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Abstract. Autism is a developmental disorder in which attention shift-
ing is known to be restricted. Using an artificial neural network model of
learning we show how detailed learning in narrow fields develops when
attention shifting between different sources of stimuli is restricted by
familiarity preference. Our model is based on modified Self-Organizing
Maps (SOM) supported by the attention shift mechanism. The novelty
seeking and the attention shifting restricted by familiarity preference
learning modes are investigated for stimuli of low and high dimensional-
ity which requires different techniques to visualise feature maps. To make
learning more biologically plausible we project the stimuli onto a unity
hyper-sphere. The distance between a stimulus and a weight vector can
now be simply measured by the post-synaptic activities. The modified
“dot-product” learning law that keeps evolving weights on the surface of
the hyper-sphere has been employed.

1 Introduction: Autism, Restricted Attention Shifting

Autism is a developmental disorder with diagnostic criteria (DSM-IV, 1994 [1])
grouped in three categories: impairments in social interaction, impairments in
verbal and nonverbal communication, and restricted repetitive and stereotyped
patterns of behavior, interests, and activities. The subcategory of the last cate-
gory: “encompassing preoccupation with one or more stereotyped and restricted
patterns of interest that is abnormal either in intensity or focus” is of partic-
ular interest in this paper. It is generally agreed that attention shifting is not
normal in autism but the underlying cause is a matter of debate with two main
hypotheses, a general attention shifting impairment [2], and attention shifting
restricted by familiarity preference or novelty avoidance [3J4J56G]. A brief review
of these hypotheses can be found in [7].

In this paper an artificial neural network model of learning is used to show
how detailed learning in narrow fields develops when attention shifting between
different sources of stimuli is restricted by familiarity preference. This is a con-
tinuation of our earlier work on modelling autism presented in [7J8] where we ex-
amined the use of Kohonen Self-Organizing Maps subjected to two-dimensional
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data. We found that attention shifting restricted by familiarity preference causes
the feature map to learn the data from the source with the least variability in its
data whereas normal learning, i.e. learning with attention shifts to that source
which presents new data, resulted in maps which adapt to the data from both
sources. Learning under general attention shifting impairment resulted in maps
that were very similar to the maps obtained from normal learning.

2 Artificial Neural Networks and Learning in Autism

Our model of autistic learning is based on Kohonen Self-Organizing Maps
(SOMs) [9] with some modifications and addition of the attention shift mecha-
nism. It is well known that a Self-Organizing Map is a competitive neural net-
work in which m neurons, each with p synapses are organized in an [-dimensional
lattice (grid) representing the feature space. Such a neural network performs
mapping of a p-dimensional input space into the /-dimensional feature space.
In Figure [[lwe present an example of a self-organizing map consisting of m = 12

X X X3
S S ----

dy

T !

) | X m=12
Distance—measurg , MinNet ,

Fig.1. A 2-D SOM withp=3; m=[3 4]; [ =2

neurons in which the input space is 3-dimensional (p = 3) and the feature
space is 2-dimensional (I = 2). The first section of the network is a distance-
measure layer consisting of m = 12 dendrites each containing p = 3 synapses ex-
cited by p—dimensional stimuli x and characterised by the p—dimensional weight
vector w;,t = 1,...,m. The distance-measure layer calculates the distances d;
between each input vector x and every weight vector w;. This distance vector,
d = [dy,...,dn)] is passed to the competition layer, the MinNet in Figure [I
which calculates the minimal distance dy = mind; in order to establish the po-
sition of the winning neuron k. The competition is implemented through the
lateral inhibitive and local self-excitatory connections between neurons in the
competitive layer. In addition, every neuron is located at [ = 2-D lattice and its
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position is specified by an [-dimensional vector v;. The synaptic weight vectors,
w;, and the vectors of topological positions of neurons, v;, are grouped into the
m X p weight matrix W and m x [ position matrix V.

In order to make the distance calculations simpler and more biologically plau-
sible we project our (p—1)—dimensional stimuli X(n) onto a unity p—dimensional
sphere.

d=W -x=cosax, d;€[-1,+1] (1)

equal to the cosine of the angles between the stimulus and the weight vectors.
For the normalised stimuli, in order to keep the weight vectors on the surface
of the unity sphere we used the “dot-product” learning law [J]. For the jth
neuron we can write:
A T W
wi=w;+n- A (x0 —wj), wj(n):HWH (2)
J

where x is the current stimulus, w;, w;(n) are the current and the next weight
vectors for the jth neuron, respectively, A; is the value of the neighbourhood
function, and 7 is the learning gain. Normalization as in eqn (2) is computation-
ally relatively complex, but for small learning gain 17 < 1 it can be shown that
the weight update can be expressed in the following elegant form:

wi(n) =w;+n-4; - (x" —w;-d;), dj=w; x (3)

The modification that pushes the updated weights towards the unity sphere
is based on introduction of the post-synaptic activity, d;, into the update
equation.

Stimulus Sources

‘SI:SZ‘ cee :SC

|

Source familiarity filter

Attention shift mechanism

: /

Learning law [

Fig. 2. A block-diagram of the model of autistic learning

The block-diagram of the model of autistic learning which includes source
familiarity filter and attention shift mechanism is presented in Figure [2. The
central part is the SOM neural network as presented in Figure [I] together with
the learning section implementing the learning law, or map formation algorithm,
given in eqn (@)). At each learning step a stimulus is randomly generated from
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one of the sources, Si,...S.. The attention shifting mechanism determines if
that stimulus is presented to the map for learning.

In the normal, or novelty seeking learning mode, attention is shifted to
another source if the new stimulus originates from that source.

