contradiction. Suppose that S is normally cylindrical. Then by Lemma 7.4, M\\S is
not coherently bundled. So, by Lemma 7.3, it has an essential incoherent annular component of
its maximal generalised parallelity bundle. So S admits an annular simplification, which we have
established not to be the case. (]

The next lemma ensures that a normal surface in M\\S is also normal in M.

Lemma 7.10 (Normal in M\\S is normal in M). Let H be a handle structure of a compact orientable
3-manifold M. Let S be a closed normal surface in M. Let H' be the handle structure that M\\S
inherits. Let S" be a closed surface in M\\S that is normal with respect to H'. Then S’ is normal
with respect to H in M.

Proof. Let Hy be a 0-handle of H and let D be a component of S’ N Hy. Suppose that D is not
normal. Then it runs over a component F of intersection between Hy and the 2-handles more than
once. This component F is divided up by S. However, since S is normal in H, each component of
intersection between S and Hy runs over E at most once. Hence, any 0-handle of Hy NH' intersects
E in either the empty set or a single disc. Therefore, if D runs over E more than once, then S’ is
not normal in H’, which is a contradiction. O

Similarly, if a surface is normally acylindrical in M\\S, then it is normally acylindrical in M,
under the following assumptions.
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FIGURE 23. The annulus A may be taken to run through the co-core of a 2-handle,
intersecting it in an arc « that is essential in A, with both endpoints on 5’.

Lemma 7.11 (Normally acylindrical in M\\S and M). Let H be a handle structure of a compact
orientable 3-manifold M. Let S be a closed separating incompressible normal surface in M that
is normally acylindrical. Let H' be the handle structure that M\\S inherits. Let S’ be a closed
incompressible connected normal surface in H' that is normally acylindrical with respect to H'. Then
S’ is a normal surface in H that is normally acylindrical with respect to H.

Proof. By Lemma 7.10, S’ is normal in H. Suppose that S’ is normally cylindrical in #H, via an
annulus A. If this annulus has empty intersection with S, then S’ is normally cylindrical with respect
to H’, which is contrary to assumption. Therefore, A is divided up by curves of SN A.

Observe first that no component of AN S is homotopically trivial in A, because A is vertical in
the parallelity bundle of M\\\S’, and S is normal in M, hence A NS consists of core curves of A.

If there is more than one circle of AN .S, then two adjacent circles bound an annulus in A with
interior disjoint from S and which emanate from the same side of S. Since S is normally acylindrical,
we deduce that these curves must be inessential in S. But then the curves A NS’ bound discs in the
complement of S’, which contradicts the assumption that S’ is incompressible.

So suppose that there is just one curve of AN.S. Then an essential arc in A intersects this curve
just once, and using the fact that S’ is connected, we may join the endpoints of this arc by a curve
parallel to S’. This implies that S is non-separating, which is a contradiction. O

Proposition 7.12 (Acylindrical one side stays acylindrical one side). Let H be a pre-tetrahedral
handle structure for M = S x [0,1]. Let S be a normal fibre that is normally cylindrical on at
most one side. Transversely orient S. If S is cylindrical on one side, suppose that it is transversely
oriented in this direction. Let S’ be a normal fibre that is obtained from S by performing generalised
isotopy moves, all in this transverse direction. Then S’ is normally acylindrical on the side into
which S’ does not point.

Proof. Each time that we perform an annular simplification, a generalised isotopy along an I-bundle
over a disc, a generalised isotopy along a face compression disc, or a compression isotopy, we remove
points of intersection with 2-handles of H without adding more such intersections. Thus, we can view
each component of intersection between one of the surfaces and the 2-handles of H as corresponding
to a component of intersection with the previous surface and the 2-handles of H. In order to ensure
that all these surfaces in this isotopy are disjoint, each time we perform an isotopy, we push the
entire surface a little in its specified transverse orientation (as in Remark 6.24).

Suppose that S’ is cylindrical on the side into which it does not point, via an annulus A. The
annulus A is vertical in the parallelity bundle of M\\S’. Thus by isotoping A to the boundary of
some parallelity 0-handle through which it runs, we may ensure that A contains the co-core of a
2-handle of M\\\S". This co-core will be an essential arc « in A, with both endpoints of o on S’. See
Figure 23.

If S were to intersect A, it would do so in a collection of parallel core curves of A, because S
is normal. Since each component of intersection of S’ with 2-handles corresponds to a component
of intersection of S with 2-handles, the two intersections between o and S’ at the endpoints of «
also give points of intersection with S. These must lie in the interior of «, because the transverse
orientation on S’ points away from «. Hence S N A contains at least two core curves, one parallel to



THE TRIANGULATION COMPLEXITY OF FIBRED 3-MANIFOLDS 49

one component of A and the other parallel to the other component of JA. These core curves point
towards the relevant component of 9A. We deduce that there are two adjacent curves of SN A that
co-bound an annulus A’ in A, where S points out of A’ near JA’. Hence, S is normally cylindrical
on the side into which it does not point, contrary to assumption. |

Corollary 7.13 (Maximal isotopies, cylindrical one side gives normal). Suppose H is a pre-tetrahedral
handle structure for M = S x [0,1]. Suppose that M contains no normal fibre that is normally
acylindrical, other than those that are normally parallel to S x {0} or S x {1}. Let S be a transversely
oriented normal fibre that is cylindrical on one side only, the side into which it points. Let S’ be a
surface that is obtained from S by performing generalised isotopy moves, all in the specified transverse
direction, until no further generalised isotopy moves are possible. Then S’ is normal and boundary
parallel.

Proof. By Proposition 5.16, S’ is normal. By Proposition 7.12, S’ is acylindrical on the side into
which it does not point. It cannot be cylindrical on the side into which it points, as otherwise
an annular simplification could be performed upon it. Hence, it is acylindrical and therefore, by
hypothesis, it is boundary parallel. O

Proposition 7.14 (Maximal isotopies, everything cylindrical). Suppose H is a pre-tetrahedral handle
structure for M = S x [0,1]. Suppose that every normal fibre is cylindrical on the S x {1} side at
least, with the exception of those that are normally parallel to S x {0} or S x {1}. Let S be a normal
or almost normal fibre that is not boundary parallel. Let S’ be a surface that is obtained from S by a
maximal sequence of generalised isotopy mowves, all in the S x {1} direction. Then S’ is normally
parallel to S x {1}.

Proof. The surface S’ is normal, by Proposition 5.16. If it is not parallel to S x {1} it admits
an annular simplification in the S x {1} direction, by hypothesis. Because S’ admits no such
simplification, it must therefore be normally parallel to S x {1}. (]

Proposition 7.15 (Isotopies from a least weight fibre). Let M = S x [0,1], and suppose H is a
pre-tetrahedral handle structure for M.

o If there is a normal fibre that is not normally parallel to S x {0} or S x {1}, let S be one
with least weight. In this case, suppose that S is normally cylindrical on the S x {1} side.

o If the only normal fibres are those that are normally parallel to S x {0} or S x {1}, let S be
an almost normal fibre with least weight.

Then there is a sequence of generalised isotopies satisfying the conclusions of Lemma 6.27 and 6.29
(in the case where S is almost normal) or 6.31 (in the case where S is normal) taking S to S x {1}.

Proof. Orient S towards S x {1}. By Lemmas 6.27 and 6.29, or Lemma 6.31, there is a sequence of
generalised isotopy moves as in those lemmas, taking S to a normal surface S’. When S is almost
normal, then by assumption, the only normal fibres are parallel to S x {0} or S x {1} and so S’ must
be parallel to S x {1}. When S is normal, then S’ has smaller weight than S and hence again it
must be parallel to S x {1}. O

Definition 7.16 (Innermost). Let H be a handle structure of M = S x [0, 1]. Let S be a normal
fibre that is cylindrical on exactly one side. Then S is innermost on the acylindrical side in M if,
for every normal fibre S’ that is disjoint from S, that lies on the normally acylindrical side of S and
that is normally cylindrical in M on the side pointing towards S and normally acylindrical on the
other side, S’ is normally parallel to S. See Figure 24.

Observe that if there is a normal fibre that is cylindrical on exactly one side, then there is one
that is innermost on the acylindrical side. This follows from Kneser’s upper bound on the number of
disjoint normal surfaces; for example see Matveev [26].
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FIGURE 24. If S as shown is innermost, then S’ must be normally parallel to S.

Lemma 7.17 (Cutting along innermost). Let H be a handle structure of M = S x [0, 1]. Suppose
that every normal fibre in M is normally cylindrical, with the exception of those that are boundary
parallel. Let S be a normal fibre that is normally cylindrical on exactly one side. Suppose that S is
innermost. Then, in the component of M\\S on the normally acylindrical side of S, every normal
fibre is either normally cylindrical in M\\S on the side away from S, or boundary parallel.

Proof. Suppose that, on the contrary, there is a normal fibre S’ in M on the normally acylindrical
side of S, such that S’ not boundary parallel, but S’ is normally acylindrical in M\\:S on the side
away from S. This fibre S’ is normal in M by Lemma 7.10. It is normally cylindrical in M by
hypothesis, but because S is innermost, S’ cannot be normally cylindrical in M only on the side that
points toward S. Note that if S’ is normally cylindrical in M\\\S only on the side that points toward
S, then it will still be normally cylindrical on this side in M, since the incoherent parallelity bundle
for S" in M\\S will be an incoherent parallelity bundle for S’ in M. Thus S’ must be normally
cylindrical in M on the side away from S. But then the incoherent parallelity bundle for S’ on this
side is disjoint from S, and thus remains an incoherent parallelity bundle for M\\S, and so S’ is
normally cylindrical in M\\\S on the side away from S. This contradicts our assumption. (|

8. SPINES ON SURFACES

Road map: We have built nearly normal surfaces and described generalised isotopy moves that
interpolate between almost normal, nearly normal, and normal surfaces. By tracing through the
effect of these moves on a surface S C S x [0, 1], we will be able to transfer a spine from one nearly
normal or almost normal surface to another. This section describes how the spine transfer is done.

Finally, recall that to prove the main theorem, we need to bound the number of edge contractions
and expansions required when we transfer spines in S x [0, 1]. This section also give some initial
upper bounds on the number of edge contractions and expansions under generalised isotopy moves.

8.1. Edge swaps in the spine graph. Given a sequence of nearly normal surfaces obtained from
generalised isotopy moves, we know how to transfer the canonical handle structure across the surfaces.
However, we actually want to be transferring spines across surfaces, and bounding the number of
edge contractions and expansions required in order to do so. Given canonical handle structures, we
now describe how to transfer spines.

Our main tool will be a modification to a spine called an edge swap.

Definition 8.1 (Edge swap). Let I be a spine for a closed surface S. Let e; be an arc properly
embedded in the disc S\\I'. Let ez be an edge of the graph I" U e; that has distinct components of
S\\(T"U e1) on either side of it. Then the result of removing e from I' and adding e; is a new spine
T’ for S. We say that I" and I are related by an edge swap.

The following is an important example.

Lemma 8.2 (Edge swap and Dehn twist). Let I' be a spine for a closed orientable surface. Let C be
a simple closed curve intersecting I' transversely in a single point in the interior of an edge of T'. Let
I’ be obtained from T' by Dehn twisting about C. Then I is obtained from T' by a single edge swap.
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FiGURE 25. Two ways of performing an edge swap

Proof. Let e be the edge of ' that intersects C. Let e; be an arc in S\\I" joining the endpoints of
e2 and emanating from opposite sides of es. There are two possible choices for e;. The spine I is
obtained from I' by removing e and adding one choice for e;. |

The next lemma shows that a single edge swap is realised by a bounded number of edge contractions
and expansions, so we will be able to bound distances in the spine graph by bounding edge swaps.

Lemma 8.3 (Edge swap and contraction/expansion). Let S be a closed orientable surface. Let T' be
a spine for S. Then an edge swap can be realised by a sequence of at most 24g(S) edge expansions
and contractions.

Proof. Let e; and e be as in Definition 8.1. Let IV be obtained from I" by adding e; and removing
eo. We first reduce to the case where e; is an edge of I'. Suppose that it is not. Then es is a sub-arc
of an edge e3 of I'. Let e4 be the arc e; Ucl(es — e2). A small isotopy makes it disjoint from ez. Then
T’ is obtained from T' by removing e3 and adding e4. See Figure 25.

Thus, we may assume that ey is an edge of I'. Let I'_ be the result of removing e; from I'. Then
S\\I'_ is an annulus A. The two edges e; and e are both properly embedded in A. They are both
essential in A, since if A is cut along either e; or es, the result in both cases is a disc. Hence, there
is an isotopy of A taking e to e;. We will show that this isotopy can be achieved using a sequence
of edge expansions and contractions, starting with I" and ending with I".

