
6 Learning and Self-Organization
Partly related to Lytton’s Chapter 9.

6.1 Introduction to learning

• In the previous sections we concentrated on the decoding part of a neural network assuming that the
weight matrix, W , is given, or has been designed as in the Limulus vision model.

• If the weight matrix is satisfactory, during the decoding process the network performs some useful task
it has been designed to do.

• In simple or specialised cases the weight matrix can be pre-computed, but more commonly it is
obtained through the learning process.

• Learning can be thought of as a way of
extracting information about the environment.

• The network (learning system) receives data or
signals X from the environments and after
processing stores them in the synaptic weight
parameters

d

Learning
System

W
ENVIRONMENT

X Y

• In addition the network can produce signals Y that might influence the environment and receive
additional signal reinforcing the process of learning.

• In general, learning is a dynamic process which modifies the weights of the network W in some
desirable way.

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• More specifically, a neural network with learning has the
following structure consisting of the decoding part and
learning (or encoding part:

• As any dynamic process learning can be described either in the
continuous-time or in the discrete-time framework.

DECODING

W

LEARNING
(ENCODING)

�

W

-x r

-

-
yr

�

� d

• In continuous-time we use the following differential equation:

Ẇ (t) = L(W (t),x(t),y(t),d(t)) (6.1)

• In discrete-time we use the equivalent difference equation:

W (n + 1) = L(W (n),x(n),y(n),d(n)) (6.2)

• d is an external teaching/supervising signal used in supervised learning.

• This signal in not present in networks employing the unsupervised learning paradigms.

• The discrete-time learning law is often used in a form of a weight update equation:

W (n + 1) = W (n) + ∆W (n) (6.3)
∆W (n) = L(W (n),x(n),y(n),d(n))

A.P. Papliński 6–2

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.2 Supervised and Unsupervised Learning

• Learning paradigms are typically classified into two big groups: supervised and unsupervised
learning.

• We will concentrate on unsupervised algorithm as they seem to me more relevant to brain functions.

• Supervised learning algorithms are typically applied in a situation when the data is organized as a
function d = f (x) and the network, typically a multilayer perceptron, approximates the unknown
functional relationship.

• In this case the training data is divided into input
signals, x(n), and target signals, d(n).

• Example of one-dimensional function approximation
can look as illustrated.

• In a more general case we can imagine that the data
we approximate is located at some hyper-surface
described by d = f (x)

0 1 2 3 4 5 6 7 8 9
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
d

, y

function approximation

A.P. Papliński 6–3

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

-
x(n)

W(n) ����

����

-
v(n)

-
y(n)s s

∆W(n) = η ε(n)x(n)-

�
�
�

�
��

?
−

�
d(n)

�
ε(n)

σ

• A typical supervised learning algorithm, known as
error-correcting learning is driven by error signals
ε(n) which are the differences between the actual
network output, y(n), and the desired (or target)
output d(n), for a given input:

ε(n) = d(n)− y(n)

• The weight update can be expressed in the following general form

∆w(n) = L(w(n),x(n), ε(n))

where L represents a learning algorithm.

• If we say that a neural network can describe a model of data, then a multilayer perceptron describes the
data in a form of a curve, or (hyper)surface which approximates a functional relationship between
x(n), and d(n).

A.P. Papliński 6–4

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

Self-organizing neural networks — Unsupervised Learning

• Self-organising neural networks employ unsupervised learning laws and discover characteristic
features in input data without using a target or desired output.

• Information about the characteristic features of input data is created during the learning process and
stored in the synaptic weights.

• Output signals describe relationship between the current input signals and the weight vectors.

• Two basic groups of unsupervised learning algorithms and related self-organizing neural networks,
namely:

– (Generalised) Hebbian Learning

– Competitive Learning

can be distinguished by the type of characteristic features that they “discover” from the input data,
namely, “shape” of data and constellation of clusters of points.

A.P. Papliński 6–5

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

Generalised Hebbian Learning

• Generalised Hebbian Learning extracts from data a set of principal directions along which data is
organised in a p-dimensional space.

