HYPERBOLIC GEOMETRY
OF MULTIPLY TWISTED KNOTS

JESSICA S. PURCELL

ABSTRACT. We investigate the geometry of hyperbolic knots and links
whose diagrams have a high amount of twisting of multiple strands. We
find information on volume and certain isotopy classes of geodesics for
the complements of these links, based only on a diagram. The results are
obtained by finding geometric information on generalized augmentations
of these links.

1. INTRODUCTION

By Mostow—Prasad rigidity and work of Gordon and Luecke [10], the
hyperbolic structure on the complement of a hyperbolic knot is a knot in-
variant, and ought to be useful in problems of knot and link classification.
In practice, this structure seems difficult to compute.

In recent years, some geometric properties of hyperbolic knots and links
have been discovered for links admitting certain types of diagrams, such as
alternating links [16], and highly twisted knots and links [23, 22, 9]. However,
many knots that are of interest to topologists and hyperbolic geometers do
not fall into these classes. These include Berge knots [5, 3, 4], twisted torus
knots and Lorenz knots [6], which contain many of the smallest volume
hyperbolic knots [7]. These knots often have diagrams that are highly non-
alternating, with few twists per twist region, but contain regions where
multiple strands of the diagram twist around each other some number of
times. We would like to be able to understand and estimate geometric
properties of these “multiply twisted” knots and links, given only a diagram,
but currently we do not have the tools to do so.

In this paper, we take a first step toward such an understanding. We inves-
tigate the geometry of knots and links with diagrams with a high amount of
twisting of multiple strands. We find information on the geometry of these
knots, including volume bounds and certain isotopy classes of geodesics,
based only on a diagram.

The results are obtained by augmenting the knot and link diagrams. That
is, we encircle each twist of multiple strands by a simple closed curve, un-
knotted in S3. The resulting link is called a generalized augmented link,
generalizing a construction of Adams in which two twisting strands are en-
circled by an unknotted component [1]. When one performs 1/n Dehn filling
on the augmentation components of these links, one adds n full twists to the
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strands. All diagrams can be obtained by such twisting. (See section 2 for
a more careful discussion.) Hence geometric information on a generalized
augmented link, combined with geometric information under Dehn filling,
leads to geometric results on knot complements.

Regular augmented links have a very nice hyperbolic structure, including
a decomposition into right angled ideal polyhedra, first written down by
Agol and Thurston [16, Appendix]. Generalized augmented links do not
have as nice structure, but still contain enough symmetry to obtain results.
To determine geometric information on Dehn fillings of these manifolds, one
may turn to results on cone deformations due to Hodgson and Kerckhoff
[11, 12, 13], or hyperbolike filling of Agol and Lackenby [2, 15], or volume
change results due to Futer, Kalfagianni, and the author [9].

We have investigated generalized augmented links elsewhere. In [24], we
bounded the lengths of certain slopes on these links, and showed that many
knots obtained by their Dehn fillings have meridian length approaching 4
from below. With Futer and Kalfagianni, in [8] we investigated properties
of volumes of a very particular class of these links. Here, we broaden the
results to larger classes of knots and links.

In Section 2, we give careful definitions of the terms generalized twist
region and generalized augmented link, and show that a generalized aug-
mented link admits a reflection. We use this to give information about
certain slope lengths on the link in Section 3. This implies, among other
things, that many of these knots are hyperbolic, as follows.

Theorem 3.7. Let K be a knot or link in S3 which has a diagram D
containing at least 6 half—twists in each generalized twist region, such that
the corresponding generalized augmented link is hyperbolic. Then S — K
is also hyperbolic.

Next, in Section 4, we examine the volumes of generalized augmented
links, and show that there exist lower bounds on volumes of many knots
based only on the number of generalized twist regions in a diagram. The
main result is the following.

Theorem 4.2. Let K be a knot or link in S% which has a diagram D with
at least 7 half-twists in each generalized twist region, and such that the
corresponding generalized augmented link is hyperbolic. Let tw(D) denote
the number of generalized twist regions in the maximal twist region selection.
Then

vol(S% — K) > 0.64756 (tw (D) — 1).

Finally, in Section 5, we examine the question of geodesics in these link
complements. Kuhlmann showed that any cusped hyperbolic manifold ad-
mits infinitely many simple closed geodesics [14], and identified isotopy
classes of geodesics in the figure—eight knot complement [19]. However, as far
as we are aware these are the only previously known explicit results identi-
fying isotopy classes of closed geodesics in knot complements. It seems to be
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a difficult problem to identify isotopy classes of closed geodesics given only
a diagram of a knot. Our main result of Section 5 addresses this problem.
We show that certain closed curves in a diagram of a generalized augmented
link are isotopic to geodesics under restrictions depending only on the link
diagram. This is the content of Theorem 5.5.