We perform the isotopy in three stages: first we move one endpoint of e to an endpoint of e,
then we move the other endpoint of e; to the other endpoint of eq, in such a way that the interiors
of e; and es are then isotopic, then we move the interior of e; to the interior of e;. The latter step is
achieved by an isotopy of the spine and so requires no expansions or contractions. So we need only
consider the first two stages.

If an endpoint of e; has valence more than 3, then we first perform an edge expansion so that the
valence at this end of e; becomes exactly 3. Then we start to perform the isotopy. When we move
the endpoint of ey, it will, at various moments in time, move past a vertex of I'_ or move past the
other endpoint of e5. Each such move can be achieved by an edge contraction followed by an edge
expansion. So, the total number of contractions and expansions to move one endpoint is at most
twice the number of vertices in one component of the boundary of A. To move the other requires at
most twice the number of vertices in the other component of 9A. Thus we consider the number of
vertices of both components of JA. This may be more than the number of vertices of I'_ because
when identifications are made on the boundary of A to form .S, distinct vertices of A may become
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identified. But the number of vertices in JA is equal to the number of edges in A and this is twice
the number of edges in I'_. Lemma 2.2 implies there are at most 6g(.S) — 4 edges in I'_. Hence there
are less than 24¢(S) edge expansions and contractions required. ([

Lemma 8.4 (Edge of a spine has essential dual curve). Let T' be a spine for a closed orientable
surface S. Let e be an edge of I', and let I'_ be the graph obtained from I' by removing e. Then the
core curve of the annulus S\\I'_ is essential in S.

Proof. Suppose that the core curve C' is inessential in .S. Then it bounds a disc D. We may assume
that C' intersects e transversely at a single point. The intersection between I' and D is a graph G in
D that intersects D at one point. Since D\\G contains a single face, the one incident to 9D, we
deduce that G is a tree. Hence it contains a vertex with valence 1, other than the one on 9D. This is
a vertex with valence 1 in I', contradicting the hypothesis that I" is a spine for S, Definition 2.1. O

Definition 8.5 (Associated cell structure from surface handle structure). Given a handle structure
H for a closed surface S, its associated cell structure is defined as follows. Each 2-cell is a handle
of H. Thus, its 1-cells are the components of intersection between pairs of handles. Its O-cells are
components of intersection between triples of handles. We say that a graph embedded in S is cellular
if it is a subcomplex of this cell structure.

Definition 8.6 (Cellular spine). Let C be a cell structure for S. A spine embedded in S is cellular
if it is a subcomplex of C.

Lemma 8.7 (Moving spine off a disc). Let S be a closed orientable surface with a cell structure C,
and with a cellular spine T'. Let D be a cellular subset of S that is an embedded disc, and let { be
the length of 0D, where each 1-cell of C is declared to have length 1. Then there is a sequence of at
most 69(S) + 2¢ edge swaps taking T to a cellular spine I that is disjoint from the interior of D.
Moreover, I" — D is contained in T' — D.

Proof. We will perform the modifications to I' in two stages. In the first stage, we will remove edges
that lie entirely in the interior of D. The number of such edges is at most the number of edges of T,
which is at most 6¢g(S) by Lemma 2.2. Let e be an edge of I that lies entirely in the interior of D,
and let z be a point in the interior of e. We will perform an edge swap that removes e, but we need
to find a suitable arc €’ to replace it. Removing e from I' gives a graph I'_, the exterior of which
is an annulus A. The arc e is essential in A. Hence, there is an embedded core curve C for A that
intersects e once at exactly the point z. The boundary 9D intersects the interior of A in a collection
of properly embedded arcs. By choosing C' suitably, we may assume that C intersects each of these
arcs at most once. It has to intersect at least one of these arcs, by Lemma 8.4. So, let ¢’ be one such
arc. Then the edge swap removes e and inserts €’.

After this procedure, I" intersects the interior of D in a union of embedded arcs, each of which has
at least one endpoint in dD. The closures of these arcs may intersect on dD. But these arcs may
also intersect each other at their endpoints in the interior of D. So each component of I' N int(D) is
either an arc or a star-shaped graph. These arcs and graphs divide D into discs, and each of these
discs contains at least one 1-cell lying in 9D, for otherwise cutting along I' would separate S into at
least two components, one entirely contained in the interior of D, contradicting the definition of a
spine. The number of these discs is more than half the number of arcs of I" N int(D); this can be
shown by induction on the number of components of intersection, using the fact that there are no
vertices of valence one in a spine. Hence, the number of arcs is less than twice the length ¢ of D.
Each modification that we make will reduce the number of arcs of int(D) N T, and so the number of
edge swaps needed in this stage will be at most 2¢. Let e be an arc of int(D) N T, and let z be a
point in int(e) Nint(D). Again, there is a closed embedded curve C intersecting I" exactly at the
point z. We may assume that C intersects each arc of 9D\\I" at most once. Let e; be an arc of
OD\\T" that meets C exactly once. Let es be the edge of I' U e; containing . Then I' U e; divides S
into two discs, which lie on either side of e5. Hence, we may perform an edge swap that adds e; and
removes es. O
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Corollary 8.8 (Moving spine off multiple discs). Let S be a closed orientable surface with a cell
structure C, and with a cellular spine I'. Let Dy, ..., Dy be cellular subsets of S, each of which is an
embedded disc, and with disjoint interiors. Let £ be the sum of the lengths of 0D+, ...,0Dy. Then
there is a sequence of at most 6kg(S) + 2¢ edge swaps taking T to a cellular spine T that is disjoint
from the interior of Dy, ..., Dy. Moreover, T' — (DyU---U Dy) is contained in T — (D U---U Dyg).

Proof. Use Lemma 8.7 to move the spine off the interior of Dy, then the interior of D5, and so on.
At the ith stage, we do not add to the spine away from D;. Hence, when we remove it from the
interior of D;, the new spine does not go into the interior of an earlier D;. Hence, after this process,
the spine is disjoint from the interior of Dy, ..., Dy. Moreover, IV — (D U --- U Dy) is contained in
I'—(DyU---UDy). O

8.2. Moving spines on nearly normal surfaces. In this subsection, surfaces will have a handle
structure, and we will work with the associated cell structure of Definition 8.5. We give concrete
bounds on the number of edge swaps required to transfer a spine in the case of isotopy along edge
and face compression discs and generalised isotopy across an I-bundle over a disc, i.e. generalised
edge or face compressions as in Definition 6.5.

Remark 8.9. Note that since the canonical handle structure is unchanged under a compression
isotopy, the spine on one transfers to the other immediately.

Lemma 8.10 (Edge swap bound, edge and face compression discs). Suppose S is almost normal or
nearly normal, and S’ is the nearly normal surface obtained from S by an isotopy along an edge or
face compression disc D. Let v be the valence of the 2-handle meeting the endpoints of DN S, i.e.
the number of components of intersection between this 2-handle and the 1-handles. Give S and S’
their canonical handle structures.

o If S is equipped with a cellular spine T, then we may build a cellular spine on S" from T by a
sequence of at most max{0,6(2v — 3)g(S) + 88v — 152} edge swaps in the face compression
case, and by at most 6(2v — 1)g(S) + 88v — 64 edge swaps in the edge compression case.

o If instead S’ is equipped with a cellular spine I, then we may build a cellular spine on S
from T7 by a sequence of at most 6 g(S) + 8v edge swaps in the face compression case, and at
most 6g(S) + 8v + 40 edge swaps in the edge compression case.

Proof. Consider the arc « = D NS of Definitions 5.4 and 5.5. We may suppose that o does not lie
entirely in the interior of a 0-handle of S, else Lemma 5.20 implies " or IV transfers unchanged, and
the bound is trivial. In the face compression case, this implies that v > 2.

Suppose first that the isotopy is not across an edge compression disc incident to a tubed piece
of S. Then Lemma 5.19 applies. Let Hy and H) be the 2-handles of S at the endpoints of a. If «
lies on a 1-handle, i.e. in the face compression disc case, let H; denote that 1-handle. If not, a runs
through the interior of a 0-handle; let Hy denote this 0-handle.

The effect of the isotopy along D is given in Lemma 5.19; see also Figures 13 and 14. The 2-handles
Hy and HY are removed, along with H; in the face compression case, and handles incident to Ho and
H/, are combined. Finally, complementary regions that are not discs are replaced by discs. In the
edge compression case, this produces (at most) v 1-handles in S’, which we denote by J{,...,J?, and
(at most) (v — 1) 0-handles between them, which we denote by J{,..., JY~!. In the face compression
case, we only join (v — 1) 1-handles, since H; was removed, and so we produce (at most) (v — 1)
1-handles, denoted J7,...,J7~! and (at most) (v — 2) O-handles, denoted J¢, ..., Jo 2.

Let C and C’ be the cell structures associated to the handle structures on S and S’. We form
a common refinement C”, as follows. Starting from C, overlay the cells of C’ to form C”. In the
face compression case, this divides the 1-handle H; into (2v — 3) 2-cells by introducing 1-cells that
run along it, and divides the 2-handles Hs and H) similarly, each becoming (2v — 3) 2-cells. See
Figure 26. The edge compression case is similar, with the only difference being that additional 1-cells
at the top and bottom are added.
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FIGURE 26. C"” is a common refinement of C and C’.

Suppose that we start with a spine I' that is cellular in C. This is therefore cellular in C”. We
will move the spine through C” to a spine that is cellular in C’. To do so, we move the spine to the
boundary of any 1-handle Jf and 0-handle J&. These determine cellular discs in C”. The length of
5‘J{ in C’ is four. Because we divide the 1-handle to form the refinement, the length of 5‘J{ inC” is
12. (We are assuming here that Jf # JF for j # k. In other words, we are assuming that no 1-handle
J{ winds several times through the disc region shown in Figure 26. If some Jf does enter this disc
region several times, then our estimates for the total length of the discs J1,...,J7, Jg, ..., Jg_l will
still hold.) The length of &JF in C’ is at most 24: 12 intersections with 1-handles by Lemma 5.11
and 12 intersections with 2-handles between 1-handles. Therefore the length of 9.JF in C” is at most
32. Thus the total length of all boundaries is at most:

12(v — 1)+ 32(v — 2) = 44v — 76 face compression case
120 +32(v — 1) = 44v — 32 edge compression case

Then Corollary 8.8 implies that I' can be transferred to IV by a sequence of edge swaps, with total
number bounded by:

6(2v —3)g(S) + (88v — 152) face compression case
6(2v —1)g(S) + (88v — 64) edge compression case

Suppose now that we have a spine I' that is cellular in C’. It is then cellular with respect to C”.
We move the spine off the interior of the discs Hy and Hj, and in the face compression case off the
interior of the disc H;. In the edge compression case, we move it off the interior of the disc Hy.

In the case of a face compression disc, in C”, the union of the discs Hy, Ho, H} has boundary of
length 2((v — 1) + (v —2)) + 6 = 4w.

In the case of an edge compression disc, we will consider the disc that is the union of discs Hy, HS,
and Hy. The portion of the boundary of this disc that meets dHs has length v+ (v — 1), and similarly
for the portion of the boundary that meets OHj. As for Hy, if it is a nearly normal piece in S, then
its boundary has length at most 24 in C by Lemma 5.11. Note that two of these 24 curves come from
intersections with Ho and Hj. Thus the length of 0Hy away from Hs and HJ in C” is at most 22 in
this case, and so the total length of the boundary in C” is at most 2(2v — 1) + 22 = 4v + 20.

If Hy is not a nearly normal piece, then it comes from an octagon or tubed piece in S. An octagon
is a disc whose boundary has length 16 in C. Again two of these curves come from intersections with
Hy and HJ, so the length of the portion of the boundary of Hy that is disjoint from 0Hy U OHY is 14.
It follows that the total length of the boundary of Ho U Hy U H) in C” is at most 2(2v — 1) + 14 in
this case.

In all cases other than the tubed case, Lemma 8.7 implies that there is a sequence of edge swaps
in C” taking IV to a spine I', which is cellular in C, and that sequence has length at most:

6g(S) + 8v face compression case
69(S)+8v+40 edge compression case.

