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Abstract

We present application of curvature-driven min/max
flow and anisotropic diffusion in processing posterior
capsular (PCO) images. PCO images present the back
surface of the lens implanted during cataract surgery
and are used to monitor the state of patient vision. Our
standard segmentation technique which based on vari-
ance based co-occurrence matrices often requires an en-
hancement of variance images prior to segmentation. A
number of enhancement methods are based on partial
differential equations, and we present two such meth-
ods. We demonstrate that the curvature-driven flow
seems to enhance better the significant edges in the im-
age, whereas the anisotropic diffusion seems to work
better with smoothing intra-regional image features.

1 Introduction

In this paper we present our recent work on interpreta-
tion of the Posterior Capsular Opacification (PCO) im-
ages.

The PCO images present the back surface of the
lens implanted during cataract operation and are used
to monitor the post-cataractal state of patient’s vision,
which may be affected by the growth of epithelial cells
inside the posterior capsule [1, 2, 3]. Interpretation of
the PCO images is based on their segmentation into ar-
eas of low and high texture. The low-texture areas rep-
resent the transparent part of the eye posterior capsule
behind the implanted lens, whereas the high-texture ar-
eas are equivalent to the opaque part of the capsule. Our
standard method of segmentation of the PCO images
presented in papers[4, 5, 6, 7, 3] is based on the applica-
tion of a directional variance operator and co-occurrence
arrays. The method works very efficiently in the ma-
jority of cases, but there are a non-negligible number
of cases where the segmentation error is unacceptably
high.

In this work we compare two non-linear methods
of image enhancement based on application of par-
tial differential equations, namely, the curvature-driven
min/max flow [8, 9] and an anisotropy diffusion method
[10]. Comprehensive bibliography on variational meth-

ods can be found in [11] and [9]. By image enhance-
ment we understand processing of an image in such a
way to maintain or possibly enhance sharp edges of an
image and to remove small intra-regional features con-
sidered to be noise, that is, to smooth intensity inside
image regions. This work is related to our previous work
presented in [12, 13, 14] on application of partial differ-
ential equations in interpretation of the PCO images.

2 Curvature-Driven Min/Max Flow

The curvature-driven evolution of an imageu(x, t) is
described by the following partial differential equation
[9]:

∂u(x, t)
∂t

= F (κ(x, t))|∇u(x, t)| , κ = div(
∇u

|∇u|
)

(1)
whereu(x, t) is an evolving image intensity,∇u is its
gradient, andF (κ) is an appropriately selected “speed”
function of the image curvature,κ.

Early examples of the speed functions are considered,
among others, in [15] whereF = κ, and in [16] where
F = κ1/3. In each of this schemes, all image informa-
tion would be eventually filtered out if iterations are per-
formed continuously. This is the result of the Grayson’s
theorem [17, 18] which says that each contour shrinks
to zero and disappears.

An elegant way to address this problem is a min/max
flow method introduced in [8, 9]. Under the min/max
principle the speed function,F (κ), is of the following
form

F (κ(x)) =
{

max(κ, 0) if aveρ(u(x)) < ave⊥(u(x))
min(κ, 0) otherwise

(2)
where aveρ(u(x)) is an average intensity in the neigh-
borhood of a pixelx of a radiusρ, and ave⊥(u(x)) is
an average intensity on the direction perpendicular to the
gradient, that is, tangent to the iso-intensity contour line.
It can be observed [8, 9] that flow underF = max(κ, 0)
(positive-only curvature) smoothes away all image de-
tails, whereas, flow driven byF = min(κ, 0) (negative-
only curvature) preserves the strong edges of the image.

The average intensity in the neighborhood of a pixelx
of a radiusρ, ave⊥(u(x)) , is calculated as a convolution



of the evolving image,u(x), with aρ×ρ Gaussian mask
of the varianceσ2 = 0.5ρ2. Increasing the radius,ρ, the
amount of smoothing is in general increased.

In order to calculate the average intensity along the
line tangent to the iso-intensity contour we first note that
such a tangent line can, in general, go in between the
image pixels. Therefore, in the average we include in-
tensities at the pixels located at a strip of a given width
around the tangent line. The intensities are weighted
with the distance from the tangent line, which can be
calculated as the projection of the location vector,x, on
the gradient,∇u. The average is taken only on the seg-
ment of the tangent line inside the disk of the radiusρ.

The min/max flow as described by eqns (1), (2) is ap-
plied to a PCO image. The original image and an image
after 40 iterations are shown in Figure 1.
From Figure 1 b it can be noticed that the borders be-
tween areas of unified intensity have been enhanced,
and the noise from inside the image regions has been
filtered out. The enhancement of the region borders oc-
curs through their thinning and averaging their curva-
tures. The degree of smoothing is controlled by the ra-
dius of the averaging disk,ρ.