Note that the focus of this paper is on geometric information for hyper-
bolic generalized augmented links and their Dehn fillings. In a companion
paper, we discuss results for generalized augmented links which are not hy-
perbolic [21].

1.1. Acknowledgements. Research was partially funded by NSF grant
DMS-0704359. We thank David Futer and John Luecke for helpful conver-
sations. We also thank the referee for many helpful comments, particularly
for helping to streamline the proof of Theorem 3.4.

2. CHARACTERIZATION OF GENERALIZED AUGMENTED LINKS

We will be analyzing twisting and twist regions in a knot diagram. Twist
regions and generalized twist regions are defined carefully in [24]. We review
definitions here for convenience.

Definition 2.1. Let K be a link in S3, and let D be a diagram of the link.
We may view D as a 4—valent graph with over—under crossing information at
each vertex. A twist region of the diagram D is a sequence of bigon regions
of D arranged end to end, which is maximal in the sense that there are no
other bigons on either end of the sequence. A single crossing adjacent to no
bigons is also a twist region.

We will assume throughout that the diagram is alternating within a twist
region, else replace it with a diagram with fewer crossings in the twist region.

In a twist region of a diagram, two strands twist around each other max-
imally, as in Figure 1(a), and bound a “ribbon” surface.

Definition 2.2. A generalized twist region of D is a region of the diagram
where two or more strands twist around each other maximally, as in Figure
1(b). More precisely, a generalized twist region is a region of the diagram
consisting of m > 2 parallel strands. When all the strands except the
outermost two are removed from this region of the diagram, the remaining
two strands form a twist region. In S3, these two strands bound a ribbon
surface between them. Remaining strands of the generalized twist region can
be isotoped to lie parallel to each other, embedded on this ribbon surface.

The amount of twisting in each twist region is also important. We describe
the amount of twisting in terms of half-twists and full-twists.

Definition 2.3. Let K be a link in S®. A half-twist of a generalized twist
region of a diagram consists of a single crossing of the two outermost strands.
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FIGURE 1. (a) A twist region. (b) A generalized twist region.
Multiple strands lie on the twisted ribbon surface.
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FIGURE 2. (a) Encircle each twist region with a crossing cir-
cle. (b) Link L given by removing full-twists from the dia-
gram.

The ribbon surface they bound, containing other strands of the twist region,
flips over once in a half-twist.

A full-twist consists of two half-twists. Figure 1(b) shows a single full-
twist, or two half-twists, of five strands.

Given a diagram of a link in S3, group crossings into generalized twist
regions, such that each crossing is contained in exactly one generalized twist
region. Call such a choice of generalized twist regions a mazimal twist region
selection. Note the choice is not necessarily unique. For example, in Figure
1(b), we could group the crossings shown into a single generalized twist
region containing a full-twist of five strands, or into twenty regular twist
regions, each containing a single half~twist of two strands. Either choice
is a valid maximal twist region selection, although the former seems more
correct.

Now, at each generalized twist region in the maximal twist region selec-
tion, insert a crossing circle, that is, a simple closed curve C; encircling the
strands of the twist region, and bounding a disk D; in S3, perpendicular to
the projection plane. The D; are called twisting disks. See Figure 2(a). We
can select the C; and the D; such that the collection of all D; is a collection
of disjoint disks in S®.

When crossing circles are inserted at each twist region in the maximal
twist region selection, we obtain a new link, with components K from the
original link K, and crossing circles C;. The complement of this link is
homeomorphic to the complement of the link L obtained by untwisting at
each C;. That is, we may remove all full-twists from each generalized twist
region of the link diagram without changing the homeomorphism type of
the link complement. See Figure 2(b).

The resulting diagram of L consists of unknotted link components C; and
components obtained from untwisting &', which we will call Ky,...,K,. In
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the diagram of L, the components of K will either lie flat on the projection
plane, or may have single half-twists encircled by crossing circles.

Definition 2.4. We call the link L an augmentation of the diagram D
of K, or we say L is the augmentation of the diagram D corresponding
to a maximal twist region selection. We also say that L is obtained by
augmenting K, and that L is an generalized augmented link.