• Each direction is represent by a relevant weight vector. The number of those principal directions is, at
most, equal to the dimensionality of the input space p.

• In an illustrative example presented in Figure 6–1 the two-dimensional data is organised along two
principal directions, w1 and w2.

6

-

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

���
����

���
���

���
���

���
���

���
��

��*
w1

A
AK

w2

x1

x2

Figure 6–1: A 2-D pattern with principal directions

A.P. Papliński 6–6

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

Competitive Learning

• Competitive Learning extracts from data a set of centers of data clusters.

• Each center point is stored as a weight
vector.

• Note that the number of clusters is
independent of dimensionality of the input
space.

• Example of two-dimensional data
organised in three clusters.
Cluster centres are represented by three
weight vectors.

-

6

��������������������1 w3

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�>
w2

�

w1

• An important extension of a basic competitive learning is known as feature maps.

A feature map is obtained by adding some form of topological organization to neurons.

A.P. Papliński 6–7

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.3 Hebbian learning

6.3.1 Introductory concepts

Donald Hebb, a Canadian psychologist, stated in 1949:

When an axon of cell A is near enough to excite a cell B and repeatedly takes part in firing it,
some growth process or metabolic changes take place in one or both cells such that A’s efficiency
as one of the cells firing B, is increased.

This fundamental statement is known as Hebb’s law. When Hebb made his statement it was a hypothesis.
It has since been verified in some parts of the brain so the term “law” is now legitimate.

To incorporate Hebb’s law in our computer simulations we must give it a mathematical formulation.

• Consider a simple network consisting of the two neurons A and
B and their connecting synapse.

• The neuron on the presynaptic side, A, has the efferent signal x

on its axon and the neuron on the postsynaptic side, B, has the
efferent signal y on its axon.

• The synapse is assumed to have the strength w.

y = w x
Bw

A axon

x synapse

Formalizing the Hebb’s law we say that learning is based on modification of synaptic weights depending
both on the afferent and efferent signals and possibly on the current values of weights.

A.P. Papliński 6–8

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

We typically start with an additive weight modification in the form:

y = w x
Bw

A axon

x synapse

w(n + 1) = w(n) + ∆w(n) (6.4)

where n denotes the processing step, w(n + 1), w(n) are two subsequent
values of the weight, and ∆w(n) is the weight change, or update.

This weight modification mechanism that takes place in the synapse is
symbolised by the dashed circle.

• The obvious first mathematical formulation of Hebb’s law is in the form of the product of afferent
and efferent signals as follows:

∆w = α x y where α is the “learning rate”. (6.5)

• When both x and y are large, i.e., both A and B are firing, w is increased.

When one or both of x and y are small, w is changed very little.

This may be seen as formalization of Long Term Potentiation (LTP).

• It is obvious that if A and B keep firing together in time during a lifetime, w would grow very large.

This could not be biologically sustained and it would not make any sense anyway.

• One contribution of computational neuroscience is that it showed that Hebb’s law is not sufficient for
stable learning.

We must introduce a mechanism for decreasing weight w, because “forgetting” is an integral part of
learning.

A.P. Papliński 6–9

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• There are several ways of doing this, one choice is discussed in pracs. Another way of introducing
forgetting is the following weight modification rule:

∆w = α1 x y − α2 y w (6.6)

where α1 and α2 are two learning rates. Such a learning law should produce the following results:

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Simple stable Hebbian learning

in
pu

t x
, w

ei
gh

t w
, o

ut
pu

t y

n [iteration#]

α1 = 1 , α2 = 0.75

w
mn

 = 0.55

x
mn

 = 0.40

y
mn

 = 0.22

• In the example the afferent signal, x(n) varies randomly
around value xmn = 0.4

• The initial value of the weight w(0) = 0.1.

• The mean value of the weight wmn oscillates around
the value xmn/α2 thus capturing the essential feature of
the afferent signal.

• The efferent signal is simply equal to
y(n) = w(n) · x(n)

• This introductory example demonstrates a principle of self-organization:

after the process of learning stabilizes, the synaptic weight has a value depending on the afferent
signal(s).

