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10 Associative Memory Networks

10.1 Introductory concepts

Consider the way we are able to retrieve apattern from a partialkey as in Figure 10–1.

Figure 10–1: A key (left) and a complete retrieved pattern (right)

Imagine a question “what is it” in relation to the right image.

• The hood of the Volkswagen is thekey to our associative memory neural network and the stored
representation of the whole Volkswagen can be thought of as an networkattractor for all similar keys.

• The key starts a retrieval process which ends in an attractor which contained both the whole car and its
name (maybe you go only for the name since the question is “what is it”)
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• Storing a memory like the shape of a Volkswagen in an associative memory network and retrieving it,
starting with a key, i.e. an incomplete version of the stored memory is the topic of this chapter.

There aretwo fundamental typesof the associate memory networks:

• Feedforward associative memory networks in which retrieval of a stored memory is aone-step
procedure.

• Recurrent associative memory networks in which retrieval of a stored memory is amulti-step
relaxation procedure.

Recurrent binary associative memory networks are often referred to as the Hopfield networks.

For simplicity we will be working mainly with binary patterns, each element of the pattern having values
{−1, +1}.

Example of a simple binary pattern

ξM =

2 4 6 8

2

4

6

8

10

=



0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0
0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0



; ξ =



−1
−1
...

+1
+1
−1
...
−1
+1
...
−1


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10.1.1 Encoding and decoding single memories

The concept of creating a memory in a neural network, that is, memorizing a pattern in synaptic weights
and its subsequent retrieval is based on the “read-out” property of the outer product of two vectors that we
have studied earlier.

Assume that we have apair of column vectors:

p-component vectorξ representing the input pattern
m-component vectorq representing the desired output association with the input pattern

The pair{ ξ, q } to be stored is called afundamental memory.

Encoding a single memory

Westore or encodethis pair in a matrixW which is calculated as an outer product (column× row) of
these two vectors

W = q · ξT (10.1)

Decoding a single memory

Theretrieval or decoding of the store pattern is based on application of the input patternx to the weight
matrixW . The result can be calculated as follows:

y = W · ξ = q · ξT · ξ = ||ξ|| · q (10.2)

The equation says that the decoded vectory for a given input patternξ is proportional to the encoded
vectorq, the length of the input patternξ being the proportionality constant.
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10.1.2 Feedforward Associative Memory

The above considerations give rise to a simplefeed-forward associative memoryknown also as the
linear associator.
It is a well-known single layer feed-forward network withm neurons each withp synapses as illustrated in
Figure 10–2.
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Figure 10–2:The structure of a feed-forward linear associator:y = σ(W · x)

For such a simple network to work as an associative memory, the input/output signal are
binary signalswith

{0, 1} being mapped to{−1, +1}
• During theencoding phasethe fundamental memories are stored (being encoded) in the weight matrix

W

• During thedecoding or retrieval phasefor a given input vectorx which is the key to the memory a
specific output vectory is decoded.
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10.1.3 Encoding multiple memories

Extending the introductory concepts let us assume that we would like to store/encodeN pairs of column
vectors(fundamental memories) arranged in the two matrices:

Ξ = ξ(1) . . . ξ(N) a matrix ofp-component vectors representing the desired input patterns
Q = q(1) . . . q(N) a matrix ofm-component vectors representing the desired output associa-

tions with the input patterns

In order toencodethe{Ξ, Q} patterns wesum outer productsof all pattern pairs:

W =
1

N

N∑
n=1

q(n) · ξT (n) =
1

N
Q · ΞT (10.3)

The sum of the outer products can be conveniently replaced by product of two matrices consisting of the
pattern vectors. The resultingm × p matrixW encodes all the desiredN pattern pairsx(n), q(n).

Note that eqn (10.3) can be seen as an extension of the Hebb’s learning law in which we multiply afferent
and efferent signals to form the synaptic weights.
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10.1.4 Decoding operation

Retrieval of a pattern is equally simple and involves acting with the weight matrix on the input pattern (the
key)

y = σ(W · x) (10.4)

where the functionσ is the sign function:

yj = σ(vj) =

 +1 if vj ≥ 0

−1 otherwise
(10.5)

It is expected that

1. x = ξ

If the key (input vector)x is equal to one of the fundamental memory vectorsξ, then the decoded
patterny will be equal to the stored/encoded patternq for the related fundamental memory.

2. x = ξ + n

If the key (input vector)x can be considered as one of the fundamental memory vectorsξ, corrupted
by noisen then the decoded patterny will be also equal to the stored/encoded patternq for the related
fundamental memory.

3. x 6= ξ + n

If the key (input vector)x is definitely different to any of the fundamental memory vectorsξ, then the
decoded patterny is a spurious pattern.
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• The above expectations are difficult to satisfy in a feedforward associative memory network if the
number of stored patternsN is more than a fraction ofm andp.

• It means that thememory capacityof the feedforward associative memory network islow relative to
the dimension of the weight matrixW .

In general, associative memories also known ascontent-addressable memories(CAM) are divided in two
groups:

Auto-associative:In this case the desired patternsΞ are identical to the input patternsX, that is,Q = Ξ.
Also p = m.

Eqn (10.3) describing encoding of the fundamental memories can be now written as:

W =
1

N

N∑
n=1

ξ(n) · ξT (n) =
1

N
Ξ · ΞT (10.6)

Such a matrixW is also known as theauto-correlation matrix .