For brevity, we often drop the adjective “generalized” from the term gen-
eralized augmented links, since all augmented links we discuss here are of
this form.

The connection between S® — L and the original link complement is given
by Dehn filling. Any slope s on a torus 72 is parameterized by two relatively
prime integers p, ¢, where s = pu + ¢, and pu, A generate Hy(T?;Z). When
M is the link complement S® — L, at the i-th crossing circle C;, let ju;, A;
denote the meridian and longitude of ON(C;), respectively. Then Dehn
filling along the slope p; + n;A; gives a new link whose diagram no longer
contains C}, and the strands previously encircled by C; run through n; full-
twists (see, for example, Rolfsen [25]). Thus Dehn filling connects S® — K
and the complement of the augmented link L.

2.1. Reflection. The link L admits a reflection, as follows. Arrange the di-
agram of L such that crossing circles of L lie perpendicular to the projection
plane, and reflect the diagram of L in the projection plane. The crossing
circle components C; are taken to themselves. Outside of twist regions, the
diagram of L is preserved. If the components K lie flat on the projection
plane, they are also preserved by the reflection.

If some components K; run through a single half-twist at a twist region,
then the reflection will reverse all the crossings of the half-twist, changing
the direction of half-twist. Apply a twist homeomorphism, twisting one
full twist at each half-twist in the opposite direction. This reverses the
direction of the half-twist. Thus the composition of the reflection and the
twist homeomorphism is an orientation reversing involution of S% — L.

There is a surface which can be isotoped to be fixed pointwise by this
involution, as follows. Outside of neigbhorhoods of half-twists, the surface
consists of the projection plane. Inside a half-twist, the surface consists of
the ribbon surfaces parallel to the knot strands, as well as another portion
of surface. This other portion has boundary on the crossing circle, which
we denote C;, and on the outermost strands of the knots running through
the half-twist. The boundary on Cj is shown by the dotted line in Figure 3.
It runs along the projection plane on the outside of Cj, so that the surface
meets up with the projection plane outside a neighborhood of the half—twist.
On the inside, this portion of the surface consists of two rectangles. One
of these rectangles has a side attached to half of a longitude running up
over the crossing circle. The opposite side is attached to the knot strand
running up above the projection plane, crossing over the half-twist. The
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other two sides are joined to the surface of the projection plane outside the
neighborhood of the half-twist, on the front left in Figure 3 and on the back
right. Similarly, there is another rectangle attached below the projection
plane, with two opposite sides running along the knot strand and along a
half of a longitude, respectively, and the other two opposite sides attached
to the surface of the projection plane on the front right in Figure 3 and on
the back left.

The above discussion illustrates the following, which is also Proposition
3.1 of [24].

Proposition 2.5. Let L be an augmentation of a diagram of a link in S°.
Then S3 — L admits a reflection, i.e. an orientation reversing involution
with fized point set a surface.

3. SLOPE LENGTHS AND HYPERBOLICITY

In this section, we prove results on slope lengths of generalized augmented
links. Our methods generalize to hyperbolic manifolds which admit a reflec-
tion, and we state the more general results.

Lemma 3.1. Let M be a 3—manifold with torus boundary components with
the following properties:

(1) M admits an orientation reversing involution o whose fixed point set
is a properly embedded surface P in M.

(2) Some boundary component T of M meets P, and for some slope \ on
T, o is an orientation reversing involution of X. (Write o(A) = —\.)

Then XA meets P exactly twice.

When our manifold is in fact a generalized augmented link, A may be the
slope dD; on ON(C;), for example, or a slope dD; on ON (Kj).

Proof. Since o takes A\ to —\, a representative of A\ (which, by abuse of
notation, we will also call ) has a fixed point under o. Thus A meets P.
Additionally, since the only orientation reversing involutions of S that fix
a point must actually fix two points, A must meet P twice. O

Lemma 3.2. Let M be as in Lemma 3.1. Then the torus T is tiled by rect-
angles, each with one side parallel to the surface P, and one side orthogonal
to P. The lift of these rectangles to the universal cover T gives a rectangular
lattice in R?.

Proof. Consider the universal cover R? of the torus boundary component 7.
As P is embedded, the slopes PN T lift to give parallel lines in R?. A simple
curve representing the slope A lifts to give parallel lines perpendicular to
the lines from P, since A is taken to —\ by the involution ¢ fixing P. The
projection of these lines to 1" gives a tiling of T' by rectangles. Together, the
intersection points of these sets of lines form a lattice Z? of R2. O
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Construct a basis of the lattice of Lemma 3.2 by letting p be a step parallel
to a side from P NT', and by letting o be a step orthogonal to p.

