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ABSTRACT

Autism is a developmental disorder in which attention shift
impairment and strong familiarity preference are considered
to be prime deficiencies. We model these two characteristics
of autistic behaviour using Self-Organizing Maps (SOFM).

1. INTRODUCTION

Autism is a developmental disorder first described by Kan-
ner [1], and Asperger [2]. Presently diagnostic criteria ac-
cording to DSM-IV [3] are grouped into three main cate-
gories, namely, impairments in social interaction, impair-
ments in verbal and nonverbal communication, and restricted
repertoire of activities and interests. The diagnostic criteria
are behavior-based, but a number of biological abnormali-
ties have been connected with autism. For an introduction,
see Gillberg and Coleman [4].

There is a general agreement that attentional impair-
ment is commonly seen in autism. This impairment in-
cludes joint attention and attention shifts. However there
are different opinions whether attentional impairment is a
primary cause for other autistic characteristics or is itself
secondary to some other autistic characteristic.

Theories on causes of autism, based on properties of ar-
tificial neural networks, have been presented by Cohen [5]
and Gustafsson [6]. The purpose of this paper is to examine
how the attention shift impairment and familiarity prefer-
ence influence the self-organization of an artificial neural
network and to discuss the characteristics of the resulting
maps. It will be shown that some, but not all, of these
maps exhibit characteristics which may be argued to rep-
resent autistic behaviour. A comparison will be made with
maps organized when novelty seeking is present.

2. NEURAL NETWORKS USED IN MODELLING

We use Kohonen self-organizing maps [7, 8] to model the
attention shift impairment and familiarity preference. For
convenience we repeat main points important from the point
of view of our presentation.
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Self-Organizing Maps (SOMs) are competitive neural
networks in which neurons are organized in anl-dimensional
lattice (grid) representing thefeature space. Such neural
networks perform mapping of ap-dimensionalinput space
into thel-dimensional feature space. With respect to the vi-
sualisation aspect the dimensionality of the feature space is
often restricted tol = 1, 2 or 3.

In Figure 1 we present an example of a self-organizing
map consisting ofm = 12 neurons in which theinput
spaceis 3-dimensional(p = 3) and thefeature spaceis
2-dimensional(l = 2). The first section of the network is a
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Figure 1: A 2-D SOFM withp = 3; m = [3 4]; l = 2.

distance-measure layer consisting ofm = 12 dendrites each
containingp = 3 synapses excited by 3-D input signal vec-
torsx = [x1 x2 x3] and characterised by the weight vector
wi = [wi1 wi2 wi3]. The distance-measure layer calcu-
lates the distancesdi between each input vectorx and every
weight vectorwi. This distance information,(d1, . . . , dm)
is passed to the competition layer, the MinNet in Figure 1,
which calculates the minimal distancedk = min di in or-
der to establish the position of the winning neuronk. The
competition is implemented through the lateral inhibitive
and local self-excitatory connections between neurons in the
competitive layer. In addition, every neuron is located at
l = 2-dimensional lattice and its position is specified by an
l-dimensional vectorvi = [vi1 vi2].

The synaptic weight vectors,wi, and the vectors of topo-
logical positions of neurons,vi, are grouped into the weight



and position matrices,W,V , respectively.

2.1. Feature Maps

A typical Feature Map is a plot of synapticweights in
the input spacein which weights of the neighbouring neu-
rons are joined by lines and illustrates the mapping from
p-dimensional input space tol-dimensional feature space.
An example of such a map withp = 2 inputs andm = 12
neurons organized on a3 × 4 lattice, together with respec-
tive weightW and positionV matrices is given in Figure 2.

k W V

1 0.83 0.91 1 1
2 0.72 2.01 2 1
3 0.18 2.39 3 1
4 2.37 0.06 1 2
5 1.38 2.18 2 2
6 1.41 2.82 3 2
7 2.38 1.27 1 3
8 2.06 1.77 2 3
9 2.51 2.61 3 3

10 3.36 0.85 1 4
11 3.92 2.05 2 4
12 3.16 2.90 3 4 0 1 2 3 4
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Figure 2: Example of the weight and position matrices and
the the resulting feature map forp, l = 2

In our modelling we will be using similar SOMs with
p, l = 2 and neurons organised in either a2 × 2, or 3 × 3
mesh.