A.P. Papliński 6–10

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.3.2 Basic structure of Hebbian learning neural networks

The following block diagram illustrates a general concept of Hebbian learning:

-x r \
p

�
��

��

\
m

σ -r y = σ(Wx)

- �

Decoding part
Encoding part

W ��
��

Learning
Law

• The upper section of the network, called sometimes the decoding
part, is a single layer network specified by an m × p weight
matrix, W .

• As usual each row of the weight matrix is associated with one
neuron.

• The activation function σ keeps values of the signals between 0
and 1. For simplicity, we consider first a linear activation function.

• The learning law is implemented by the encoding part of the network and the block-diagram
illustrates that the modification of weights during learning is a function of afferent and efferent
signals.

In general we can write
wji(n + 1) = f (wji(n), yj(n), xi(n)) (6.7)

which means that the next value of the ji weight is a function of the current value of weight and
afferent and efferent signals.

A.P. Papliński 6–11

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

wji(n + 1) = f (wji(n), yj(n), xi(n))

• Note that two signals, yj and xi and weight wji are locally available at the ji synapse, therefore, we
often say that Hebbian learning law is an example of a local learning law.

• The concept of the local learning law is further illustrated in Figure 6–2.

w σ

σ

x i

y j

...

...

...
w

...

...

...
w

...

...

...
w

σ

...

...

...
w

...

...

...
w

...

...

...
w

w ji

...

...

...
w

...

...

...
w

...

...

...

Figure 6–2: A neural network with a local learning law

• Note that each synapse, represented by a dashed circle, receives locally available afferent and efferent
signals, say xi, yj, so that its weight wji can be modified according to a specified learning law.

• The local feedback provides the efferent signal, yj to all synapses along the neuron’s dendrite.

• This feedback is essential for a learning process to occur.

A.P. Papliński 6–12

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.3.3 Stable Hebbian learning. Oja’s rule

One of the important forms of a stable Hebbian learning law, know as Oja’s rule uses the augmented
afferent signals, x̃i and can be written in the following form:

∆wi = α · y · x̃i , where x̃i = xi − y · wi (6.8)

Hence the input signal is augmented by a product of the output signal and the synaptic weight.
The Oja’s rule is primarily formulated for a single neuron with p synapses and can be written in a
vectorised form in the following way:

∆w = α · y · x̃T = α · y · (xT − y ·w) , where x̃T = xT − y ·w , and y = w · x (6.9)

where
∆w = w(n + 1)−w(n) is an update of the weight vector,

w = [w1 . . . wp] is a p-component weight row vector,

x = [x1 . . . xp]
T is a p-component column vector of afferent signals

x̃ = [x̃1 . . . x̃p]
T is a p-component column vector of augmented afferent signals.

y is the efferent signal created as an inner product of weights and afferent signals.
The important property of the learning law as in eqn (6.9) is the fact that the length (Euclidian norm) of
the weight vector tends to unity, that is,

||w|| −→ 1 (6.10)

This important and useful condition means that Oja’s rule is a stable learning law.

A.P. Papliński 6–13

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

We will now demonstrate that the network implementing Oja’s rule is a principal direction detector.

Consider a neuron with two synapse that implements Oja,s learning law described in the following way:

σ
1

x2x1

w2

y

w

• for each time step n we have:

y(n) =
[

w1(n) w2(n)
] [

x1(n)

x2(n)

]
= w(n) · x(n)

and the weight update is calculated as:

∆w1(n) = α y(n) (x1(n)− y(n) w1(n))

∆w2(n) = α y(n) (x2(n)− y(n) w2(n))
or simply ∆w = α y (xT − y w)

Assume that we have a collection of N points x(n) which are
arranged into a p×N matrix X

X = [x(1) x(2) . . . x(N)]

where

x(n) =

[
x1(n)

x2(n)

]
Such a collection of points represented by afferent signals can
be thought of as a shape.

0 2 4 6 8
0

2

4

6

8
A simple 2−D shape

x
1

x 2

A.P. Papliński 6–14

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

Now we will try to analyze the behaviour of a neuron implementing Oja’s rule based learning when
presented with afferent signals representing the shape.