Lemma 3.3. Let M be as in Lemma 3.1, and let {p, o} be the basis for the
lattice on T as above. Then the curve A, which serves as one generator of
Hy(T;7Z), is given by 20. Another generator of H1(T';7Z) is given by p+ € o,
where € = 0 if there are two components of PNT, and ¢ = 1 if there is one
component of PNT.

Proof. By Lemma 3.1, X\ intersects P twice. Thus its representative must
cross lifts of P twice in the lattice, and be taken to itself under the involution
in P, so it is 2o.

Note this implies that all corners of the rectangles formed by p and o
project to just two distinct points on 1" under the covering transformation.
These two points are the projection of the endpoint of o and the projection
of the endpoint of 20. Additionally, the fact that A = 20 implies that T
is tiled by exactly two rectangles. To determine generators of H(T;7Z), we
determine if these rectangles are glued with or without shearing on 7.

Another obvious closed curve on T besides A is given by a single com-
ponent of P N JT. Call the corresponding slope «. It does not necessarily
generate H;(7T';7Z) with A. Since A intersects P twice, either « intersects A
once, in which case P N1 has two components, there is no shearing, and p
is a generator; or « intersects A twice, and P NI" has one component.

If PNT has one component, then o« = 2p, and « is not a generator with
A. Then the endpoint of p must project to the same point as the endpoint of
o under the covering projection, so p+ o will give a closed curve on T'. Since
it has intersection number 1 with 20 = A, p + o will be a generator. O

When M is known to admit a hyperbolic structure, we can find lower
bounds on the lengths of the arcs o and p in the lattice. Recall that
when a manifold has multiple cusps, lengths depend on a choice of max-
imal cusps, i.e. a collection of disjoint horoball neighborhoods, one for each
cusp. Lengths of arcs are measured on the horospherical tori that form the
boundaries of the horoball neighborhoods. To ensure lengths on a torus
boundary are long, we need to ensure that we can choose maximal cusps
appropriately.

Theorem 3.4. Let M be a 3—manifold with torus boundary components
which admits a complete finite volume hyperbolic structure, and has the fol-
lowing additional properties:
(1) M admits an orientation reversing involution o whose fixed point set
is an embedded surface P in M.

(2) Boundary components T, ..., T, of M meet P, and for each T;, there
1s a slope \; that is taken to —\; under o.

Let {p;,0;} generate the lattice on the universal cover T of T;, of intersec-
tions of lines which project to P and lines which project orthogonal to P,
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respectively, as in Lemma 3.3. Then there exists a choice of mazrimal cusps
of M such that, when measured on these mazimal cusps, the length of each
0; is at least 1, and the length of p; is at least 1/2.

Proof. Lift to the universal cover H?, which we view as the upper half space
H? = {(z,y,2)|z > 0}. For any j, we may apply an isometry of H? such
that the cusp corresponding to 77 lifts to a horoball centered at the point
at infinity.

By Mostow—Prasad rigidity, the involution of M is isotopic to an isometry
of M under the hyperbolic metric. The surface P, since it is fixed pointwise,
is isotopic to a totally geodesic surface in M (see for example [18], [17]). Thus
it lifts to a collection of disjoint, totally geodesic planes.

Since P meets the cusp corresponding to 7}, copies of P will lift in H?3
to parallel vertical planes through infinity. Because P is fixed under the
involution o, the collection of parallel vertical planes must be preserved by
a reflection of H® in any one of the planes. Hence the (Euclidean) distance
between any two adjacent planes is constant.

Now, define the horoball expansion about cusps of 17,...,T; as follows.
For each j, select horoballs such that the lengths of the o; agree for every
J simultaneously. That is, there exists some € > 0 such that when each o;
has length €, the horoballs about the cusps corresponding to 17, ...,T} are
disjoint. Continue to increase € keeping all the o; of equal length, until it is
as large as possible. We will show that the length of o; is at least 1 when
measured on this set of disjoint cusps.

Suppose not. Suppose the length of each o, is less than 1 in this horoball
expansion. Since this length is maximal, horoballs about cusps projecting
to some T; and 7 must abut. Apply an isometry to H? such that the cusp
corresponding to 7 lifts to a horoball centered at infinity in H?, with height
1 in the upper half space model. It will be tangent to some horoball H over
a point w on the boundary C = {(z,y,0)} of H3, where H projects to the
cusp corresponding to 7. Note H is a ball of Euclidean diameter 1.