2.2. Map Formation Algorithm

The learning algorithm consists of two essential aspects of
the map formation, namely,competition andcooperation
between neurons of the output lattice. During competition
each input vectorx(n) is compared with each weight vector
from the weight matrixW and the positionV (k(n), :) of the
winning neuronk(n) is established. For the winning neuron
the distance

dk = |xT (n) − W (k(n), :)|

attains a minimum (notation as in MATLAB [9] used as a
computational tool; ’:’ denotes a complete row of a ma-
trix). During the cooperation phase all neurons located in
a topological neighbourhood of the winning neuronsk(n)
will have their weights updated usually with a strengthΛ(j)
related to their distanceρ(j) from the winning neuron,

ρ(j) = |V (j, :) − V (k(n), :)| for j = 1, . . . ,m.

The weight matrixW is then modified by

∆W = η(n) · Λ(n) · (xT (n) − W (j, :))

where theneighbourhood function, Λ(j), is anl-dimensional
Gausssian function:

Λ(j) = exp(−ρ2(j)
2σ2

)

σ2 is the variance parameter specifying the spread of the
Gaussian function, andη is the learning gain parameter Dur-
ing the ordering phase, the variance is reduced until the
neighbourhood includes only one neuron. During the con-
vergence phase the learning process is being, “cool down”
by reducing the learning gain.

3. MODELLING AUTISTIC BEHAVIOUR

In order to model autistic behaviour we arrange the two-
dimensional training data, or stimuli, intotwo sources, A
andB. Each source containsthree classesof stimuli spec-
ified by a centroid of the class. There are ten exemplars in
each class for each source randomly distributed around the
centroids.

The sources can be thought of as producing two dialects
of a very limited protolanguage, each with three protophonemes.
Real sensory stimuli, like phonemes of speech, are of course
larger in number and dimension. However, the explanations
given for the results obtained do not rely on the dimension-
ality or the number of classes of the sources. Simulations
with sources that provide few classes of low dimensionality
have been presented because a complete visualization of the
results can easily be achieved.

As a result of training a map similar to that of Figure 2
will be formed. In a “good”, or well developed map, the
map nodes representing the weight vectors should coincides
with the mean values of each class irrespective of the source.
For our data we have three such values, therefore, a canon-
ical (smallest possible) map can have only2 × 2 neurons
(nodes).

Initial values of weight vectors are located randomly
around the total mean of the training data, and during learn-
ing the weight vectors will be pulled up towards the class
means.

The map “goodness” indexwill be formed from the
sum of distances between the class means and weights lo-
cated in the proximity of the means. This sum of distances
will be the largest for the initial value of weights and will
be reduced during training. The “goodness index” has been
normalized so that a value of 1 represents a map with nodes
located at the centres of all data subclasses.

Another important parameter is thenumber of atten-
tion shifts measured as a fraction of total stimuli used dur-
ing learning.

In thenovelty seeking mode of learning (mode 1)at-
tention is shifted to the alternate source if the next stimulus
originates from that source. This is regarded as normal, or



non-autistic mode of learning. An example of maps gener-
ated in Mode 1 is given in Figure 3. In this mode the atten-
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Figure 3: An example of a canonical (2 × 2) and a3 × 3
map in a novelty seeking learning mode.

tion shift fraction is equal to 0.5 which indicates that stimuli
originate from alternate sources. The map goodness index
for a 3 × 3 map approaches unity which indicates nearly
perfectly spread maps in which the node weights assume
values which are the mean values of each class. For a2× 2
map the index is as good as it can get, with nodes adapting
to means of the subclasses from both sources combined.

