
Curvature-Driven Min/Max Flow and Anisotropic
Diffusion in Image Enhancement

Andrew P. Papliński∗
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Abstract

We compare application of two partial differential equation methods in image enhance-
ment. The first method is based on the curvature-driven min/max flow and originates from the
level set methods. The second method is an anisotropy diffusion flow. The curvature-driven
method seems to enhance better the significant edges in the image, whereas the anisotropic
diffusion seems to work better with smoothing intra-regional image features.

1 Introduction
In this work we compare two non-linear methods of image enhancement based on application of
partial differential equations, namely, the curvature-driven min/max flow [1, 2] and an anisotropy
diffusion method [3]. Comprehensive bibliography on variational methods can be found in [?] and
[2]. By image enhancement we understand processing of an image in such a way to maintain or
possibly enhance sharp edges of an image and to remove small intra-regional features considered
to be noise, that is, to smooth intensity inside image regions. This work originated from our work
presented in [4, 5] on application of partial differential equations in interpretation of the Posterior
Capsular Opacification images [9, 10, ?].

2 Curvature-Driven Min/Max Flow
The curvature-driven evolution of an image u(x, t) is described by the following partial differential
equation [2]:

∂u(x, t)

∂t
= F (κ(x, t))|∇u(x, t)| , κ = div(

∇u

|∇u|
) (1)

where u(x, t) is an evolving image intensity, ∇u is its gradient, and F (κ) is an appropriately
selected “speed” function of the image curvature, κ.

Early examples of the speed functions are considered, among others, in [11] where F = κ,
and in [12] where F = κ1/3. In each of this schemes, all image information would be eventually
filtered out if iterations are performed continuously. This is the result of the Grayson’s theorem
[13, 14] which says that each contour shrinks to zero and disappears.
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An elegant way to address this problem is a min/max flow method introduced in [1, 2]. Under
the min/max principle the speed function, F (κ), is of the following form

F (κ(x)) =

{
max(κ, 0) if aveρ(u(x)) < ave⊥(u(x))
min(κ, 0) otherwise (2)

where aveρ(u(x)) is an average intensity in the neighborhood of a pixel x of a radius ρ, and
ave⊥(u(x)) is an average intensity on the direction perpendicular to the gradient, that is, tangent
to the iso-intensity contour line. It can be observed [1, 2] that flow under F = max(κ, 0) (positive-
only curvature) smoothes away all image details, whereas, flow driven by F = min(κ, 0) (negative-
only curvature) preserves the strong edges of the image.

The average intensity in the neighborhood of a pixel x of a radius ρ, ave⊥(u(x)) , is calculated
as a convolution of the evolving image, u(x), with a ρ × ρ Gaussian mask of the variance σ2 =
0.5ρ2. Increasing the radius, ρ, the amount of smoothing is in general increased.

In order to calculate the average intensity along the line tangent to the iso-intensity contour we
first note that such a tangent line can, in general, go in between the image pixels. Therefore, in the
average we include intensities at the pixels located at a strip of a given width around the tangent
line. The intensities are weighted with the distance from the tangent line, which can be calculated
as the projection of the location vector, x, on the gradient, ∇u. The average is taken only on the
segment of the tangent line inside the disk of the radius ρ.

The min/max flow as described by eqns (1), (2) is applied to a test image which is a 120×130-
pixel section of the alumgrns (aluminum grains) image distorted with a 10% uniform noise. The
original noisy image and an image after 40 iterations are shown in Figure 1.
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Figure 1: The original noisy image (a), the image after 40 iterations using the min/max flow (b)
and the anisotropic diffusion (c).

From Figure 1 b it can be noticed that the borders between areas of unified intensity have been
enhanced, and the noise from inside the image regions has been filtered out. The enhancement
of the region borders occurs through their thinning and averaging their curvatures. The degree of
smoothing is controlled by the radius of the averaging disk, ρ.
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Figure 2: Left: The profile of the line 78. Right: The mean update per pixel during iterations

Some additional features of the max/min curvature flow can be observed from Figure 2 where a
cross-section of the image intensity along the specified line has been shown. Note that the large
gradient has been increased by increasing the slope of the line. This is equivalent to the thinning an
image region. Small variations of the gradient have been non-linearly averaged. It is also important
to note from the right plot in Figure 2 that the mean update per pixel is being exponentially reduced
which demonstrates the convergence of the algorithm.