Now consider lifts of the planes P. Some of these correspond to vertical
planes parallel to each other, with the (Euclidean) distance between each
plane equal to the length of o;.

We are assuming the length of o; is strictly less than 1. Because the
diameter of H is 1, H must intersect a vertical plane P projecting to P.
Because the reflection through the plane P projects to an isometry of M,
the image of H under this reflection must be a horoball in H? disjoint from
all other horoballs in the lift of the maximal cusps. Thus if H lies over
some point w which is not on the plane P, then the image of H under the
reflection through P will give a horoball distinct from H, which intersects
H. This is impossible. B

So H is centered at a point w € C which lies on a plane P which projects
to P. In H?, there are vertical planes parallel to P on either side, each of
distance from w equal to the length of o;, which is strictly less than 1.
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On the other hand, H projects to the cusp corresponding to 7}, which
also meets P. Thus in H? there will be a collection of hemispheres tangent
at w € C which project to P. These will be disjoint from (the interiors of)
the vertical planes, since all these planes project to P as well, and P has no
self intersections. The distance along H from the top of H to the nearest of
these hemispheres will also be the length of o;, given our choice of horoball
expansion.

Since the distance along H from the top of H to its equator is exactly 1,
and by assumption the length of o; is less than 1, this means that the radius
of one of these hemispheres projecting to P is greater than 1/2. But then
this hemisphere will intersect a vertical plane projecting to P in its interior.
This is a contradiction.

Now we have a horoball expansion such that all the o; are of the same
length, and this length is at least 1, but this is not necessarily a choice of
maximal cusps of M. It may be possible to expand some horoballs further.
To finish the proof, starting with the given horoball expansion, choose any
method of further expansion of horoballs such that when we have finished,
each horoball neighborhood of a cusp abuts either itself or a horoball neigh-
borhood of another cusp. This is a choice of maximal cusps. Since further
expansion of any horoball only increases the length of arcs on the boundary
of that horoball, the length of each o; is still at least 1.

To show the length of p; is at least 1 /2, we consider the cusp correspond-
ing to Tj. Because we have a choice of maximal cusps, when we lift to H?
such that this cusp lifts to a horoball about infinity, it must meet some full
sized horoball H corresponding to the lift of some (not necessarily different)
cusp. Now, since p; or 2p; projects to a closed curve on T}, a translation
along p; or 2p; is a covering transformation. It must take H to a disjoint
horoball. Thus the translation length is at least 1, so p; has length at least
1/2. O

We wish to study what happens when we twist along the disks Dy, ..., Dy,
i.e. when we perform Dehn filling on slopes 1/n1,...,1/n; on the cusps
corresponding to C1, ..., Yy, respectively. First, we give the following result
about the lengths of such slopes. Note the following theorem applies to links
in general 3-manifolds, not just S°.

Proposition 3.5. Let L = C1 U ...C} be a link in a 3—manifold M, such
that M — L admits a complete, finite volume hyperbolic structure, admits an
orientation reversing involution o whose fized point set is a surface P, and
for each component C; of L, there is a slope \; taken to —\; by o.

Let p; be the other generator of H1(ON(C;)) as in Lemma 3.3. Then the

slope i +n; \; has length at least \/(1/4) + c¢?. Here:

(1) ¢ = 2|n;| if PNON(C;) consists of two curves, or
(2) ¢ =2|n;| — 1 if PNON(C;) consists of one curve.



10 JESSICA S. PURCELL

'\l’
FIGURE 3. Left: PNON(C;) has two components, shown in

dotted lines. Right: P N IN(C;) has one component, giving
a half-twist.

Proof. M — L fits the requirements of the lemmas above. So in particular,
by Lemma 3.3, H1(ON(C;);Z) is generated by 20; and p; + €; 0;, where
the generator 20; corresponds to the curve A;. If P N ON(C;) has two
components, then one such component is a generator p, = p;, and if PN
ON(C;) has one component, then the other generator is p; + 0; = ;.
Suppose first that P N ON(C;) has two components. Then the slope
Wi + n; A; is given by p;, + n;(20;). Since p; and o; are orthogonal, by

Theorem 3.4 this slope has length at least \/(1/4) +4n? = \/(1/4) + 2.