• We start with pre-processing of our data removing its mean:

X = X − mean(X)

• This operation moves the coordinate frame to the center of the shape so that we can evaluate the shape
itself independently of its position in space.

• Interestingly enough, removal of the mean can be performed using the familiar lateral inhibition with a
Mexican hat mask.

• To initialize the learning process we can start with a randomly selected weight vector w(0)

• Next we applied the efferent vectors x(n) one by one calculating the resulting output signal y(n), the
weight update ∆w(n) and the next weight vector w(n + 1)

• One pass through all input vectors is called an epoch.

• The learning procedure is repeated for a number of epochs until the convergence of the weight vector
is achieved.

• It can be shown that in Oja’s learning algorithm the convergence is achieved when the length of the
weight vector approaches unity.

• The speed of convergence depends on the learning rate α

A.P. Papliński 6–15

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

The results of the learning process, that is, self-organization are presented below:

−0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

w
1

w
2

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

learning steps, n
||w

||

Evolution of the weight vector and its magnitude

−4 −2 0 2 4
−4

−2

0

2

4
The principal direction of a 2−D shape

w
s

x
1

x 2

• The first two plots present the evolution of the weight vector and its length during learning process.

• Note that the length of the weight vector (send plot) is close to unity after approx. 20 learning steps

• Note also from the first figure that when the length is close to unity, the weight vector moves on a
segment of a unity circle.

• Note from the third plot that the weight vector bisects the shape in the direction where it is the most
spread, that is, where there is most variation of data. This is called the principal direction of the
shape.

• Hence, a neuron, which implements Hebbian learning according to the Oja’s rule, is a principal
direction detector.

A.P. Papliński 6–16

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• It is also possible to extend the Oja’s rule in such a way that the network is able to discover the next
principal direction, orthogonal to the main principal direction.

In summary:

• Hebbian learning considered in this section aims at organising the synaptic weights in such a way that
they approximate the shape of the data.

• The shape of data can be approximated by its principal direction (components),

the first gives the direction of the highest variability of data,

the second is orthogonal to the first direction and indicates the highest variability in that direction, and
so on.

• Mathematically the procedure is known as the principal component analysis.

A.P. Papliński 6–17

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.4 Competitive learning

The basic competitive neural network consists of
two layers of neurons:

• The similarity-measure layer,

• The competitive layer, also known as a
“Winner-Takes-All” (WTA) layer

The block-structure of the competitive neural
network

- D(x, W)

similarity-measure

- WTA

competitive layer

-o o o
x(n) d(n) y(n)

p m m

Learning
Law

Decoding part
Encoding part

@
@

@@I

-

r

�

r

• The similarity-measure layer contains an m× p weight matrix, W , each row associated with one
neuron.

• This layer generates signals d(n) which indicate the distances between the current input vector x(n)

and each synaptic vector wj(n).

• The competitive layer generates m binary signals yj. This signal is asserted “1” for the neuron j-th
winning the competition, which is the one for which the similarity signal dj attains minimum.

• In other words, yj = 1 indicates that the j-th weight vector, wj(n), is most similar to the current
input vector, x(n).

A.P. Papliński 6–18

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.4.1 The Similarity-Measure Layer

The similarity-measure layer calculate the similarity between each stimulus and every weight vector. Such
similarity can be measure in a number of possible ways.

• The most obvious way of measuring similarity or the distance between two vectors is the Euclidean
norm (length) of the difference vector, δ,

������������:

�
�

�
�

�
��

HH
HHH

HY δ = x−w

w

x

d = ||x−w|| = ||δ|| =
√

δ2
1 + . . . + δ2

p =
√

δT · δ

The problem is that such a measure of similarity is relatively complex to calculate.

• A simpler way of measuring the similarity between two vectors is just the square of the length of the
difference vector

d = ||x−w||2 = ||δ||2 =

p∑
j=1

δ2
j = δT · δ

The square root has been eliminated, hence calculations of the similarity measure have been simplified.