Finally suppose Hy came from a tubed piece. Lemma 5.21 describes the way that the canonical
handle structure on S’ is obtained from that of S. As above, C and C’ are the cell structures associated
to the handle structures on S and S’. We define their common refinement C” again by superimposing
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them. Let F be a disc in S whose boundary JF forms a core curve of the tube. Then E contains either
H, or H), say H). Then H) and the other components of intersection between E and the 1-handles
and 2-handles of H will have been deleted in S since they lie in a disc of F'* in Definition 5.17.
However, to form the handle structure of S’, we reinstate these components of intersection between
E and the 1-handles and 2-handles, and then apply steps (1) to (5) of Lemma 5.19. Hence, C” will
look very similar to that in Figure 26, but with some of the 1-cells in the boundary of Hj removed.
Thus, the 2-handle Hy in S at one endpoint of « is divided into (at most) (2v — 1) 2-cells. At most v
I-handles of S” and at most (v — 1) 0-handles of S’ run through H,. Denote these by J},...,J? and
A TN

Suppose first that we have a spine that is cellular in C’. Then it is also cellular in C”. Let W be
the union of Hy and the disc from F'* described above. Its boundary has length in C” at most 2v 4+ 6.
So we can move the spine in C” off the interior of W using at most 6 g(S) + 4v + 12 edge swaps, by
Lemma 8.7. It is then cellular in C.

A spine that is cellular in C is cellular in C”. We can then move it off the interior of J{,..., JV
and J3,...,J 0" using Corollary 8.8. The length of 8.J7 in C” is 8. Then length of &.J] in C” is at
most 28. So, the total length of their boundaries is at most

8v + 28(v — 1) = 36v — 28.
The number of edge swaps required to take the spine off these handles is therefore at most
6(2v — 1)g(S) + (72v — 56). O

We want to extend Lemma 8.10 to generalised isotopies across edge or face compression discs. To
do so, we need a notion of the length of the vertical boundary of an I-bundle.

Definition 8.11 (Length of vertical boundary). Let B be the parallelity bundle for a compact
orientable 3-manifold M. Then its vertical boundary 9, B is a union of annuli, which inherit a cell
structure, as follows. Each 2-cell is a component of intersection between a parallelity handle and a
non-parallelity handle. Thus, each such 2-cell is a union of fibres in B. Define the length of 9,8 to
be the number of such 2-cells. Similarly, if B is a maximal generalised parallelity bundle, then 0,85 is
a union of vertical boundary components of the parallelity bundle, and so its length is also defined.

Lemma 8.12 (Edge swap bound, isotopy across I-bundle over disc). Let S’ be obtained from S
by a generalised isotopy move across an I-bundle over a disc as in Definition 6.5, where the disc
has boundary of length £. Let C and C’ be the cell structures associated with the canonical handle
structures of S and S’. Let T be a spine for S that is cellular in C. Then there is a spine for S’
that is cellular in C' and that is obtained from T' by performing at most 6(2¢ + 1)g(S) + 92¢ — 64
edge swaps. Similarly, if ' is a cellular spine for S’, then there is a cellular spine for S obtained by
performing at most 6g(S) + 8¢ + 40 edge swaps.

Proof. We may assume that « does not lie wholly in the interior of a 0-handle of S, as in this case,
the isotopy from S to S’ takes canonical handle structure to canonical handle structure. Let us also
assume, for the moment, that if S is almost normal, then the edge compression disc does not run
over a tubed piece.

Let C_ be the cell structure obtained from C by replacing each component of 0y B by a 2-cell. Let
C” be the cell structure that arises by superimposing C_ and C’, as in the proof of Lemma 8.10.

Consider first the spine I" that is cellular in C. Then using Corollary 8.8, we can move I" off the
interior of Op B using at most 12¢g(S) + 4¢ edge swaps. It is then cellular in C_ and hence cellular in
C"”. As in the proof of Lemma 8.10, there is then a sequence of at most 6(2¢ — 1)g(S) + 88/ — 64 edge
swaps taking to a spine that is cellular in C'.

Consider now the spine IV that is cellular in C’. As in the proof of Lemma 8.10, there is a sequence
of at most 6g(S) + 8¢ + 40 edge swaps taking to a spine that is cellular in C_. It is then cellular in C.

Finally, suppose that S is almost normal and that the edge compression disc runs over a tubed
piece. By Lemma 6.6, in this case we reinstate 1-handles and 2-handles of H, replace each component
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of O, B by a 2-cell, and apply steps (1) to (5) of Lemma 6.6 to obtain the canonical handle structure
of §’.

Suppose that we are given a spine I'V that is cellular in C’. Then the argument of Lemma 8.10
applies. Specifically, each boundary component of the tube bounds a disc in S; let W be the union
of Oy B and the larger of these two discs. Its boundary in C” has length at most 2¢ + 6. Then we
make the spine disjoint from the interior of W using at most 6¢(S) + 4¢ + 12 edge swaps. It is then
cellular in C.

To convert a spine I' in S to a cellular spine in S’ requires at most 6(2¢ — 1)g(S) + (72¢ — 56) edge
swaps, as in the proof of Lemma 8.10. O

We can also deal with parallelisation isotopies at this stage.

Lemma 8.13 (Edge swap bound, parallelisation isotopy). Let S be an almost normal surface,
and let S' be a normal surface that is obtained from S by a parallelisation isotopy. This moves S
across D? x [0, 1], where 9D? x [0, 1] is a vertical boundary component of the parallelity bundle for
M\\(SUS"). Give S and S’ their canonical handle structures. Consider a spine that is cellular in
one of these surfaces. Then it may be converted to a spine that is cellular in the other surface using
at most 6g(S) + 20 edge swaps, where £ is the length of OD? x [0,1].

Proof. The canonical handle structures on S and S’ agree away from D? x {0,1}. Thus, we make
the spine disjoint from the interior of one of these discs using Lemma 8.7. It is then cellular in the
handle structure on the other surface. ]

To apply Lemmas 8.12 and 8.13 we need a bound on the length of vertical boundary components
of parallelity bundles. This is obtained by the following lemmas.

Lemma 8.14 (Length bound). Let H be a pre-tetrahedral handle structure for a compact orientable
3-manifold M. Let B be a mazximal generalised parallelity bundle, or a union of components of the
parallelity bundle. Then the length of 0,B is at most 56 A(H).

Proof. In both a maximal generalised parallelity bundle, and simply a parallelity bundle, each 2-cell
in 9,8 is a component of intersection between a parallelity handle and a non-parallelity handle.
The non-parallelity handle is a 0-handle or a 1-handle. As one travels around 9,5, one meets
these 0-handles and 1-handles alternately. The number of 2-cells in 9,5 lying in the non-parallelity
1-handles is at most the number lying in the non-parallelity 0-handles. So it suffices to bound the
latter quantity. A tetrahedral 0-handle has at most six components of intersection with the parallelity
handles. By Definition 4.13, its complexity is at least 1/2, so it meets a number of parallelity handles
equal to at most 12 times its complexity. A semi-tetrahedral 0-handle has at most seven components
of intersection with the parallelity handles (five 2-handles and two 1-handles). Again by Definition
4.13, its complexity is at least 1/4, so it meets a number of parallelity handles equal to at most 28
times its complexity. A product non-parallelity 0-handle is disjoint from the parallelity handles. So,
the number of 2-cells in 9,8 is at most 56 A(H). O

Lemma 8.15 (Length bound, almost normal case). Let H be a pre-tetrahedral handle structure for a
compact orientable 3-manifold M. Let S be an almost normal surface in M, and let H' be the handle
structure on M\\S described in Definition 4.17. Let B be a mazimal generalised parallelity bundle
for M\\S, or a union of components of the parallelity bundle. Then the length of 0,B is at most
88A(H).

Proof. As above, it suffices to bound the number of components of intersection between the non-
parallelity 0-handles of H’ and the parallelity handles. When a 0-handle Hy of H is divided along
normal discs into 0-handles of H’, the sum of the complexities of these O-handles is equal to the
complexity of Hy. The number of intersections between each such 0-handle and the parallelity handles
is at most 28 times its complexity, as argued in the proof of Lemma 8.14.
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Thus, it suffices to consider when a 0-handle H, of H contains an almost normal piece, plus
possibly some triangles and squares. If the almost normal piece is tubed, the number of intersections
of the resulting 0-handles with the parallelity handles is the same as in the situation when the tube
is compressed. So again the number of intersections is at most 28 times the complexity of Hy.

So, we now consider the situation with Hj contains an octagon plus possibly some triangles and
squares. Then Hy must be tetrahedral. One can check that the resulting 0-handles of H' have at
most 14 intersections with the parallelity 2-handles and at most 8 intersections with the parallelity
1-handles. Again, since the complexity of a tetrahedral 0-handle is at least 1/2, it follows that the
number of intersections between these 0-handles and the parallelity handles is at most 44 times the
complexity of Hy.

We must then double this to get an upper bound on the length of 9,5, because we must also take
account of the intersections between non-parallelity 1-handles of H’ and the parallelity handles. But,
as argued in the proof of Lemma 8.14, the number of these is at most the number of intersections
between the non-parallelity O-handles of H' and the parallelity handles. ]

9. EDGE SWAP BOUNDS FOR ANNULAR SIMPLIFICATION

Road map: Using generalised isotopy moves, we have a sequence of surfaces interpolating between
almost normal, nearly normal, and normal surfaces. For compression isotopies, tube compressions,
parallelisation isotopies and generalised isotopy along an edge or face compression disc, we know how
to transfer spines along those surfaces, and we can bound the number of edge swaps to do so. What
we are missing is a similar bound for annular simplification. This case is somewhat more difficult
than the others, and so we put it in its own section.

The main goal of this section is to bound the number of edge swaps required to transfer a cellular
spine from one surface to another under an annular simplification. Our bound on edge swaps will be
in terms of the width of an annulus, defined as follows.

Definition 9.1 (Width). Let M’ be a compact orientable irreducible 3-manifold with a handle
structure H’'. Let F be an incompressible subsurface of M’ such that OF is standard and F' is not
a 2-sphere. Let B be a maximal generalised parallelity bundle for (M’, F'), and let B be an essential
annular component of B. Then the width of B is defined as follows.

Pick a component A of 9;,B and let P be its intersection with the parallelity bundle. By (6) in
the definition of a generalised parallelity bundle, Definition 6.4, A\\ P lies in a union of disjoint discs
in the interior of A. Hence, one component A_ of P is obtained from A by removing some discs from
its interior. Define the width of B to be length of the shortest cellular path in A_ joining the two
components of A, where the length of a path is the number of edges traversed.

Note that width is independent of the choice of component A of 9 B, since the parallelity bundle
sets up a handle preserving homeomorphism from A_ to the corresponding surface in the other
component of d B.

9.1. Edge swaps in annuli. We consider again cellular spines on surfaces, as in Subsection 8.1. In
that subsection, we discussed edge swaps within discs. We now need to build similar tools within
annuli.

Lemma 9.2 (Arranging a spine and an annulus). Let S be a closed orientable surface with a cell
structure C, and T' a spine for S that is cellular with respect to C. Let A be an essential annulus
embedded in S that is a union of cells, such that OA has length ¢. Finally, let o be an essential
properly embedded arc in A that is cellular and has length d. Then there is a sequence of at most
69(S) + 20 + 4d edge swaps taking I' to a cellular spine I such that T Nint(A) = int(«).

Proof. Let D be the disc A\\a. We will modify I" so that it misses the interior of D. The proof
is very similar to that of Lemma 8.7, but there we required an embedded disc, and here D is not
embedded.
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Let e be an edge of I with interior that lies entirely in D, and let x be a point in the interior of e.
Removing e from I' gives a graph I'_, the exterior of which is an annulus A’. The arc e is essential
in A’. Hence, there is an embedded core curve C for A’ that intersects e once at exactly the point z.
The boundary JA intersects the interior of A’ in a (possibly empty) collection of properly embedded
arcs. By choosing C suitably, we may assume that C' intersects each of these arcs at most once. If C'
does intersect one of these arcs, €’ say, then we perform the edge swap that removes e and inserts e’.
On the other hand, if C' is disjoint from 0A, then it lies entirely in A. It must then intersect o by
Lemma 8.4, and we can assume that it intersects each arc of a\\I'_ at most once. Let ¢’ be one such
arc. If necessary, add sub-arcs of A to €’ so that it becomes properly embedded in A’. Perform an
edge swap that removes e and replaces it by this enlarged ¢’. By Lemma 2.2, at most 6¢(S) edges lie
in the interior of D, so at most 6g(S) edge swaps take I' to a spine without edges in int(D).