Now suppose that P N 9N (C;) has one component. Then the slope p; +
n; A; is given by p; + 0; + n; (20;) = p; + (1 + 2n;)o;. It must have length

at least \/(1/4) + (1 — 2|n;[)2 = /(1/4) + 2. O

Definition 3.6. If P N ON(C;) consists of one curve, as in case (2) of
Proposition 3.5, we say there is a half~twist at D;.

This terminology comes from considering a neighborhood of D; in M. In
this neighborhood, a half-twist at D; is identical to a neighborhood of a
half-twist of an augmented link in S3, as in Definition 2.3. See Figure 3.

Two half-twists in a row in a neighborhood of D; again yields a full-twist
in this neighborhood. Thus Proposition 3.5 implies that the squared length
of the slope u; +n;A; on C; is at least one more than the squared number
of half—twists inserted at D;.

Theorem 3.7. Let K be a knot or link in S® which has a diagram D and a
mazximal twist region selection with at least 6 half—twists in each generalized
twist region, and such that the corresponding augmentation is hyperbolic.
Then S — K is also hyperbolic.

Proof. The augmentation is a link with hyperbolic complement, by assump-
tion. It admits an orientation reversing involution o fixing a surface P, and
the cusps corresponding to crossing circles each have a slope A; which is
taken to —\; by o: namely, the slope of the longitude of the crossing circle.

The original knot or link complement is obtained from this link comple-
ment by Dehn filling slopes on crossing circles. The longitude of a crossing
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circle is given by A;. The meridian is the generator u; of Proposition 3.5.
If the knot has ¢; half twists in the i-th twist region, then the Dehn filling
slope is p; + n;A;, where n; = ¢;/2 if ¢; is even, n; = (¢; +1)/2 if ¢; is odd.

By Proposition 3.5, the slope of the Dehn filling has length at least
\/(1/4) 4+ ¢ > 6, since the diagram of K has at least 6 half-twists in each

generalized twist region. Thus by the 6-Theorem ([2], [15]), the manifold re-
sulting from Dehn filling is hyperbolike. By Perelman’s proof of Geometriza-
tion, the manifold is hyperbolic. O

4. VOLUMES

The existence of a reflection gives information about the volumes of aug-
mented links as well. Theorem 4.2, below, is an immediate generalization of
a similar theorem in [9].

Lemma 4.1. Let K be a knot or link in S® which has a diagram D and
a mazximal twist region selection such that the corresponding augmentation
yields a link L in S® whose complement is hyperbolic. Then the volume
satisfies
vol(S% — L) > 2ug (tw(D) — 1),

where vg ~ 3.66386 is the volume of a reqular hyperbolic octahedron, and
tw(D) is the number of generalized twist regions of the mazimal twist region
selection of D.

Proof. By assumption, S — L admits a complete hyperbolic structure. By
Proposition 2.5, it admits a reflective symmetry. Thus S — L contains a
surface P fixed pointwise under the reflection.

Cut S3 — L along this surface. This produces a (possibly disconnected)
manifold N with totally geodesic boundary. By a theorem of Miyamoto
[20], the volume of N is at least —vg x(IN), where x(NN) denotes the Euler
characteristic of N.

Now, in the case that P is the projection plane (i.e. no half-twists),
cutting along P splits S® — L into two balls, with half arcs corresponding
to crossing circles drilled out of the ball. This is a handlebody. Since there
are tw(D) crossing circles, the genus of the handlebody is tw(D). Thus we
obtain the volume estimate:

vol(S3 — L) > 2ug (tw(D) — 1).

When the diagram has half-twists, let L’ denote the link obtained by
removing all half-twists from the diagram of L. Topologically, S® — L’ is
obtained from S — L by cutting S® — L along the disks bounded by crossing
circles, and regluing with a half-twist.

Note S3 — L' has the following description as a gluing of ideal polyhedra.
Cut S®— L’ along the projection plane. This slices each of the disks bounded
by crossing circles in half. Now cut along each of these half disks and pull
the disks apart. See Figure 4.
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FIGURE 4. Decomposing S — L/ into ideal polyhedra. First,
cut along P. Second, cut along half disks. Finally, shrink
remaining link components to ideal vertices.

FicURE 5. Left: Gluing without a half twist. Right: Insert-
ing a half-twist.

This separates S® — L’ into two identical ideal polyhedra with faces given
by crossing disks and by the projection plane. We may glue these polyhedra
back in the manner in which we cut them to obtain S® — L’. We may also
change the gluing on crossing disks only to obtain S® — L, as follows. Rather
than glue crossing disks straight across where L has a half-twist, glue a half
crossing disk on one polyhedron to the opposite half crossing disk on the
opposite polyhedron, inserting the half-twist. See Figure 5.