A.P. Papliński 6–19

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• The Manhattan distance, that is, the sum of absolute values of the coordinates of the difference vector

d =

p∑
j=1

|δj| = sum(abs(δ))

• The projection of x on w. This is the simplest measure of similarity that works particularly well for
the normalised vectors. The projection is calculated using the inner product of two vectors, namely
(assuming both are column vectors):

d =
wT

||w||
· x = ||x|| · cos α

-�
�

�
�

�
�

�
�

�
�

�
�

�3

B
B

B
B

B
B

B
B
BM

w

x δ

α�︸ ︷︷ ︸
d

For normalised vectors, when ||w|| = ||x|| = 1

we have
d = cos α ∈ [−1, +1]

and also

A.P. Papliński 6–20

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

if d = +1 then ||δ|| = 0 vectors are identical

if d = 0 then ||δ|| =
√

2 vectors are orthogonal

if d = −1 then ||δ|| = 2 vectors are opposite

• In general, the square of the norm of the difference vector can be calculated as

||δ||2 = (x−w)T (x−w) = xTx− 2xTw + wTw = ||x||2 + ||w||2 − 2wTx

• Hence, for normalised vectors, the projection as the similarity measure, d, can be expressed in terms
of the norm of the difference vector as follows

d = wTx = 1− 1

2
||δ||2

• Note that the greater the signal d is, the more similar is the weight vector, w to the input signal x.

• In summary we say that for the normalised vectors the similarity-measure performs the “typical”
operation of signal aggregation, that is:

d = W · x

A.P. Papliński 6–21

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

The structure of the similarity-measure layer is illustrated in Figure 6–3 in the form of a typical dendritic
diagram and related signal-flow block-diagram.

- D(x, W)
(similarity)

- WTA
MAXNET

-o o o
x d = W · x y

p m m

-

-

-

@

@

@

@

@

@

@

@

@

r
r
r

r
r
r

r
r
r

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
x1 xi xp

w1

wj

wm

...

...

d1

dj

dm

...

...
WTA

MAXNET

-

-

-
y1

yj

ym

...

...

Figure 6–3: The structure of the similarity-measure layer for normalised vectors

A.P. Papliński 6–22

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.4.2 The Competitive Layer

• The competitive layer, also known as the “Winner-Takes-All” (WTA) network, identifies the neuron
that have the weight vector most similar to the current input vector.

• For the winning neuron, say jth the competitive layer generates binary output signals, yj = 1

yj =

{
1 if dj is the largest of all dk

0 otherwise

that is, the jth weight vector wj: is the most similar to the current afferent vector x.

• The competitive layer is, in itself, a recurrent neural network with the predetermined and fixed
feedback connection matrix, M .

• The matrix M has the following structure:

M =

1

. . . −α

−α . . .
1

where α < 1 is a small positive constant.

• For example, for α = 0.1

M =

1 −0.1 −0.1 −0.1

−0.1 1 −0.1 −0.1

−0.1 −0.1 1 −0.1

−0.1 −0.1 −0.1 1

• Such a matrix M describes a network with a local unity feedback, and a feedback to other neurons

with the connection strength −α.

A.P. Papliński 6–23

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• The structure of the competitive layer (dendritic and the signal-flow views):

Dendritic view:

��
����
����
����

d1

dm

d j

rj

rm

������ ������

ms (n+1)

D

D

D
ms (n)

s (n)j

1s (n)

r1 rj rm

s (n+1)j

��������

���� ����

��������

����
����
����

��
��
��

��
��
��

����
����
����

��
��
��

��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

r−bus

1

1

−α

−α

−α

−α

1

−α

y

−α
1

yj

ym

r11s (n+1)

��
��
��

��
��
��

��
��

• In the dendritic view note that each signal rj is fed back
(through the “r-bus”) and connected to an excitatory
synapse belonging to the same neuron, and laterally to all
inhibitive synapses from other neurons.

Signal-flow view:

−α

���� ��������	�	

����������
������

−α −α

−α

1

1

1

−α

−α

d

d

d

r

r

r

11

j j

m m y

y1

yj

m

��

• In the signal-flow view we can
equivalently observe
the unity self-excitatory connections,
and
the lateral inhibitory connections.

• Signals sj(n + 1) are delayed by one unit and form respective sj(n) signals.