After this procedure, I" intersects the interior of D in a collection of embedded arcs and star-shaped
graphs. These divide D into discs, and each of these discs contains at least one 1-cell lying in 0D.
Hence, the number of arcs is less than twice the length ¢ 4 2d of dD. Let e be an arc of int(D) N T,
and let = be a point in int(e) Nint(D). Again, there is a closed embedded curve C intersecting I'
exactly at the point . We may assume that C' intersects each arc of JA\\I' at most once. If it does
intersect some arc of JA\\I', then perform the edge swap that adds this arc plus possibly a sub-arc
of a\\I', forming a graph I}, and then removes the edge of I';. that contains . On the other hand,
if C' is disjoint from JA, then it intersects some arc of a\\I', and we may perform an edge swap that
adds this arc, plus possibly some sub-arcs of 0A and removes the arc containing x. We do such an
edge swap for each arc intersecting the interior of D, and there are at most 2¢ + 4d of these.

After at most 6¢(S) + 2¢ + 4d edge swaps, we end with a spine I'V such that IV Nint(A) C int(c).
In fact, I' Nint(A) = int(a) since otherwise a core curve of A lies in the disc S\\I", contradicting
the assumption that A is essential in S. |

Lemma 9.3 (Replacing an annulus). Let S be a closed orientable surface with a cell structure C,
and let T' be a spine that is cellular with respect to C. Let A be an essential annulus embedded in
S that is a union of cells, with ¢ the length of OA. Suppose C' is obtained from C by removing the
interior of A and inserting some other cell structure. Then the number of edge swaps required to take
T to a spine that is cellular with respect to C' is at most

69(S) +2¢0+4d + |ana'| + 2,

where o is any essential properly embedded arc in A that is cellular with respect to C, d is the length
of a, and o/ is an embedded arc in A with the same endpoints as o that is cellular with respect to C'.

Proof. First, by Lemma 9.2, we may apply at most 6g(S) 4 2¢ + 4d edge swaps to take I to a spine I'y
that is cellular in C and such that Ty Nint(A) = int(a). Now, we are assuming that o’ is an embedded
arc in A, but it is not necessarily properly embedded. So it might intersect I'; and OA in its interior.
But it contains a sub-arc o’ that is embedded and essential in A such that o’ N9ANT; = da”.
Also, let o be the arc obtained from o’ by pushing its interior a little into the interior of A. By
Lemma 8.2, we may perform |a N «’| edge swaps to I'y, that leaves I'; — A unchanged and that takes
a to o, Then, at most two further edge swaps adjust the endpoints of o’/ so that they are equal to
those of o’. After this process, the spine is cellular with respect to C’. O

9.2. Essential annular simplifications. Recall from Definition 6.12 that annular simplifications
are either trivial or essential. Our next goal is to find bounds on edge swaps when an essential
annular simplification is performed. To do so, we first set up some notation.

Let M be a compact orientable 3-manifold with a pre-tetrahedral handle structure H. Let S be a
closed normal or almost normal surface with a given transverse orientation, and let B be a maximal
generalised parallelity bundle for the component of M\\S into which S points.

Inductively, assume we have performed a (possibly empty) sequence of annular simplifications in
the direction S points, obtaining a surface S’ disjoint from the interior of B. Suppose that S’ admits
a further essential annular simplification. Then the setup is as follows, illustrated in Figure 27.
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FIGURE 27. Schematic picture for when S’ admits an essential annular simplification.

Recall from Definition 6.12 that we will replace an annulus A C S’ with an annulus A’ that lies on
the vertical boundary of a component of B. Because this is an essential annular simplification, there
is a component B of the generalised parallity bundle of the form Ap x I, where Ap is an annulus,
and (Ap x I)N S’ = Ap x 9I. The annuli Ap x {0} and Ap x {1} form sub-annuli of A C S’; see
Figure 27. Let A” denote the annulus A\\(Ag x OI).

The vertical boundary 0Ap x I is incompressible by assumption. It has two components, one of
which is A’ and will replace A after the annular simplification. Denote the other by V. Then 9V
and 0A” agree.

Because the annular simplification is essential, AU A’ bounds a 3-manifold P that forms a product
region. This is a solid torus. The thickened annulus Ag x I forms a regular neighbourhood of A’ in
that solid torus. The remainder P\\(Ap x I) is a solid torus that we denote by W.

When performing annular simplifications, we will be isotoping annuli across solid tori. The
following sequence of results leads to a bound on the number of edge swaps required under these
moves.

Theorem 9.4 (Winding number in triangulated solid torus). Let T be a triangulation of a solid
torus M. Suppose that some simple closed longitudinal curve A in OM is simplicial. Let C be a

simplicial simple closed curve in OM that intersects A once transversely. Then the winding number
of C in M is at most 10A(T) + 3.

Proof. We can assume that C' runs over at most one edge in each 2-simplex in M, as otherwise we
may shorten C. Its length is therefore at most half the number of triangles in dM; hence it is at
most (3/2)A(T). Similarly, A has length at most (3/2)A(T). Let w be the winding number of C.
If w is odd, we replace C' by a simplicial, but possibly non-embedded curve, with winding number
w + 1, by Dehn twisting about A. The resulting curve has length at most 3A(7). Attach a 2-cell to
M along this curve. We can triangulate this 2-cell by using at most 3A(7) triangles. Then attach a
3-cell. The number of triangles in the boundary of this 3-cell is at most 9A(T). So we can form a
triangulation of this 3-manifold using at most 10A(7T) tetrahedra. This manifold is the lens space
L(p, 1), where p = w or w + 1. It is a theorem of Jaco, Rubinstein and Tillmann [14] that, when p is
even, A(L(p,1)) = p — 3. Hence, 10A(T) >p—3>w — 3. O

Lemma 9.5 (Triangulation from handle structure, solid torus). Let the setup be as in Figure 27, as
above. That is:

o H is a pre-tetrahedral handle structure on a compact orientable 3-manifold M containing a
closed, transversely oriented surface S that is normal or almost normal.

e B is a mazimal generalised parallelity bundle for the component of M\\S into which S points.

e S’ is a transversely oriented surface that is obtained from S by a sequence of clean annular
simplifications. It is disjoint from the interior of B, with an essential annular component
Ap x I of B meeting S" in Ag x OI.

e V is the vertical boundary component of Ag x I such that OV bounds an annulus A" in S’,
and VU A" bounds a solid torus W with interior disjoint from Ag x I.



60 MARC LACKENBY AND JESSICA S. PURCELL

e S’ has a cell structure, where each 2-cell is either a component of intersection between S’ NS
and H, or a 2-cell in 0,B.

If S is normal, define A to be the sum of the complexities of the 0-handles of M\\S that intersect
W. If S is almost normal, define A to be the sum of the complexities of the 0-handles of M that
intersect W.

Suppose that the only components of B in W are I-bundles over discs. Then the solid torus W
admits a triangulation with at most 1320A = 3tA tetrahedra, where t = 440. FEach 2-cell of S'NW
s a union of simplices in this triangulation, as is each 2-cell of V.. There are at most 440A = tA
1-cells in the cell structure on OW\\OpB.

Proof. Suppose first that S is normal. Then M\\S inherits a handle structure H’ from H. Consider
any 0-handle H of H’ that intersects W and is not a parallelity handle. Its boundary has a cell
structure, obtained by viewing each of the associated handles on OH as 2-cells; the possible cell
structures are shown in Figure 6.

Triangulate each 2-cell by adding a vertex to its interior and coning off. Then triangulate the
0-handle by adding a vertex to its interior and coning off. Colour the resulting tetrahedra red. In
the case of a tetrahedral 0-handle, we use 72 tetrahedra. In the case of a semi-tetrahedral 0-handle,
we use 60 tetrahedra. Note that a parallelity handle of length three or four does not occur, as it
is a parallelity handle. Thus it only remains to consider the case of a product 0-handle (of length
three), which uses 36 tetrahedra. Considering the associated complexity of these types of handles, as
in Definition 4.13, we see that the number of red tetrahedra is at most 288 times the complexity of
the 0-handle.

When two 0-handles in W are incident to the same 1-handle, glue them together along the relevant
triangles in their boundary. This process does not require any more tetrahedra in our triangulation.
Each component of B in W is, by assumption, an I-bundle over a disc. Its vertical boundary has
already been triangulated by triangles coloured red. We triangulate the horizontal boundary by
adding a vertex to its interior and then coning. We then triangulate the whole I-bundle by adding
a vertex to its interior and coning. For those tetrahedra meeting a red triangle, adjacent to the
vertical boundary, colour the tetrahedron orange. Colour the rest of the tetrahedra, adjacent to the
horizontal boundary, yellow. Note each red tetrahedron is adjacent to at most one orange, and each
orange tetrahedron is adjacent to at most one yellow.

For each 2-handle of H’ that is not a parallelity handle, first triangulate its horizontal boundary
by adding a vertex to its interior. Then triangulate the whole 2-handle by adding a vertex to its
interior and coning off. Again colour tetrahedra adjacent to the vertical boundary orange, and the
others yellow.

The boundary of each 3-handle has then been triangulated, and so we triangulate the 3-handle by
adding a vertex to its interior and coning. For any resulting tetrahedra that are adjacent to a red
tetrahedron, colour the tetrahedron orange. The remaining tetrahedra will be adjacent to a yellow
tetrahedron on the boundary of the 3-handle, but also adjacent to an orange tetrahedron in the
interior, so colour these yellow.

Now, there are at most 288A red tetrahedra. Each orange tetrahedron is adjacent to a red
tetrahedron, but each red tetrahedron is adjacent to at most one orange. Hence there are at most
288A orange tetrahedra. Similarly, each yellow tetrahedron is adjacent to an orange tetrahedron,
and each orange is adjacent to at most one yellow, so there are at most 288A yellow tetrahedra.
Thus in total there are 3 x 288A = 864 A tetrahedra in the triangulation of the solid torus.

When S is almost normal, this construction needs to be adjusted a little, because .S contains an
almost normal piece. Let Hy denote the handle of H containing this almost normal piece. Note S
still cuts handles of H into a pre-tetrahedral handle structure, except for two components of Hy\\S
adjacent to the almost normal piece. Then away from Hj, the complexity of M agrees with the
complexity of M\\S, which is well-defined. The complexity of Hy\\.S is not defined for exactly two
components. However, note that if these two components are glued along the almost normal piece of



THE TRIANGULATION COMPLEXITY OF FIBRED 3-MANIFOLDS 61

S, the result is a pre-tetrahedral handle H with well-defined complexity. Note also that because .S is
separating, at most one of these two pieces meets W. Hence for our bound, we may use the bounds
above in the normal case away from H, and we will bound the number of tetrahedra in one of the
two components of Hp\\\S in terms of the complexity of H to complete the bound.

When the almost normal piece is an octagon, then we triangulate the octagon by adding a vertex
to interior and coning off. We then triangulate the 3-ball lying to one side of it, as described above,
with red tetrahedra. This uses 84 tetrahedra: 16 adjacent to the octagon, 7 x 4 adjacent to 1-handles,
6 x 2 adjacent to 2-handles, and (6 x 2) + (4 x 4) adjacent to remaining 0-handles. The octagon lies
in a tetrahedral O-handle. The union H of the two components of Hy\\S adjacent to the octagon
must be tetrahedral, and H has complexity at least 1/2. Thus the number of red tetrahedra is at
most 168 times the complexity of H.

When the almost normal piece is a tube, there are several cases. The handle H, which is the union
of the two components of Hp\\S adjacent to the tube, could be tetrahedral, semi-tetrahedral, or
even a parallelity or product handle, since S may run past the tube in triangles or squares on either
side. The solid torus W might lie on the 3-ball side of the tube or the solid torus side of the tube.
Finally, the tube might run between two squares, between a triangle and a square, or between two
triangles. All these cases need to be considered.

In the case W lies on the 3-ball side of the tube, we triangulate the 3-ball by adding an essential
arc to the tube, which cuts it into a disc with either 18 sides (in the case the tube joins two squares),
16 sides (for a triangle and a square), or 14 sides (when the tube joins two triangles). We then
cone off the disc and cone off all other 2-cells, then cone the 3-ball, and colour these tetrahedra
red. The different cases outlined above give different numbers of tetrahedra. The highest bound on
tetrahedra per complexity occurs in the case that the tube connects a square to a square and H is
semi-tetrahedral, with complexity at least 1/4. In this case there are 110 tetrahedra produced from
the coning procedure, so the number of tetrahedra is bounded by at most 440 times the complexity
of H.

In the case W lies on the solid torus side of the tube, we triangulate the solid torus by attaching
an edge compression disc, and then triangulating the resulting 3-ball. The edge compression disc cuts
the tube into a disc with 18, 16, or 14 sides again, depending on whether the tube runs from a square
to a square, a square to a triangle, or a triangle to a triangle, respectively. The edge compression
disc itself appears twice on the boundary of the resulting 3-ball; each time it is coned into two
triangles, hence coned to a total of four tetrahedra. Again considering the other 2-cells in all the
cases outlined above, the highest bound on tetrahedra per complexity occurs either in the case that
the tube runs between a triangle and a square, or between two triangles, and H is semitetrahedral.
In that case, there are 66 red tetrahedra, so the number of tetrahedra is bounded by at most 264
times the complexity of H.