Figure 2: top: The profile of the line 80. botom: The
mean update per pixel during iterations

Some additional features of the max/min curvature flow
can be observed from Figure 2 where a cross-section
of the image intensity along the specified line has been

shown. Note that the large gradient has been increased
by increasing the slope of the line. This is equivalent
to the thinning an image region. Small variations of the
gradient have been non-linearly averaged. It is also im-
portant to note from the right plot in Figure 2 that the
mean update per pixel is being exponentially reduced
which demonstrates the convergence of the algorithm.

3 Anisotropic diffusion method

An anisotropic diffusion equation is similar to the previ-
ously considered curvature-based equation in that that it
is also comprised of only first and second spatial deriva-
tives, and that it is also a nonlinear partial differential
equation. A standard form of an anisotropic diffusion
equation is as follow:

∂u(x, t)
∂t

= div(L(x, t)∇u(x, t)) (3)

where L(x, t) is a 2×2 diffusion matrix controlling
anisotropy. In a special case when the anisotropy matrix
is identity, eqn (3) describes isotropic diffusion which in
terms of the image processing smoothes all image fea-
tures away. The anisotropic diffusion equation describes
image changes which are proportional to the sum of spa-
tial derivatives of the diffusion vector,v = L · ∇u. In
particular, when the diffusion vector becomes zero, the
image intensity reaches its steady state and the image
pixel remains unchanged. Note that the diffusion vec-
tor, v, becomes zero when either the gradient is zero, or
the diffusion matrix is the orthogonal projection of the
gradient.

Following [10] we exploit two basic ideas which are
important from the point of view of obtaining image
enhancement behaviour of the algorithm based on eqn
(3). The first idea is that the anisotropy vector should
steadily reach the value of zero, and the second one is
that such a state should be obtained either by the diffu-
sion matrix being the orthogonal projection of the im-
age gradient which givesv = L · ∇u = 0, or by the
image gradient approaching zero. This can be achieved
by means of the following relaxation equation for the
anisotropy matrix:

∂L(x, t)
∂t

+
1
τ

L(x, t) =
1
τ

F (∇u(x, t)) (4)

whereF (∇u(x, t)) is a 2×2 anisotropy “force” matrix,
and τ is a time constant which determines the speed
of relaxation of the diffusion matrix. Eqn (4) describes
evolution of the diffusion matrix from its initial value,
sayL = I to the one which is enforced by theF ma-
trix. The specific form of the force matrix,F , will be
selected based on the value of of the magnitude of the
image gradient. If the image gradient exceeds a thresh-
old parameter,s, then the matrixF will be the orthog-
onal projection of the gradient, otherwise its form will



a b c

Figure 1: The original noisy image (a), the image after 40 iterations using the min/max flow (b) and the anisotropic
diffusion (c).

ensure isotropic diffusion, which smoothes the image in
the areas where the gradient falls below the threshold
parameter. Details are presented in [19]

The set of equations (3), (4) gives a stable solution to
the anisotropic diffusion equation which ensures main-
taining strong edges in the image and flattening image
features which are considered to be irrelevant. For a rig-
orous mathematical treatment the reader is referred to
[10].

The results of processing the test image are presented
in Figure 1 c. From Figure 1 c it can be observed
that the borders between image regions considered to
be significant with respect to the stiffness threshold,s,
have been maintained, whereas, the intra-regional fea-
tures have been strongly filtered out. This results in a
segmentation-like processing of an image. Some addi-
tional aspects of the anisotropic diffusion iterations have
been presented in Figure 3.
From Figure 3 it can be noticed that for the selected pa-
rametersβ andτ low-pass filtering is very prominent.
The convergence of the algorithm characterised by the
mean update per pixel is similar to that of the curvature
driven min/max flow.

Comparing the curvature driven min/max flow and
the anisotropic diffusion we can note that the first
method actively enhances the inter-regional borders by
modifying the curvature of the border curves. The sec-
ond method appears to be better in filtering out the intra-
regional features. Both algorithms maintain the average
values of the image intensity, which is a very convenient
feature, and converge to a steady-state.

Concluding remarks

Two variational methods, namely, a curvature-driven
min/max flow and anisotropic diffusion can be used
to enhance posterior capsular opacification images. In
the qualitative sense it seems that the curvature-driven

Figure 3: top: The profile of the line 80. bottom: The
mean update per pixel during iterations

method seems to enhance better the significant edges
in the image, whereas the anisotropic diffusion seems
to work better with smoothing intra-regional image fea-
tures.
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