• Signals rj are formed from sj by removing their negative part before they are fed back to synapses.

• Finally signals rj are converted into binary signals yj.

A.P. Papliński 6–24

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

Mathematically, we can evaluate the signals in the following way:

s(0) = d

r(n) = max(0, s(n))

s(n + 1) = M · r(n) or sj(n + 1) = rj(n)− α
∑
k 6=j

rk , for n > 0 and j = 1, . . . ,m

At each step n,

• signals sj(n + 1) consist of the self-excitatory contribution, rj(n), and

• a total lateral inhibitory contribution equal to: α
∑
k 6=j

rk.

After a certain number of iterations all rk signals but the one associated with the largest input signal, dj,
are zeros. For example

n = 6 , kwin = 3
rHist =

7.3 0.3200 0 0 0 0
4.2 0 0 0 0 0
9.6 3.0800 2.6400 2.4000 2.2656 2.2272
0.7 0 0 0 0 0
5.5 0 0 0 0 0
2.9 0 0 0 0 0
8.6 1.8800 1.2000 0.6720 0.1920 0
3.4 0 0 0 0 0

A.P. Papliński 6–25

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.4.3 Simple Competitive Learning

• The block-diagram of competitive learning re-visited:

• The learning (or encoding) part is responsible for
self-organization of data.

• The weight update is a function of input and output
signals.

p

W

Similarity

W
WTA

Learning

x d y
m m

∆

• Hebbian learning considered in sec. 6.3 has organised the synaptic weights in such a way that they
approximate the shape of the data by their principal directions (components).

• The competitive learning aims at approximation of
data organised in clusters.

• If we assume that the input data is organised in, pos-
sibly overlapping, clusters, then each synaptic vector,
wj, should converge to a centroid of a cluster of the
input data

• Example of approximation of three 2-D clusters of
data with weights:

• In other words, the input vectors are categorized into
m classes (clusters), each weight vector representing
the center of a cluster.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x
1

x 2

w
1

w
2

w
3

A.P. Papliński 6–26

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

• A simple competitive learning works in such a way that for each afferent signals (stimulus) presented
to the network, its weight are pulled towards this stimulus.

• This should result in weight vectors being eventually located close to the centres of data (stimuli)
clusters.

More formally, simple competitive learning can be describe as follow:

• Weight vectors are usually initialise with m randomly selected input vectors (stimuli):

wj(0) = xT (rand(j))

• For each input vector, x(n), determine the winning neuron, j for which its weight vector, wj(n), is
closest to the input vector. For this neuron, yj(n) = 1.

• Adjust the weight vector of the winning neuron, wj(n), in
the direction of the input vector, x(n);
do not modify weight vectors of the loosing neurons:

∆wj(n) = η(n)yj(n)(xT (n)−wj(n)) ������������:

�
�

�
�

�
�

�
�

�3

�

@
@

@I
@

@
@Ix

w j(
n +

1)

wj(n
)

η(xT −wj(n))

• In order to arrive at a stable solution, the learning rate is gradually linearly reduced, for example

η(n) = 0.1(1− n

N
)

A.P. Papliński 6–27

Intro. Comp. NeuroSci. — Ch. 6 August 29, 2005

6.4.4 Example of simple competitive learning

• Consider 2-D data organized in m = 5 clusters.

• We need m = 5 neurons each with p = 2 synapses.

• Number of synapses p matches the dimensionality of afferent signals (stimuli)

• The weight matrix W is 5× 2, that is, it stores m = 5 2-D vectors, one per neuron.

• Each cluster has been generated as a Gaussian “blob” of
20 points.

• The stimuli (or data points) are marked with green dots.
Centres of clusters are marked with read circles ‘◦’,
Initial weights are marked with the blue triangles ‘4’
Final weights are marked with stars ‘*’

• Note that after one training epoch, the weights are
relatively close to the centroids of the clusters.

• This is an indication that synaptical weights approximate
the input data in a satisfactory way.

−2 0 2 4 6 8
−1

0

1

2

3

4

5

6

7
Simple Competitive Learning n = 100

x
1

x 2

A.P. Papliński 6–28