Compute the Euler characteristic of the cut manifold (S* — L) — P by
reading it off this polyhedral decomposition. Since (S% — L) — P has bound-
ary, it retracts onto a one-skeleton. Build the one-skeleton by including
a vertex for each ideal polyhedron (two vertices). Edges run through the
half crossing disks which we glue. There will be one edge per glued pair of
half crossing disks. Since there are tw(D) crossing disks, the Euler charac-
teristic is 2 — 2tw(D). Thus by Miyamoto’s theorem, the volume satisfies:
vol(S3 — L) > 2wvg (tw(D) — 1). O

Lemma 4.1 should be compared to Proposition 3.1 of [9]. The proof above
is an immediate extension of the proof of that theorem to this more general
case. For links with two strands per twist region, we showed in [9] that
Lemma 4.1 is sharp.

In general, when crossing circles have more than two strands per twist
region, Lemma 4.1 seems to actually be far from sharp. With Futer and
Kalfagianni we have been able to develop better bounds on volumes of a
certain class of knots [8]. Meanwhile, Lemma 4.1 gives a working lower
bound on volumes.
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Theorem 4.2. Let K be a knot or link in S® which has a diagram D and a
mazimal twist region selection with at least 7 half-twists in each generalized
twist region, and such that the corresponding augmentation is hyperbolic.
Let tw(D) denote the number of generalized twist regions in the mazximal
twist region selection. Then

vol(S3 — K) > 0.64756 (tw (D) — 1).

Proof. Let L be the augmentation, S® — L hyperbolic, by assumption. By
Lemma 4.1, the volume satisfies:
vol(S% — L) > 2ug (tw(D) — 1).

Now, S% — K is obtained by Dehn filling S — L. Since there are at least
7 half-twists per twist region, by Proposition 3.5, the Dehn filling is along
slopes of length at least v/49.25 > 2. Apply Theorem 1.1 of [9]. This
theorem states that if M is a hyperbolic manifold, and s1, ..., s, are slopes
on cusps of M with minimum length £,,;, at least 2m, then the Dehn filled
manifold M (sq,...,sk) is hyperbolic with volume bounded below by

o\ 3/2
vol(M(s1,...,s,)) > <1 — <£i:n> > vol(M).

In our case, {min > v/49.25 and the volume of the unfilled manifold S3 — L
satisfies vol(S3 — L) > 2wvg (tw(D) — 1). Thus the volume of S? — K satisfies

3/2
vol(S® — K) > (1 - (27”>2> 20z (tw(D) — 1)

19.25
> 0.64756 (tw(D) — 1).

5. GEODESICS

We now give information on classes of geodesics in knot complements.
Our tools are those of cone manifolds and cone deformations. We briefly
review the definitions and results we use.

Definition 5.1. A hyperbolic cone manifold is a 3—manifold M and a link
Y in M such that M — ¥ admits an incomplete hyperbolic metric, with cone
singularities along 3. That is, a neighborhood of ¥ in M has a metric whose
cross section is a hyperbolic cone, with cone angle « at the core.

A hyperbolic cone deformation is a one-parameter family of hyperbolic
cone manifold structures on M — 3.

In special cases, a Dehn filling can be realized geometrically as a cone
deformation, as follows. Suppose M is a 3—manifold with torus boundary
which admits a complete hyperbolic metric. Let s be a slope on dM. Then
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we may view the complete hyperbolic structure on M as a hyperbolic cone
manifold structure on M(s) with cone angle zero along the link at the core
of the attached solid torus in M(s).

We may always increase the cone angle from o = 0 to a = ¢, for some
e > 0 via cone deformation, by work of Hodgson and Kerckhoff [11]. When
a = ¢, in the hyperbolic cone metric, the slope s will bound a singular
disk. That is, a representative of s can be isotoped to bound a disk D
which admits a smooth hyperbolic metric everywhere except at the core of
D, where D intersects the singular locus Y. Thus this manifold with the
hyperbolic cone metric is homeomorphic to M(s).

In case there is a cone deformation starting at cone angle @ = 0 and
extending to a = 2w, the final structure when o = 27 gives a complete,
non-singular hyperbolic metric on the manifold M(s). In this case, we say
the Dehn filling is realized by cone deformation.