As in the normal case, obtaining a triangulation of W can be achieved by triangulating components
of B that are I-bundles over discs, remaining 2-handles, and remaining 3-handles, and this adds at
most three times the number of tetrahedra. So in all cases, the result is a triangulation 7 of the solid
torus W with at most 1320A = 3tA tetrahedra, where ¢ = 440 is the maximum number of triangles
per complexity on the boundary of a 0-handle.

Finally, the number of 1-cells in 9W\\0 B is at most the number of triangles on the boundary of
the 0-handles in W\\B, which is at most tA for ¢t = 440, as above. O

Proposition 9.6 (Edge swap bound, essential annular simplification). Let H, M, S, B be as in
Lemma 9.5, and let S', Ag x I, V, A" and the solid torus W be as in that lemma; see Figure 27.
Suppose that the only components of B in W are I-bundles over discs. Let S” be the result of
performing an annular simplification to S’, by removing A = A" U (A x dI) from S’ and replacing
it by A’ = (0Ap x I) = V. Let w be the width of Ag x I. Let ¢ be the length of (0Ap x dI) — V.
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Fi1GURE 28. Curves v, (o, 1 in the proof of Proposition 9.6.

In the case where S is normal, let A be the sum of the complexities of the 0-handles of M\\S
that intersect W. In the case where S is almost normal, let A be the sum of the complexities of the
0-handles of M that intersect W. Then the following hold.

(1) Any cellular spine in S’ may be converted to a cellular spine in S” using at most
6g(S) + 34tA + 8w + £(69(S) + 50) + 5 edge swaps,
(2) Any cellular spine in S” may be converted to a cellular spine in S’ using at most
6g9(S) + 20 + 30tA + 9 edge swaps,
where in both cases, t = 440 is the constant of Lemma 9.5.

Proof. Use Lemma 9.5 to obtain a triangulation for W with at most 3tA tetrahedra, where ¢ is the
constant of that lemma, and such that the corresponding cell structure on OW\\0B contains at
most tA 1-cells.

We now wish to use Lemma 9.3. This deals with situation where a cell structure on a surface is
modified by changing it within a subsurface that is homeomorphic to an annulus. In our situation,
one surface is S, containing the annulus A = A” U (Ap x 9I). We remove the interior of A, and
replace it by the cell structure on A’ = (0Ap x I) — V. This gives a cell structure C” on the surface
S”. This is not quite the canonical cell structure on S”, rather it is a refinement of it.

In order to apply Lemma 9.3, we need to specify essential arcs « and o’ that are cellular in the
canonical cell structure on S’ and C”, respectively. We do this as follows. The annular region Ag x I
has width w. So there is some essential arc § properly embedded in Ap such that 8 x I is vertical in
the parallelity handles in A x I and where each component of 8 x dI has length w. Denote the
components of § x O by Sy and (; see Figure 28.

Join the two points (8 x I) N A” by an embedded arc v in A”. We may ensure that v is cellular
in the cell structure on S’ and simplicial in the triangulation of W. We may also ensure that it
avoids the interior of dpB and so its length in the cell structure is at most the number of 1-cells in
OW\\0OB, which is at most tA by Lemma 9.5. Let a be Sy U 81 U~y. This is cellular in S" and has
length at most tA + 2w. Let o be the component of 93 x I C A’ with the same endpoints as «.
Note since o is a fibre in the vertical boundary, it has length 1.

We need to find an upper bound on the intersection number between o’ and the image of «
under the isotopy from S’ to S”. Let C be the simple closed curve in OW obtained from ~ by
attaching the component of 98 x I C V to which it is incident. This has winding number at most
10 x 3tA + 3 = 30tA 4+ 3 in W, by Theorem 9.4 and Lemma 9.5. Hence, the simple closed curve
a U o’ has winding number at most 30tA + 3 in the solid torus W U (Ap x I). So, after the isotopy
taking S’ to S”, the image of « and o’ have intersection number at most 30tA + 3.

By Lemma 9.3, a cellular spine in S’ may be converted to a cellular spine in C” using at most

69(S) + 20 +4- (tA+2w) + (30tA +3) +2

edge swaps.
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It may then be converted to a cellular spine in the canonical handle structure on S” using at
most a further 6g(5)¢ + 48¢ edge swaps, as follows. Recall from Lemma 6.13 that to get from C” to
the canonical handle structure on S”, we remove the edges that lie in the boundary of the annulus
A’ = (0Ap x I) — V. This has the effect of combining each 0-handle in A’ with the pair of 0-handles
adjacent to it, and doing the same thing to the 1-handles. If this process creates any regions that are
not discs, then they are replaced by discs. Therefore, let Dy, ..., D, be the 0-handles and 1-handles
of S” that intersect the interior of A’. The number of these is at most the length £ of the annulus.
The length of the boundary of each D; is at most 24 by Lemma 5.11. Hence, the number of edges
swaps needed to move the spine off the interior of these discs is at most 6¢g(.S)¢+ 48¢, by Corollary 8.8.

Thus for part (1), we have used at most

6g(S) + 34tA + 8w + £(69(S) + 50) + 5

edge swaps.

For part (2), a cellular spine in the canonical handle structure S” is already cellular in C”. By
Lemma 9.3, it may be converted to a cellular spine in the canonical handle structure on S’ using at
most

69(S)+20+4+4+30tA+5

edge swaps. Note the bounds are different here, because when we apply Lemma 9.3 in this situation,
what is relevant is the length of o/, which is 1, rather than the length of a, which is at most
tA(W) + 2w. |

Note that there is an asymmetry between the statements (1) and (2) in the above theorem. In
particular, when a spine in S” is transferred to one in S’, the width of the annular bundle is not
relevant. This will be important and useful later.

At this point, we can also deal with trivial annular simplifications.

Lemma 9.7 (Edge swap bound, trivial annular simplification). Let H, M, S, B and S’ be as in
Lemma 9.5. Let S be obtained from S’ by performing a trivial annular simplification. This has
the effect of removing an annulus A’ in S’ and replacing it by an annulus A" that is a vertical
boundary component of B. Since the annular simplification is trivial, both boundary components of
A’ bound discs in S', which are nested. Let D be the larger of these discs and let £ be the length of
its boundary. Give S’ and S" the cell structures associated with their canonical handle structures.
Then the following hold.

(1) Any cellular spine in S’ may be converted to a cellular spine in S” using at most
69(S)(£+ 1) + 500 edge swaps.

(2) Any cellular spine in S” may be converted to a cellular spine in S" using at most 6g(S) + 2¢
edge swaps.

Proof. The canonical handle structure of S” is obtained from that of S” as in Lemma 6.13. Following
this process, the associated cell structure on S” is obtained by the following two steps.

(1) Remove the handles in the interior of A" and replace them with the cell structure on A",
leaving the 1-cells on the boundary dA’ = 9A”. That is, A’ has adjacent 0-handles and
1-handles in an alternating fashion, which combine in pairs in the I-bundle structure on A”.
Although in step (2) of Lemma 6.13 the 0-handles and 1-handles are combined to extend
beyond A”, we initially leave their boundaries as 1-cells on 9A”. This gives a cell structure
C" on S”, consisting of alternating O-handles and 1-handles, cut off by 1-cells in 0A”.

(2) Now remove the 1-cells in 9A”, completing step (2) of Lemma 6.13. Any disc regions that are
created become 2-cells. However, if any regions are not discs, then these are combined with
the disc subsets of S” that they surround to form 0-handles, as in step (3) of Lemma 6.13.

Let TV be a cellular spine for S’. Using Lemma 8.7, we can move I off D using at most 6g(S) + 2¢
edge swaps. It is then cellular in C”. To make it cellular with respect to the canonical handle
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structure of S”, we need to move it off the 1-cells in 9A”. Let D1,..., D, be the 0-handles and
1-handles of S that intersect the interior of A”. The number of these is at most the length ¢ of
0D. As in the proof of Lemma 8.10, the length of the boundary of each D; is at most 24, as follows.
For D; coming from 1-handles, the length is always 4. For D; coming from 0-handles, Lemma 5.11
implies there are at most 12 intersections of its boundary with 1-handles, and there will be at most
12 intersections with 2-handles between 1-handles, giving length at most 24. So, the number of edge
swaps needed to move the spine off the interior of these discs is at most 6¢(5)¢ + 48¢ by Corollary
8.8. It is then cellular in S”.

Now let T be a cellular spine for S”. We refine the cell structure of S” by making 9D cellular.
This keeps T cellular. We then move T off D using at most 6g(S) + 2¢ edge swaps. It is then
cellular in S’. |

9.3. The width of annular bundles. To apply Proposition 9.6, we will need to bound the width
w in that lemma. This subsection contains results bounding width.

Lemma 9.8 (Existence of core curve). For1 < j <k, let A; be an annulus and let A;- be the result
of removing some disjoint discs and homotopically trivial annuli from A;. Let C be a cell structure
for Uj A;. Suppose certain 2-cells in C are marked with an X. Define numbers as follows.

Let £; be the length of OA’; — 0A;.

Let w; denote the length of the shortest cellular curve in A;- joining the components of 0A;.
Let k be the maximal number of edges in the boundary of any 2-cell, counted with multiplicity.
Let nj be the number of cells in C marked with an X.

Then, provided 3 ;(n;(k —2) +£;) < >, wj, there is a core curve of some A; lying in A} that lies
in just the 1-cells and 2-cells of C, that intersects the 1-cells transversely, and that misses all the
2-cells marked with an X and all the 1-cells in 8A;,

Proof. Since > (n;(k—2)+¢;) <_;wj, there is some j such that n;(k —2)+£; <w;. Let A= A;
and let A’ = A’. Let n =nj, £ = {; and w = wj.

First, subdivide C to a cell structure C’, without introducing any new vertices, so that each 2-cell
has at most 3 edges. We define path metric on A’ by declaring that each 1-cell has length 1, each
2-cell with three edges is an equilateral Euclidean triangle and each 2-cell with one or two edges is a
spherical hemisphere. Define f: A’ — [0,00] by letting f(z) be the distance from z to a specific
boundary component of A; we set the distance to be infinite if the boundary component of A cannot
be reached from the point  within A’, for example if z lies in a disc enclosed by a removed annulus.
Let L; be f=1(i + (1/3)) for integers i satisfying 0 < i < w — 1.

Since we have chosen the inverse image of a real number that is neither an integer nor a half-integer,
L; is a union of disjoint properly embedded 1-manifolds. It separates one component of A from
the other. Each edge intersects at most one L;. Hence, as each 2-cell of C’ has at most 3 sides, each
2-cell of C’ intersects at most one L;. So, each 2-cell of C intersects at most (k — 2) of the curves
L;. Therefore, the number of the L; going through a 2-cell with an X is at most n(k — 2). The
number intersecting JA’ — A is at most £. Since we are assuming that n(k — 2) + £ < w, there
is some L; that is disjoint from the 2-cells marked with an X and from the 1-cells in 0A’. It is a
closed 1-manifold separating the two components of 9A. It must therefore contain the required core
curve. ]

Lemma 9.9 (Width of incoherent essential annular components). Let H be a pre-tetrahedral handle
structure of M = S x [0, 1], where S is not a torus. Let B(H) be a mazimal generalised parallelity
bundle for H.

o If H contains a normal fibre that is not normally parallel to a boundary component, then let
S be one such fibre with least weight.

o [f every normal fibre in H is normally parallel to a boundary component, then let S be an
almost normal fibre with least weight.
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@)

F1GURE 29. The two outermost triangles and squares for each type in a 0-handle
are marked by an X.

Suppose that S is disjoint from the incoherent components of B(H) that are neither I-bundles over
discs nor boundary-trivial. Let B be a maximal generalised parallelity bundle for the handle structure
obtained by cutting along S. Then the total width of the incoherent essential annular components of
B that are incident to S is at most T640A(H).

Remark 9.10. In the above lemma, we require S to be disjoint from all essential incoherent
annular components of B(#), but we allow S to intersect I-bundles over discs and boundary-trivial
components. This will hold, for example, for coherently bundled H.

Proof. Let BS°®(H) and B4 be as in Lemma 7.7. By that lemma, B4 is disjoint from B$°"(#H). By
assumption, S is disjoint from the incoherent components of B(#) that are neither I-bundles over
discs nor boundary-trivial. For each component of 5 4, pick a horizontal boundary component. Let
A1 U---U A be the union of these annuli. We will show that their total width is at most 7640A(H).