Hetero-associative:In this case the inputΞ and stored patternsQ and are different.
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10.1.5 Numerical examples

Assume that a fundamental memory (a pattern to be encoded) is

ξ =
[
1 −1 1 1 1 −1

]T
The weight matrix that encodes the memory is:

W = ξ · ξT =



1

−1

1

1

1

−1


·

[
1 −1 1 1 1 −1

]
=



1 −1 1 1 1 −1

−1 1 −1 −1 −1 1

1 −1 1 1 1 −1

1 −1 1 1 1 −1

1 −1 1 1 1 −1

−1 1 −1 −1 −1 1


Let us use the following two keys to retrieve the stored pattern:

W · X = W · [x(1) x(2)] =



1 −1 1 1 1 −1

−1 1 −1 −1 −1 1

1 −1 1 1 1 −1

1 −1 1 1 1 −1

1 −1 1 1 1 −1

−1 1 −1 −1 −1 1


·



1 1

−1 −1

1 −1

1 1

1 1

−1 1


=



6 2

−6 −2

6 2

6 2

6 2

−6 −2


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Y = [y(1) y(2)] = σ(W · X) = σ(



6 2

−6 −2

6 2

6 2

6 2

−6 −2


) =



1 1

−1 −1

1 1

1 1

1 1

−1 −1


=

[
ξ ξ

]

• The first key,x(1), is identical to the encoded fundamental memory,

but the other,x(2), is different fromξ in two positions.

• However, in both cases the retrieved vectorsy(1), y(2) are equal toξ

Recurrent associative memory

• The capacity of the feedforward associative memory is relatively low, a fraction of the number of
neurons.

• When we encode many patterns often the retrieval results in a corrupted version of the fundamental
memory.

• However, if we use again the corrupted pattern as a key, the next retrieved pattern is usually closer to
the fundamental memory.

• This feature is exploited in the recurrent associative memory networks.
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10.2 Recurrent Associative Memory — Discrete Hopfield networks

10.2.1 Structure
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Figure 10–3:A dendritic and block diagram of a recurrent associative memory

• A recurrent network is built in such a way that the output signals are fed back to become the network
inputs at the next time step,k

• The working of the network is described by the following expressions:

y(k + 1) = σ (W · (x · δ(k) + y(k)) =

 σ (W · x) for k = 0

σ (W · y(k)) for k = 1, 2, . . .
(10.7)

• The functionδ(k) is called the Kronecker delta and is equal to one fork = 0, and zero otherwise. It
is a convenient way of describing the initial conditions, in this case, the initial values of the input
signals are equal tox(0).
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• A discrete Hopfield network is a model of an associative memory which works with binary patterns
coded with{−1, +1}
Note that ifv ∈ {0, 1} thenu = 2v − 1 ∈ {−1, +1}

• The feedback signalsy are often called the state signals.

• During thestorage (encoding) phasethe set ofN m-dimensional fundamental memories:

Ξ = [ξ(1), ξ(2), . . . , ξ(N)]

is stored in a matrixW in a way similar to the feedforward auto-associative memory networks,
namely:

W =
1

m

N∑
n=1

ξ(n) · ξ(n)T − N · Im =
1

m
Ξ · ΞT − N · Im (10.8)

By subtracting the appropriately scaled identity matrixIm the diagonal terms of the weight matrix are
made equal to zero,(wjj = 0). This is required for a stable behaviour of the Hopfield network.

• During theretrieval (decoding) phasethe key vectorx is imposed on the network as an initial state of
the network

y(0) = x

The network then evolves towards a stable state (also called a fixed point), such that,

y(k + 1) = y(k) = ys

It is expected that theys will be equal to the fundamental memoryξ closest to the keyx
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10.2.2 Example of the Hopfield network behaviour for m = 3

(based on Haykin,Neural Networks)
Consider a discrete Hopfield network with three neurons as in Figure 10–4
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Figure 10–4:Example of a discrete Hopfield network withm = 3 neurons: its structure and the weight matrix

• With m = 3 neurons, the network can be only in23 = 8 different states.

• It can be shown that out of 8 states only two states are stable, namely:(1, −1, 1) and(−1, 1, −1).

In other words the network stores two fundamental memories

• Starting the retrieval with any of the eight possible states, the successive states are as depicted in
Figure 10–5.
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Figure 10–5: Evolution of states for two stable states

Let us calculate the network state for all possible initial states

X =


y3

y2

y1

 =


−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1


(The following MATLAB command does the trick: X = 2* (dec2bin(0:7)-’0’)’-1 )

Y = σ(W · X) =
1

3


0 −2 +2

−2 0 −2

+2 −2 0

 ·


−1 −1 −1 −1 1 1 1 1

−1 −1 1 1 −1 −1 1 1

−1 1 −1 1 −1 1 −1 1



= σ


1

3


0 4 −4 0 0 4 −4 0

4 0 4 0 0 −4 0 −4

0 0 −4 −4 4 4 0 0



 =


1 1 −1 1 1 1 −1 1

1 1 1 1 1 −1 1 −1

1 1 −1 −1 1 1 1 1


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It is expected that after a number of relaxation steps

Y = W · Y

all patterns converge to one of two fundamental memories as in Figure 10–5.
We will test such examples in our practical work.

Retrieval of numerical patterns stored in a Recurrent Associative Memory (Hopfield network)

(from Haykin, pages 697, 698)

Figure 10–6: Retrieval of numerical patterns in by a Hopfield network
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Retrieval from a corrupted pattern (key) succeeds because it was within the basin of attraction of the
correct attractor, that is, a stored pattern, or fundamental memory.

Figure 10–7: Unsuccessful retrieval of a numerical pattern in by a Hopfield network

This time retrieval from a corrupted pattern does not succeed because it was within the basin of attraction
of an incorrect attractor, or stored pattern. This is not surprising.
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