3 Anisotropic diffusion method
An anisotropic diffusion equation is similar to the previously considered curvature-based equation
in that that it is also comprised of only first and second spatial derivatives, and that it is also a
nonlinear partial differential equation. A standard form of an anisotropic diffusion equation is as
follow:

∂u(x, t)

∂t
= div(L(x, t)∇u(x, t)) (3)

where L(x, t) is a 2×2 diffusion matrix controlling anisotropy. In a special case when the
anisotropy matrix is identity, eqn (3) describes isotropic diffusion which in terms of the image
processing smoothes all image features away. The anisotropic diffusion equation describes image
changes which are proportional to the sum of spatial derivatives of the diffusion vector, v = L ·∇u.
In particular, when the diffusion vector becomes zero, the image intensity reaches its steady state
and the image pixel remains unchanged. Note that the diffusion vector, v, becomes zero when
either the gradient is zero, or the diffusion matrix is the orthogonal projection of the gradient.

Following [3] we exploit two basic ideas which are important from the point of view of ob-
taining image enhancement behaviour of the algorithm based on eqn (3). The first idea is that the
anisotropy vector should steadily reach the value of zero, and the second one is that such a state
should be obtained either by the diffusion matrix being the orthogonal projection of the image
gradient which gives v = L · ∇u = 0, or by the image gradient approaching zero. This can be
achieved by means of the following relaxation equation for the anisotropy matrix:

∂L(x, t)

∂t
+

1

τ
L(x, t) =

1

τ
F (∇u(x, t)) (4)
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where F (∇u(x, t)) is a 2×2 anisotropy “force” matrix, and τ is a time constant which determines
the speed of relaxation of the diffusion matrix. Eqn (4) describes evolution of the diffusion matrix
from its initial value, say L = I to the one which is enforced by the F matrix. The specific form of
the force matrix, F , will be selected based on the value of of the magnitude of the image gradient.
If the image gradient exceeds a threshold parameter, s, then the matrix F will be the orthogonal
projection of the gradient, otherwise its form will ensure isotropic diffusion, which smoothes the
image in the areas where the gradient falls below the threshold parameter. Details are presented in
[?]

The set of equations (3), (4) gives a stable solution to the anisotropic diffusion equation which
ensures maintaining strong edges in the image and flattening image features which are considered
to be irrelevant. For a rigorous mathematical treatment the reader is referred to [3].

The results of processing the test image are presented in Figure 1 c. From Figure 1 c it can
be observed that the borders between image regions considered to be significant with respect to
the stiffness threshold, s, have been maintained, whereas, the intra-regional features have been
strongly filtered out. This results in a segmentation-like processing of an image. Some additional
aspects of the anisotropic diffusion iterations have been presented in Figure 3.
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Figure 3: Left: The profile of the line 78. Right: The mean update per pixel during iterations

From Figure 3 it can be noticed that for the selected parameters β and τ low-pass filtering is very
prominent. The convergence of the algorithm characterised by the mean update per pixel is similar
to that of the curvature driven min/max flow.

Comparing the curvature driven min/max flow and the anisotropic diffusion we can note that
the first method actively enhances the inter-regional borders by modifying the curvature of the
border curves. The second method appears to be better in filtering out the intra-regional features.
Both algorithms maintain the average values of the image intensity, which is a very convenient
feature, and converge to a steady-state.

Concluding remarks
The method which combines the curvature-driven min/max flow and anisotropic diffusion takes ad-
vantage of the best aspects of two constituent methods. In particular, the curvature-driven method
seems to enhance better the significant edges in the image, whereas the anisotropic diffusion seems
to work better with smoothing intra-regional image features.
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