We now form B, from B4 by removing its intersection with Bp(#H) and its intersection with
Bs(H), and by removing any non-parallelity handles of B. The result is disjoint from B(#), and
consists only of parallelity handles of B, so is an I-bundle. For 1 < j <k, let A; = A;NB,. Then
A; is obtained from A; by removing some discs and homotopically trivial annuli. As in Lemma 9.8,
let ¢; be the length of 3A;» — 0A;. Let w; be the length of a shortest curve in A; joining the two
components of 9A4;. We will show that ; w; < 7640A(H). This will imply that the total width of
Ay U---U Ay is at most 7640A(H).

Since Aj U---U A} misses the parallelity handles of B(#), it lies entirely in the non-parallelity
handles of H.

We give S a cell structure, by declaring that each component of intersection between S and a
handle of H is a 2-cell. There is one exception to this, which is when S has a tubed piece. In this
case, we add in a further 1-cell, which cuts the annular tube to a disc. Note that the boundary of
each 2-cell then has length at most 18, where the length is the number of 1-cells in the boundary.

We now place an X on various of these 2-cells, first in O-handles, then 1-handles, then 2-handles.
Within each non-parallelity 0-handle of H, for each type of triangle and square of .S in such a 0-handle,
place an X on the four outermost ones in the collection; see Figure 29. Similarly, if S contains an
almost normal piece, place an X on this. A tetrahedral 0-handle without an almost normal piece has
at most 4 x 5 = 20 cells marked with an X, a semi-tetrahedral 0-handle has at most 12 cells marked
with an X, and a product handle has at most four. Multiplying by the minimal complexity of the cell,
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FI1GURE 30. Left: a core curve v misses all triangles and squares labeled X. Middle:
Therefore it is adjacent to only triangles and squares that lie in the interior of the
parallelity bundle; the I-bundles over v form annuli A_ and A,. Right: A_ and
A, are parallel to annuli A_ and A, on S.

as in Definition 4.13, there are at most 48A(#H) such X’s that are not arising from almost normal
pieces. (The extremal case is a semi-tetrahedral 0-handle containing a square and two triangle types.)

Within each non-parallelity 1-handle of H, there are at most three types of disc of S, where all
discs of the same type are normally parallel. Place an X on the outermost four discs of each type.
In a 1-handle arising as the dual of a triangular face, there are at most 12 such X’s. In a 1-handle
arising as the dual of a bigon, there are at most four such X’s. Note that a tetrahedral 0-handle
meets four 1-handles coming from triangles, so it meets at most 48 such X’s, or at most 96 times the
complexity. A semi-tetrahedral 0-handle meets two 1-handles from triangles, and two from bigons, so
at most 32 such X’s, or at most 128 times the complexity. A non-parallelity product handle has
three 1-handles from bigons, so meets at most a number of X’s equal to 96 times the complexity.
Thus there are at most 128A(H) such X’s.

Finally, there are the non-parallelity 2-handles. Each is incident to at least one non-parallelity
1-handles. So the number of non-parallelity 2-handles is at most 3 times the number of non-parallelity
1-handles, which is no more than 24A(#H). Within such a 2-handle, all components of intersection
with S are normally parallel. We place an X on the outermost four. Thus there are at most
3% 24A(H) x4 = 288A(H) of these.

In total, the number of X’s we have placed is at most

ASA(H) 4 1+ 128A(H) + 288A(H) = 464A(H) + 1 < 472A(H).

The total length of (0A] —9A;)U---U(9A), —0Ay) is at most 88A(H), by Lemma 8.15. Lemma 9.8
implies that if 3, w; is more than

> (nj(k —2) + £;) = (472A(H)) * (18 — 2) + 88A(H) = T640A(H),
7

then there is a core curve 7 of one of these punctured annuli that lies in just the 1-cells and 2-cells of
the cell structure and that misses all the 2-cells marked with an X and the boundary of 9,8 . Thus
v lies deep inside the parallelity bundle, away from outermost triangles and squares in each 0-handle.

Suppose by way of contradiction that such a v exists. Because v does not meet outermost triangles
and squares in each 0-handle, it is adjacent to two annuli A_ and Ay, lying on the positive and
negative sides of S, such that A_ NS = JA_ and Ay NS = 0A; and that are vertical in the
parallelity bundle for M\\S. These are parallel to annuli A_ and /Lr in S, by the incompressibility
of S. Let v_ and «4 be the curves 0A_ — v and 0A; — 7. See Figure 30.
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Note that, near the two components of dA_, A_ emanates from the same side of A_, because
otherwise A_ U A_ would be a Klein bottle in S x [0, 1]. Similarly, near the two components of DA,
A, emanates from the same side of A,. Hence, A_ and A, emanate from opposite sides of v in S.

We claim that «_ and ~4 are disjoint curves in S. Suppose that, on the contrary, they intersect.
Since 7 avoids the 2-cells labelled X, 4 also lies in a component of B4 on the negative side of S. Let
H be its horizontal boundary component that contains v;. Since we are assuming that y_ and ;4
intersect, then y_ also lies in H. Hence, H is an annular subsurface of S that contains the two curves
~v— and 74+ but does not contain the curve v between them. Therefore, S\\~v is an annulus. One way
to see this is to note that the boundary component of S\\7y on the y_ side is homotopic to y_, and
this is homotopic to 4 since they both are core curves of the annulus H, and v, is homotopic to
the other boundary component of S\\7y. Hence, S is a torus, contrary to assumption.

As a result of this claim, the annuli A_ and /Lr intersect only along . Therefore, as in the proof
of Lemma 7.7, we may remove A_ U /L_ from S and reglue its boundary components to form a
new fibre S’. Then S is the normal sum of S’ and the torus formed from A_ and A, by gluing
its boundary components. In particular, S’ is not normally parallel to a boundary component of
S x [0,1]. If S was normal, then so is S/, and it has smaller weight than S, which is a contradiction.
If S was almost normal, then S’ is either almost normal or normal, and again it has smaller weight
than S. Again, this is a contradiction. |

We also need a version of this for surfaces that are normally cylindrical on exactly one side.

Lemma 9.11 (Width, S cylindrical one side). Let H be a pre-tetrahedral handle structure of
M =S x[0,1]. Let S be a normal fibre that is normally cylindrical on exactly one side. Let B(H)
be a maximal generalised parallelity bundle for H. Suppose that S is disjoint from the incoherent
components of B(H) that are not I-bundles over discs. Let B be a maximal generalised parallelity
bundle for the handle structure obtained by cutting along S. Then the total width of the incoherent
essential annular components of B that are incident to S is at most T640A(H).

Proof. Suppose that width of the incoherent essential annular components of B is more than 7640A(H).
The argument above gives that there are annuli A_ and A, on opposite sides of S with A_NS =JA_
and Ay NS = JdA,, with essential boundary curves and that are vertical in the parallelity bundle for
MA\\S. This contradicts the assumption that S is normally cylindrical on exactly one side. ]

10. INTERPOLATING SPINES

Road map: At this stage, we know how to interpolate between almost normal and normal
surfaces, using nearly normal surfaces. We know how to transfer spines on the surfaces, and we
have bounds on the number of edge swaps required to transfer a spine for each generalised isotopy
move. In this section, we put that information together to complete the proof of Theorem 1.4. The
proof involves four results on transferring spines across S x [0, 1] that have somewhat subtly different
hypotheses, namely Propositions 10.1 and 10.2, and Theorems 10.3 and 10.4. Before diving into the
details, we summarise the argument, and how these fit together.

Recall that Theorem 1.4 gives upper and lower bounds on the minimal number of tetrahedra in a
triangulation of S x [0, 1] with given 1-vertex triangulations of S x {0} and S x {1}. It will be a
fairly rapid consequence of Theorem 10.4, which provides an upper bound on the number of edge
swaps required to take a cellular spine in S x {0} to one in S x {1} when S x [0, 1] has a coherently
bundled pre-tetrahedral handle structure. Theorem 10.4 is proved by induction on the complexity
of the handle structure. The inductive step implies that whenever the handle structure contains a
normally acylindrical fibre that is not normally parallel to a boundary component, we may cut along
it, giving two coherently bundled handle structures with smaller complexity. Thus Theorem 10.4
follows quickly from a similar result, Theorem 10.3, with the additional hypothesis that the only
normally acylindrical fibres are the ones that are boundary parallel.
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Theorem 10.3 is also proved by induction, but the argument is more delicate. The proof divides
into several cases; in most we consider the existence of a normal fibre that is not normally parallel to
the boundary. Necessarily, this is normally cylindrical. Depending on the case, we may pick such
a fibre that is innermost (as in Definition 7.16) or of least weight. If there is no such fibre, then
we pick an almost normal fibre with least weight, which exists by Theorem 4.25. Inductively, we
get a collection of normal fibres. We know how to interpolate between these normal fibres, using
almost normal and nearly normal surfaces. We also have upper bounds on the number of edge swaps
required to transfer a spine in one fibre to the next. In Propositions 10.1 and 10.2, we use these to
bound the total number of edge swaps in terms of the complexity of the handle structure and the
width of certain annular bundles. In Proposition 10.1, these annular bundles are components of the
generalised parallelity bundles B; given by Lemma 6.32. However, we really need the generalised
parallelity bundles B for M\\S, where S is a normal surface in M. In Proposition 10.2, we obtain
an upper bound on the number of edge swaps in terms of the width of the annular components of B.
The bounds are then used in Theorem 10.3.

Proposition 10.1 (Edge swap bounds under generalised isotopy). Let H be a pre-tetrahedal handle
structure for M = S x [0,1]. Let S be a normal or almost normal fibre with a transverse orientation.
Let S = Sp,..., S, =S5 be a sequence of surfaces as in Lemma 6.32. Let M; be the manifold between
S; and S;11. Let B; be a maximal generalised parallelity bundle for the manifold between S; and S;11.
In the case where S is normal, let H' be the resulting handle structure for the component of M\\S
into which S points. When S is almost normal, let H' equal H.
(1) Let T be a cellular spine for S. Let w denote the total width of the incoherent essential
annular components of BoU---UB,,_1. Then there is a sequence of at most kA(H') + 8w
edge swaps taking the cellular spine T to a spine I that is cellular in S’.
(2) Let TV be a cellular spine for S'. Then there is a sequence of at most kA(H') edge swaps
taking TV to a spine T that is cellular in S.
In both cases, k = 4224¢(S) + 32472, or 4224¢(S) + 17512 + 34t, where t = 440 is the constant of
Proposition 9.6.

Proof. For each 7, there is a sequence of generalised isotopy moves taking S; to S;11, as in Lemma
6.32. Let S; = S,..., 8™ = 5., be these surfaces. Each of these surfaces 7 inherits its canonical
handle structure. We will work with the associated cell structure for this, which we denote Cf . For
each surface Sf , we will pick a spine Fg that is cellular with respect to Cg . For each j, the product
region between Sg and Sg + provides a homeomorphism Sg — Sg *1 that is well-defined up to isotopy.
We will ensure that the image of Fg under this homeomorphism will be related to Fg + by a controlled
number of edge contractions and expansions. Note that depending whether we are proving (1) or (2)
of the proposition, we either create 1™ from I/ or we create T from I,

For ¢ > 0, let H; be the handle structure on M;. When ¢ = 0 and S is normal, let Hy be the
handle structure on the manifold My between Sy and S;. When ¢ = 0 and S is almost normal, let H
denote the handle structure on the component of M\\S; containing S. Thus, Y, A(H;) < A(H')
by Lemma 4.14. Many of the bounds below will be in terms of the length of the vertical boundary of
B;. This length is at most 88A(H;) by Lemma 8.14 or Lemma 8.15. So the sum of these lengths over
all 7 is at most 88A(H’).

We consider the various types of move in turn.

Case 1. S’f *1 is obtained from SZJ by a generalised isotopy move across an I-bundle over a disc, as
in Definition 6.5.

Denote the I-bundle over the disc by E x I, where the length of 0F in Sf is £. By Lemma 8.12,
if Sg is equipped with a cellular spine F{ , then we may build a cellular spine I‘g“ on Sg“ by
performing at most 6(2¢ 4+ 1)g(S) 4+ 92¢ — 64 < 180g(S) + 92¢ edge swaps. By the same lemma, if
Sg 1 has a cellular spine F{ +1, then we may build a cellular spine F{ on S; by performing at most
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6g(S) + 8¢+ 40 < 6£g(S) + 48¢ edge swaps. Note that the sum of all such ¢ over all these moves is at
most the length of the vertical boundary of By, ..., B, _1, which is at most 88A(H’) by Lemma 8.14
or Lemma 8.15. Therefore, the total number of edge swaps, over all these generalised isotopy moves
across I-bundles over discs, is at most (1584¢(S) 4+ 8096)A(H') when going from S to S’, and at
most (528¢(S) + 4224) A(H') when going in the other direction.