The benefit of a cone deformation is that one obtains some geometric
control on the hyperbolic structure of the manifold. In particular, when we
have a single filling slope, the core of the Dehn filled solid torus is a closed
geodesic in the hyperbolic structure given by cone angle o = 2. Thus this
core is isotopic to a geodesic provided we can show a Dehn filling is realized
by cone deformation.

Hodgson and Kerckhoff analyzed conditions which guarantee the existence
of a cone deformation [12]. We will apply their results, but first we need the
following definition.

Definition 5.2. Let M be a 3—manifold with torus boundary OM = T
admitting a complete hyperbolic metric. Let s be a slope on 7. In the
hyperbolic structure on M, T becomes a cusp. Take any embedded horoball
neighborhood of this cusp and consider its boundary. This inherits a Eu-
clidean metric from the hyperbolic structure on M. Thus we may measure
the length of s and the area of the Euclidean torus 7" with respect to this
metric.
Define the normalized length of s to be

0 (s) = length(s)
o area(T)

Here length(s) is the length of a geodesic representing s. Note that unlike
the lengths of Theorem 3.4, the normalized length of a slope is independent
of choice of horoball neighborhood about the cusp corresponding to 7.

The following is a consequence of Theorem 1.2 of [13].

Theorem 5.3 ((Hodgson—Kerckhoff)). Consider a complete, finite volume
hyperbolic structure on the interior of a compact, orientable 3—manifold M
with k > 1 torus boundary components. Let Ty, ..., T} be horospherical tori
which are embedded as cross—sections to the cusps of the complete structure.
Let s1,...,sk be slopes, s; on T;. Then M(sy,...,s,) admits a complete
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hyperbolic structure in which the core cures of the Dehn filled solid tori are
isotopic to geodesics, provided the normalized lengths L; = Cporm(Si) satisfy

>

T Li

L1
2™ (7.5832)2°

Theorem 1.2 of [13] is actually a more general theorem about Dehn filling
space for manifolds with multiple cusps. However, in the proof of that theo-
rem it is shown that under the above assumptions on normalized lengths
of slopes, a cone deformation exists from cone angle 0 to 27 for which
each component of the singular locus has a tube about it of radius at least
arctanh(1/v/3) (page 36 of [13]). The components of the singular locus cor-
respond to the cores of the filled solid tori. Since each has a tube about
it throughout the deformation, the cores remain isotopic to geodesics. See
also the explanation in [13] on page 5, after the statement of Theorem 1.2.

Lemma 5.4. Let M, L, \;, and p; be as in Proposition 3.5. Then the
normalized length of each slope s; = u; + n; \; is at least

enorm(si) 2 Ci,

where again c; is the number of half-twists inserted by the Dehn filling along
slope s;.

The proof of Lemma 5.4 is similar to that of Proposition 3.5, except with
the added difficulty that we are considering normalized lengths, and not
actual lengths. Compare to [23, Proposition 6.5].

Proof. Write the slope s; = p; + n; A; in terms of the lengths of o; and p,,
of Lemma 3.3. In particular, as in Proposition 3.5, the slope is given by
p; + ¢; 05, where ¢; is the number of half-twists inserted by the Dehn filling,

and since o; and p; are orthogonal, its length is given by 4/ p? + c? 0?, where
p; and o; denote the lengths of geodesic representatives of p, and o;. By

Lemma 3.3, the area of the cusp torus is given by 20;p;.
Thus the normalized length of s; = u; + n; A\; is given by

2, .29
Dy +¢ioj

L $i) = =4/ — .
norm (84 V2pio; 20;  2p;

Minimize the normalized length with respect to p;/o;. We find that its
value is minimum when the ratio p;/o; equals ¢;. In this case, the normalized
length will be |/c;. O

We may now prove Theorem 5.5, giving results on isotopy classes of
geodesics in generalized augmented links.

Theorem 5.5. Let K be a knot or link in S® which has a diagram D and
a mazximal twist region selection with tw(D) twist regions, such that the
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corresponding augmentation is hyperbolic. Let ¢; be the number of half-
twists in the i-th twist region. Then each crossing circle is isotopic to a
geodesic in the hyperbolic structure on S° — K, provided

¢ (7.5832)%

Proof. S® — K is obtained from S% — L by Dehn filling the crossing circles.
By Lemma 5.4, the normalized lengths of the slopes of the Dehn filling are at
least |/c;, where ¢; is the number of half-twists in the i-th generalized twist
region of D. By Theorem 5.3, the cores of the filled solid tori are isotopic
to geodesics provided

(1]

— G (7.5832)2"
O
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