In mode 2we test theattention shift impairment . In
this case attention is shifted to the alternate source with a
low probability, in the simulations chosen as 0.01, if that
source presents the next new stimulus. The maps resulting
from simulation in this mode are presented in Figure 4. It
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Figure 4: An example of a canonical (2 × 2) and a3 × 3
map in an attention shift impairment learning mode.

might at first seem surprising that the resulting maps from
learning with attention shift impairment are the same as
those resulting from learning with novelty seeking but the
explanation is straightforward — if the nodes were more
adapted to the mean values of the subclasses of one of the

sources then learning from exemplars of the other source
would result in greater node weight adjustments, pulling
the node towards the mean value of the subclasses of both
sources. It should be noticed that the number of attention
shifts in learning with attention shift impairment is very low
(reduced by the probability of attention shift). This factor
do not prevent the successful self-organization of the neural
network. This is because there is no bias in favor of one
of the sources in this mode of learning. Therefor, the map
goodness index is similar as in mode 1 (Figure 3).

In mode 3, we modelfamiliarity preference . In this
mode attention is shifted to the alternate source if that source
presents the next new stimulus when both sources are unfa-
miliar to the map, i.e., in the first phase of the self-organization,
and then after familiarity to at least one of the sources has
been reached with lower probability to the source which
is the least familiar to the map. Familiarity of a source to
the map is a weighted average of the distances between the
weight vectors of the nodes most resembling the the stimuli
from that source in the past. Maps resulting from simula-
tion in this mode are presented in Figure 5. Note that the
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Figure 5: An example of a canonical (2 × 2) and a3 × 3
map in a familiarity preference learning mode.

maps developed in the familiarity preference learning mode
tend to give preference to one source. Number of attention
shifts however small is higher that in the attention shift im-
pairment mode (Figure 4). The map goodness indexes are
smaller indicating the preference of the maps to only one
source.

In the next set of simulations one data source is reduced
to provide only two classes of stimuli, one of the classes
having twenty exemplars. The resulting maps for mode 2
(attention shift impairment) and mode 3 (familiarity pref-
erence) are presented in Figure 6. As before, the resulting
maps from learning in mode 1 and 2 are somewhat similar
and adequately cover all classes of the stimuli as in Fig-
ures 3 and 4. The resulting map from learning in mode 3
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Figure 6: Self Organized maps for a reduced number of
classes in one data source.

shows that the source with a reduced set of stimuli domi-
nates the development of learning, leaving one subclass of
stimuli from the full source without any detector node.

Again there is a straightforward explanation for this re-
sult — the exemplars from the reduced set source show less
diversity than the exemplars from the full set source and
learning from the exemplars of the reduced set source will
therefore cause a faster adaptation of the node weights and
thus exemplars from the full set source will subsequently be
ignored.

Further details of simulation in mode 3 can be found in
[10].

4. CONCLUSION

Our results show that familiarity preference results in inad-
equate maps with characteristic deficits such that they lend
support to the theory that familiarity preference or novelty
avoidance may be primary in causing other autistic charac-
teristics. The stimuli of one source will be learned precisely,
at the expense of the other. If one source has a reduced set
of stimuli it will dominate the resulting map.

If the SOM is canonical this domination will preclude
the learning of the source with a full set of stimuli. It may
be argued that development of cortical maps of this kind
in a child will be inducive of the development of narrow
interests, commonly present in autism.

If the SOM has an excess of nodes the result will vary
greatly between simulations, even though all initial values
are the same for all simulations — in some cases only stim-
uli from the reduced set source are learned and in others the
stimuli from the full set source will also be learned well.

There are many cortical maps and if some of them de-
velop to respond only to a reduced set source and others
achieve a normal development this offers a reasonable ex-
planation to the uneven capacities often found in individuals
with autism (Kanner’s “islets of ability”; for a discussion,

see e.g. Frith [11]).
Our results do not lend support to the hypothesis that at-

tention shift impairments by themselves may be primary in
causing other autistic characteristics since self-organization
with attention shift impairments have, in our simulations,
always resulted in normal maps.

Learning with attention shift impairments in conjunc-
tion with familiarity preference, however, will very much
reduce the probability for a normal map resulting from self-
organization. Thus attention shift impairment may be im-
portant, albeit not independently so, in causing autism.
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