Case 2. Slj *1 is obtained from Sg by a clean annular simplification across an essential annular
bundle.

In this situation, there is an annular region A x I of B; such that (A x I)N Sg = A x 0I. Let
w’ denote the width of A x I. A component of (M\\S?)\\(4 x I) is a solid torus W. The only
components of B; lying in W are I-bundles over discs. Let A’ be the annulus OW\\(9A x I). The
annular simplification removes A’ U (A x 9I) from Sg and replaces it by V' = (0A x I) — OW, giving
the surface S7*'. Let £ be the length of the annulus V.

By Proposition 9.6, if Sg is equipped with a cellular spine, then we may build a cellular spine on
ST by a sequence of at most 6g(S) + 34tA + 8w’ + £(6g(S) + 50) + 5 edge swaps, where t = 440 is
the constant from Proposition 9.6. This is at most 12¢(S)¢ + 55¢ + 34tA + 8w'. If instead S7 " is
equipped with a cellular spine, then we may build a cellular spine on S{ by a sequence of at most
6g(S) + 20 + 30tA 4+ 9 < 69(S)¢ + 114 4 30tA edge swaps. Again, the sum of all such £ over all these
moves is at most 88A(H') by Lemma 8.14 or Lemma 8.15. The sum of A over all such solid tori W,
one for each annular simplification, is at most A(#H'). Therefore, the total number of edge swaps,
over all these annular simplifications, is at most (1056¢(S) + (34¢ + 4840))A(H') + 8w when going
from S to S’ and at most (528¢(S) + (30t + 968))A(#H’) when going in the other direction.

Case 3. S{ *1 is obtained from Szj by a trivial annular simplification.

This replaces an annulus in Sf with a vertical boundary component of B;. Let £ be the length of
this vertical boundary component. By Lemma 9.7, we may convert a cellular spine in Sf to one in
S’g“ using at most 6¢(S)(¢ + 1) + 50¢ < 12¢(S)¢ + 50¢ edge swaps. Alternatively, we may convert a
cellular spine in Sg“ to one in Sg using at most 6¢(S) 4+ 2¢ < 6g(S5)¢ + 2¢ edge swaps. Again, the
sum of all such ¢ over all these moves is at most 88A(#H') by Lemma 8.14 or Lemma 8.15. Thus, the
total number of edge swaps is at most (1056¢(S) + 4400)A(#H') when going from S to S’, and at
most (528¢(S) + 176)A(H’) when going from S’ to S.

Case 4. Sg *1 is obtained from Sf by a parallelisation isotopy.

Lemma 8.13 states that we may convert a cellular spine in one surface to a cellular spine in the
other using at most 6g(.S) + 2¢ edge swaps, which is at most (6g(S) + 2)¢. So, in total, the number
of edge swaps is at most (528¢(S) + 176)A(H’)

Case 5. Sg *1 is obtained from Sf by a compression isotopy.

By Lemma 5.18, the compression isotopy takes the canonical handle structure for Sf to that for
S? *1. So, we may transfer a spine from one surface to the other without using any edge swaps.
Case 6. Sg’H is obtained from Sf by a tube compression.

By Lemma 5.22, the tube compression takes the canonical handle structure for S? to that for $77.
So, again we may transfer a spine from one surface to the other without using any edge swaps.

So, adding the total number of edge swaps in each of Cases 1 to 6, we obtain the required upper
bounds on the number of edge swaps. O

The above proposition bounds edge swaps in terms of the width of the essential incoherent annular
components of the parallelity bundles By, ..., B,_1. We now replace this with a bound that is solely
in terms of the parallelity bundle for S.
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Proposition 10.2 (Edge swap bounds, simplified version). Let M = S x [0,1], and let H be a
pre-tetrahedal handle structure for M. Let S be a normal fibre with a transverse orientation. Let
S =3Sp,...,8, =5 be a sequence of surfaces as in Lemma 6.32. Let B be a mazimal generalised
parallelity bundle for the component of M\\S into which S points. Let w be the sum of the widths of
the essential incoherent annular components of B that are incident to S. Let I' be a cellular spine for
S. Then T can be converted to a cellular spine for S’ using at most kA(H) + 122240 A(H) + 8w edge
swaps. Here, k is the constant from Proposition 10.1.

Proof. For 0 < i <n-—1,let M; be the manifold between S; and S; 1. Let H; be the handle structure
on M;. Now, when S is isotoped a little into M\\S in the direction specified by its transverse
orientation, the resulting surface is acylindrical in M\\S on the side into which it does not point,
since it is normally parallel to the boundary. Hence, by Proposition 7.12, each of the surfaces .S;
is acylindrical in M\\S on the side into which it does not point. In particular, for ¢ > 0, S; is
acylindrical on that side in the manifold M;_; U M;. By the way S; is constructed, specifically
conclusion (4) and (7) in Lemma 6.32, the essential incoherent annular components of By are a subset
of the essential incoherent annular components of B. Hence, their total width is at most w.

For i > 0, suppose that B; has at least one essential incoherent annular component. Then the
hypotheses of Lemma 9.11 apply to the surface S; in M;_1 U M; for the following reason. We have
shown above that S; is acylindrical on the M;_; side. By conclusion (7) in Lemma 6.32, the isotopy
taking S; to S;411 moves across the essential incoherent components of B;. Hence, S; is cylindrical
on exactly one side in M;_1 U M;. Any incoherent component of B;_; that is not an I-bundle over
a disc has been isotoped across in the isotopy taking S;_; to S;. Hence, S; is disjoint from these
components. So by Lemma 9.11, applied to the surface S; in M;_1 U M; for ¢ > 0, the total width
of the incoherent essential annular components of B; is at most 7640 (A(H;—1) + A(H;)). Summing

this over all i, the total width of the incoherent essential annular components of By, ...,B,_1 is at
most 15280 A(H) + w. Hence, by Proposition 10.1, the number of edge swaps that one must apply
to the spine in S to make it cellular in S’ is at most kA(H) + 122240 A(H) + 8w. O

Recall from Definition 7.2 that H is coherently bundled if no vertical boundary component of
its maximal generalised parallelity bundle B is an incompressible annulus with both boundary
components on S x {0} or S x {1}. It follows that #H is coherently bundled if and only if the
only components of B with horizontal boundary disjoint from S x {0} or disjoint from S x {1} are
I-bundles over discs or boundary-trivial; see Theorem 6.19.

Theorem 10.3 (Edge swaps across product, no acylindrical fibre). Let S be an orientable, closed
surface with genus at least two. Let H be a coherently bundled pre-tetrahedral handle structure of
S x [0,1], such that every normally acylindrical normal fibre in H is normally parallel to a boundary
component. Let T be a cellular spine for S x {0}. Then there is a sequence of at most cA(H) edge
swaps taking T to a spine T that is cellular with respect to S x {1}. Here, ¢ = 9k, where k is the
constant from Proposition 10.1.

Proof. We prove Theorem 10.3 by induction on A(H). Note that although A(#) is not necessarily
an integer, it is a non-negative rational number with bounded denominator, and so an inductive
proof is permitted. The induction starts with A(H) = 0, in which case S x {0} and S x {1} are
normally parallel. Then I" becomes a spine for S x {1} using no swaps.

We now consider the inductive step. By assumption, every normal fibre in M = S x [0,1] is
normally cylindrical on at least one side, other than the two fibres that are normally parallel to the
boundary.

Case 1. There exists a normal fibre that is normally cylindrical on the S x {0} side only. This
case is illustrated schematically in Figure 31, left.

Then let S be one that is innermost, as in Definition 7.16. This divides M into two manifolds
My and M_, where M, contains S x {1}. These have handle structures H; and H_ such that
A(H-) + A(H4+) = A(H) by Lemma 4.14.
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FIGURE 31. Left: Case 1. Right: Case 2A.

Observe first that H . is coherently bundled by Lemma 7.6. Because S is innermost, no fibre in
‘H is normally acylindrical other than those that are boundary parallel, by Lemma 7.17. Finally,
A(H4) < A(H). Hence, the inductive hypothesis applies to H.. Thus, using at most cA(H) edge
swaps, we convert a cellular spine in S into a spine that is cellular in S x {1}.

As for H_, apply generalised isotopy moves to S, all in the S x {0} direction, satisfying the
conclusions of Lemma 6.32. By Corollary 7.13, the final surface in this sequence is normally parallel
to S x {0}.

We do not have a good bound on the width of the incoherent essential annular regions in
H_. However, note that a bound on width is not required when going from S x {0} to S: by
Proposition 10.1 (2), applied to H_, we obtain a cellular spine for S from I' using at most kA(H_)
edge swaps, which is less than ¢A(H_) edge swaps. So in total the number of edge swaps taking T’
to a cellular spine in S x {1} is at most cA(H ;) + cA(H_) = cA(H).

Case 2. Every normal fibre is normally cylindrical on the S x {1} side at least, other than those
that are boundary parallel, or there are no normal fibres that are not boundary parallel.

Case 2A. Every normal fibre is normally cylindrical on the S x {0} side also, other than those
that are boundary parallel, or there are no normal fibres that are not boundary parallel. This case is
illustrated schematically in Figure 31, right.

Pick a normal fibre S with least weight that is not boundary parallel, or if there is no normal
fibre that is not boundary parallel, then pick an almost normal fibre with least weight, which exists
by Theorem 4.25. Again M\\S has components M, and M_, with M, containing S x {1}. Let By
be a maximal generalised parallelity bundle for M. By Proposition 7.15, we can interpolate from S
to S x {0} using generalised isotopy moves satisfying the conclusions of Lemma 6.27 and 6.29 (in the
case where S is almost normal) or 6.31 (in the case where S is normal). We view this sequence
of moves as a sequence as in Lemma 6.32 (with n = 1 there). Similarly, we can interpolate from
S to S x {1} using generalised isotopy moves satisfying the conclusions of Lemma 6.27 and 6.29
(in the case where S is almost normal) or 6.31 (in the case where S is normal). By Lemma 9.9,
which applies because H is coherently bundled, the total width of the incoherent essential annular
components of B, is at most 7640 A(H). Hence, by Proposition 10.1 parts (1) and (2), there is a
sequence of at most

EA(H) + EA(H) + 8 x 7640 A(H) < cA(H)
edge swaps taking I' to a cellular spine in S x {1}. We are using here the fact that 8 x 7640 < 7k.

Case 2B. There is some normal fibre that is normally cylindrical on the S x {1} side only. This
case is illustrated in Figure 32.

Let S be one that is innermost in M. Let M_ be the component of M\\S containing S x {0}
and let H_ be the handle structure that it inherits. It is coherently bundled by Lemma 7.6. Note
that in M_, every fibre is normally cylindrical in M_ on the S x {0} side at least, other than those
that are boundary-parallel, by Lemma 7.17.
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FIGURE 32. Case 2B.
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FIGURE 33. Left: Case 2B(i). Right: Case 2B(ii).

Case 2B(i). Every normal fibre in M_ is normally cylindrical in M_ on both sides, other than
those that are boundary parallel. This case is illustrated in Figure 33, left.

Then pick a normal fibre S’ in M_ that is not boundary parallel and that is of least weight. If there
is no such fibre, then let S’ be an almost normal fibre in M_ of least weight. By Proposition 7.15, we
can interpolate from S’ to S x {0} using generalised isotopy moves as in Lemma 6.27 and 6.29 (in the
case where S’ is almost normal) or 6.31 (in the case where S’ is normal). By the same proposition,
we can also interpolate from S’ to S using generalised isotopy moves also as in those lemmas. Let B
be a maximal generalised parallelity bundle for M_\\S’. The total width of the essential incoherent
annular components of B is at most 7640 A(H_) by Lemma 9.9, which again applies because H is
coherently bundled. Hence, the total number of edge swaps taking I' to a cellular spine in S is at
most 2kA(H_) + 8 x 7640 A(H_) by Proposition 10.1, again with n = 1 in that proposition.

We can also perform generalised isotopy moves to S in the S x {1} direction, as in Lemma 6.32.
The resulting normal surface admits no further generalised isotopy moves. So it is normally parallel
to S x {1}. (Recall that we are in Case 2.) If B’ is a maximal generalised parallelity bundle for M\\ S,
then the total width of the incoherent essential annular components of B’ is at most 7640 A(#H) by
Lemma 9.11. Hence, by Proposition 10.2, the number of edge swaps that one must apply to the spine
in S to make it cellular in S x {1} is at most kA(H) + 122240 A(H) + 8 x 7640 A(H). So in total,
the number of edge swaps is at most 9kA(H) = cA(H). Here, we are using that 244480 < 6k.

Case 2B(ii). There is a normal fibre in M_ that is normally cylindrical in M_ on the S x {0}
side only. This case is illustrated in Figure 33, right.

Let S’ be one that is innermost in M_. We can perform generalised isotopy moves taking S’ to
S x {0}. This is because, as mentioned above, every normal fibre in M_ is normally cylindrical on
the S x {0} side at least, and so Proposition 7.14 applies. Also, by Proposition 7.14, we can get
from S’ to S x {1} in M using generalised isotopy moves, because every normal surface in M is
cylindrical on this side, as we are in Case 2. We need to find an upper bound on the total width
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of the incoherent essential annular regions lying on the S x {1} side of S”. Any such region must
contain an incoherent essential annular region for S, since S’ is acylindrical in M\\S on the S side.
The total width of these annular regions for S is at least that of S’. By Lemma 9.11, the total width
for S is at most 7640 A(H), hence the same bound applies to S’. So, by Proposition 10.1 (2) and
Proposition 10.2, the number of edge swaps that one must apply to take I' from S x {0} to S’ to
S x {1} is at most 2kA(H) + 122240 A(H) + 8 x 7640 A(H) < cA(H). O

The following is the main technical theorem in the paper.

Theorem 10.4 (Edge swaps across product). Let S be a closed orientable surface with genus at least
two. Let H be a coherently bundled pre-tetrahedral handle structure of S x [0,1]. Let T be a cellular
spine for S x {0}. Then there is a sequence of at most ¢ A(H) edge swaps taking T’ to a spine I” that
is cellular with respect to S x {1}. Here, c is the constant from Theorem 10.3.

Proof. Let H be a coherently bundled pre-tetrahedral handle structure of S x [0,1]. Let Sy,...,S,
be a maximal collection of disjoint normal fibres, none of which is normally parallel to a boundary
component, no two of which are normally parallel and all of which are normally acylindrical. Note
this collection may be empty. Suppose the surfaces are labelled so that they appear in the order
S x {0} =Sp,S1,.-.,50, 541 =5 x {1} in the product structure. Let H; be the handle structure
inherited by the submanifold between S; and S;;1. Then by Lemma 7.11, H; contains no normal fibre
that is normally acylindrical and not normally parallel to a boundary component. By Lemma 7.5,
each H,; is coherently bundled.

We build cellular spines Iy, ..., I'y41 for So, ..., Sn+1 as follows. We start with I'y = I". Each #; is
a coherently bundled pre-tetrahedral handle structure of S x [0, 1] such that every normally acylindrical
fibre is normally parallel to a boundary component. Thus, inductively, we may apply Theorem 10.3
to H; and T'; to obtain I';41 in S;41 by at most ¢A(H;) edge swaps. We set IV =T, ;1. The total
number of edge swaps is at most ¢A(Hg) + - - - + ¢A(H,,), which is ¢A(H), by Lemma 4.14. O

We are now able to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose that 7y and 77 are 1-vertex triangulations of S. As in the proof of
Proposition 2.8, we can triangulate S x [0,1] so that S x {0} and S x {1} both have the triangulation
To, using at most 18¢(S) tetrahedra. A sequence of 2-2 Pachner moves relating 7o and 7T; specifies
a sequence of attachments of tetrahedra onto S x {1}. We end with a triangulation of S x [0, 1]
satisfying the required properties. It follows that the minimal number of 2-2 Pachner moves relating
To to T1 gives an upper bound on the minimal number of tetrahedra.

Conversely, suppose that we have a triangulation 7 of S x [0,1] so that T restricted to S x {0}
is 7o and T restricted to S x {1} is 71. We attach onto each of S x {0} and S x {1} the following
triangulation of S x I. Each triangle in S x {0}, say, determines a prism in S x I. This prism can be
triangulated using three tetrahedra, as shown in Figure 34.

Gluing these prisms along their vertical faces gives a triangulation of S x I. If we attach these
onto 7, one on each boundary component, we end with a new triangulation 7’. This has the same
triangulations on the boundary as 7 did. However, 7’ now has the property that for any tetrahedron,
its intersection with S x {0,1} is either a vertex, an edge or a face. So, when we dualise T’ to
form a handle structure A, this is pre-tetrahedral, for the following reason. We have one handle
of H for every simplex of 7" that does not lie wholly in S x {0,1}. So when a tetrahedron of T’
intersects S x {0,1} in the empty set or in a vertex, the resulting O-handle is tetrahedral. When
a tetrahedron intersects S x {0,1} in an edge, the resulting 0-handle is semi-tetrahedral. When a
tetrahedron intersects S x {0,1} in a face, the resulting 0-handle is a product handle with length
3. Note that A(H) < A(T) + 12¢(5), as follows. Suppose the top of the product in Figure 34 is
glued to S x {0}. Then the three vertices on the top of the product give 3-handles, whereas the
three vertices on the bottom do not. So, we have the following complexities: The tetrahedron on the
bottom becomes a product 0-handle with length 3 incident to a single 3-handle, with complexity 1/8.
The tetrahedron in the middle becomes a semi-tetrahedral 0-handle incident to two 3-handles, with
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FI1GURE 34. The triangulation of the product of a 2-simplex and an interval.

complexity 1/4 4+ 2/8. The tetrahedron on the top becomes a tetrahedral 0-handle incident to three
0O-handles, with complexity 1/2 + 3/8. So we have added complexity 3/2 for each triangle of S. There
are less than 4¢(S) triangles of S by Lemma 2.3. We need to attach these triangulated products onto
both S x {0} and S x {1}. So in total, we add complexity 8¢g(S) *3/2 = 12¢(5).

Now, H has empty parallelity bundle. For if it has any parallelity handles, then it would have
to have a parallelity 2-handle. This would correspond to an edge of 7’ not in S x {0,1} but with
endpoints lying in S x {0,1}. There is no such edge in our triangulation. In particular, H is coherently
bundled.

Pick a cellular spine I' in S x {0} that is isotopic to the dual of 7y. Applying Theorem 10.4,
we obtain a cellular spine IV in S x {1} that is obtained from I" by at most cA(H) edge swaps.
By Lemma 8.3, TV is therefore obtained from I' by at most 24cg(S)A(H) edge contractions and
expansions.

The spine I' intersects each edge of 71 in at most 2 points. Hence, the total number of intersections
with the edges of 77 is at most 12¢(.S) points by Lemma 2.3. Hence, by Lemma 2.9, one can change
I into the dual of 77 using at most 96g(S)? edge contractions and expansions. So, we have related
the dual of Ty to the dual of 77 using edge contractions and expansions, where the number of these
is linearly bounded above by A(7). We can then convert this to a sequence of 2-2 Pachner moves
joining Ty to 71, using the following lemma. ]

Lemma 10.5. Let T and T" be 1-vertex triangulations of a closed orientable surface of genus
g. Suppose that the spines T' and T dual to T and T differ by a sequence of k edge expansions
and contractions. Then T and T" differ by a sequence of 2-2 Pachner moves with length at most

(89(5) = 2)k.

Proof. Let ' =T,..., 'y, = I'” be the sequence of spines relating I" to I'”/. Dual to each T'; is a
1-vertex polygonal decomposition of S. This is an expression of S as a union of polygons, each with
at least 3 sides, with their edges identified in pairs, so that the resulting cell structure has a single
0O-cell. An edge expansion relating two of the spines corresponds to dividing one of the polygons along
a diagonal. We call this operation a diagonal decomposition. So, we obtain a sequence of 1-vertex
polygonal decompositions taking 7 to 7", where each is obtained from its predecessor by a diagonal
decomposition or the reverse of a diagonal decomposition. This sequence has length k. From the
1-vertex polygonal decomposition dual to I';, we can obtain a 1-vertex triangulation 7; by picking a
vertex of each polygon and coning that polygon from the vertex.

We will show that 7; and 7;4; differ by a sequence of 2-2 Pachner moves with length at most
(8¢(S) — 2). Suppose that I';11 is obtained from I'; by an edge expansion. Then a polygon P dual to
a vertex of I'; is subdivided into two polygons. In 7;, P is triangulated some way with no vertex in
the interior of P. In 7;11, P is triangulated in some other way, again with no vertex in the interior.



THE TRIANGULATION COMPLEXITY OF FIBRED 3-MANIFOLDS 75

But, by [8], any two such triangulations of a polygon with m sides differ by a sequence of 2-2 Pachner
moves with length at most (2m — 2). In our case, P has at most 4¢g(S) sides. The argument in the
case where I'; is obtained from I';;1 by an edge expansion is analogous. The required bound on the
number of Pachner moves taking 7 to 7" immediately follows. O

11. PROOF OF THE MAIN THEOREM

We now have all the ingredients to give the proof of Theorem 1.3.

Proof of Theorem 1.5. As discussed in Section 1, the quantities (2) and (3) of Theorem 1.3 are known
to lie within a bounded ratio of each other by the Svarc-Milnor lemma. We showed in Theorem 3.6
that quantities (3) and (4) lie within a bounded ratio of each other. We showed in Proposition 2.8
that A((S x [0,1])/¢) is at most a constant times lycq(s)(¢). Hence, it remains to show that
Oavcas) (@) is at most a constant times A((S x [0,1])/¢). In fact, in Proposition 2.7, it was shown
that the spine graph Sp(S) and the mapping class group MCG(S) are quasi-isometric. So, it suffices
to show that /g,(5)(4) is at most a constant times A((S x [0,1])/¢).

Let M, = (S x [0,1])/¢™. In particular, M, is an n-fold cover of M;. Let 77 be a triangulation
for My with A(7;) = A(M;). Let Hy be the dual handle structure, so A(H;1) = A(Ty1). Let Sy be a
normal fibre in H; that has least weight in its isotopy class. By Lemma 7.9, S; exists and is normally
acylindrical. Choose a spine I' that is cellular in S7.

Now consider lifts to the finite cyclic covers M,,. The triangulation 77 lifts to a triangulation
T, with dual handle structure #,,. The surface S lifts to a normal fibre S,, in H,,. The spine I'
lifts to a cellular spine identical to I" on S,,. By cutting along all lifts of S; in H,,, we deduce that
A(Hy) = nA(H1) = nA(M).

We claim that S, is normally acylindrical. Suppose it is not and that there is annulus A in #H,,
with 0A = AN S, being essential curves in S,,, and with A vertical in the parallelity bundle of
M, \\Sn, and near OA, emanating from the same side of S,,. We may orient the n lifts of S to M,
coherently. Hence, when M, is cut along these lifts, each component of the resulting 3-manifold has
one boundary component oriented inwards and one oriented outwards. These lifts intersect A in a
collection of parallel core curves. The outermost two are inconsistently oriented. Hence, there are
two adjacent core curves in A that are inconsistently oriented. Between them lies an annulus that
projects homeomorphically to an annulus in M;\\\S; that makes S; normally cylindrical, which is a
contradiction. This proves the claim.

Let H! denote the handle structure obtained from cutting H, along S,. By Lemma 4.14,
A(H,) = A(H,).

By Lemma 7.4, H! is coherently bundled. Thus Theorem 10.4 implies there is a sequence of at
most ¢cA(H],) = cA(H,) edge swaps taking I' in S,, x {0} to a cellular spine I in S,, x {1}. By
Lemma 8.3, this gives a bound of at most 24cg(S)A(H,,) edge contractions and expansions to take T’
to I,

Apply the gluing map ¢™ to obtain a spine ¢"(I") that is cellular in S,, x {1}. By Lemma 2.10,
at most 48¢g(S)2L edge contractions and expansions are required to take IV to ¢™(I'), where L is
the number of 1-cells in I'. Note L is independent of n since I' is the same for all n. Thus the total
number of edge contractions and expansions we have used is at most

24c g(S)A(H,) + 489(S)*L = 24cn g(S)A(M;) + 48g(S)*L.

At this point, we do not have a bound on L. However, we know it is independent of n. Hence
there exists N such that for all n > N, 48¢(S)?L < 24cn g(S)A(M;). For such n, the total number
of edge expansions and contractions required to take I' to IV to ¢™(I") is at most 48 cn g(S)A(My).

By Theorem 3.6, there exists a constant k£ > 0 depending only on g(5) such that the translation
length of ¢™ in the spine graph is at least kn times the translation length of ¢. Thus

knlgps) (@) < lopis)(@™) < 48cn g(S)A(My),
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