In the attention shifting restricted by familiarity preference learning
mode attention is shifted to another source if that source presents the next new
stimulus, but conditionally, depending on the map’s familiarity with that source.
The map familiarity to a particular source is measured by the time averaged
value of the distance between map nodes and the stimuli. When both sources are
unfamiliar to the map, i.e. in the beginning stage of self-organization, attention is
shifted to an alternate source if that source presented the next stimulus as in the
novelty seeking mode. As the map develops some familiarity with the sources,
i.e. the node weights begin to resemble the data, attention is shifted with a
higher probability to the source which is most familiar to the map. If the map
becomes familiar to two or more sources (the average difference between node
weights and the data from the sources becomes smaller than a predetermined
small value) then attention is unconditionally shifted.

3 Modelling Autistic Learning with Low-Dimensional
Stimuli

In the first set of simulations we use three sources generating four classes of
two-dimensional stimuli, each class consisting of just two exemplars. Therefore
we have in total twenty four two-dimensional stimuli. For the sake of conceptu-
alization we can imagine that the the sources produce three dialects of a very
limited protolanguage, each with four protophonemes (classes) pronounced in
two slightly different ways. The neural network which is used to model the stim-
uli consists of sixteen neurons (or nodes) organized in a 4 x 4 two-dimensional
lattice, or grid.

Thanks to the low-dimensionality of stimuli (and weights) it is possible to
visualise the feature map in the input space. Such a feature map is a plot
of synaptic weights in the input space in which weights of the neighbouring
neurons are joined by lines and illustrates the mapping from two-dimensional
input space to two-dimensional feature space as shown in FigureBa. The stimuli
originating from a particular source are marked with ‘+’; ‘0’ and ‘x’, respectively,
and are arranged in four pairs (classes). The neuronal nodes are marked with “*’
and joined by the straight lines. The map shows the way in which the neuronal
4 x 4 lattice approximates the input data (stimuli).

The map of Figure Bh has been developed in the novelty seeking mode, that
is, in normal learning. Normal learning results in a map where most neurons are
“shared” between two stimuli and thereby all stimuli have a good representation
in the map. There are also a few “dead” neurons in the map, neurons that are
far from all stimuli; this is a very common thing to occur.

There are two parameters visible on the map, namely the attention shift
index, and the map “goodness” index. The attention shift index is the num-
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a Normal attention shifting

Attention shifting restricted by familiarity preference
25 T T T

25

0.5

0 2 25

.5 1 1.5 2 . 1 1.5
Attention shift = 65.9% Map Index = 0.94 Attention shift = 4.0% Map Index = 0.24

Fig. 3. A 4 x4 feature map in the 2-D input space developed in the: a. novelty seeking,
and b. attention shifting restricted by familiarity preference learning modes

ber of attention shifts normalised with the total number of stimuli used during
learning. With three sources and equal probability of generating a stimulus from
each source the attention shift index is clearly equal to 2/3. The map “good-
ness” index is formed from the sum of distances between the class means and
weights located in the proximity of the means. This sum of distances will be the
largest for the initial value of weights and will be reduced during training. The
“goodness index” has been normalized so that a value of 1 represents a map
with nodes located at the centres of all data subclasses.

After all these introductions we are ready to consider detailed learning in
a narrow field characteristic to autistic learning. The feature map presented
in Figure[3b is the result of learning when the attention shifting is restricted by
familiarity preference. In this mode of learning the attention shifting has ceased
(attention shift index is 4%) and as a result only the source with the lowest
variability (spread), in this case marked by ‘0’, is learned. The representational
capacity of the map now makes it possible to assign one neuron to each of the
eight stimuli, i.e. detailed learning in a narrow field, characteristic to autistic
learning, has occurred.

4 Modelling Autistic Learning with High-Dimensionality
Stimuli

In the second set of simulations the width of the afferent connections, that is,
the dimensionality of the stimuli and weight vectors is much higher (p = 18).
As previously, the neural network which is used to model the stimuli consists
of sixteen neurons organized in a 4 x 4 two-dimensional grid. With such a high
dimensionality the feature map cannot now be visualised in the input space.
However the dimensionality of the feature space, that is, the neuronal grid is
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still low (I = 2) and the feature maps can be illustrated in this space by attaching
to each neuron stimuli located in the proximity of the relevant weight vector.

The higher-dimensional stimuli are here chosen to be animals and a number
of their characteristics, mostly visual. One source contains animals of widely
different kinds: mammals, birds, a reptile and fish. The other source contains
only cats. There are animals which stand out and there are other animals that
are very similar to each other, in some cases separated only by coloration. The
animals are listed below:
Source A: Przewalski’s horse, Grevy’s zebra, Canis lupus (wolf), Dingo, White
(mute) swan, Black swan, Atlantic salmon, Rainbow trout, Polar bear, Kodiak
bear, White rhinocerous, Hippopotamus, Grey Western kangaroo, Swamp wal-
laby, Anaconda, Grey whale
Source B: even colored domestic cat, striped domestic cat, black panther, leop-
ard, ocelot, jaguar, lion tiger.
For investigating the generalization properties acquired by the map during learn-
ing we also have four test animals: black domestic cat, Siamese cat, snow leop-
ard and Eurasian lynx. The animals have been characterized by weight, food,
locomotion (fins, wings, two legs, four legs), feet (hooves, claws or other), col-
oration (black, white, even colored, spotted, striped), facial feature (elongated or
short nose), aquatic preference and social structure. Each animal is described by
eighteen numbers. We project the animal characterization on a 19-dimensional
unity sphere as described in Sect. 2

In order to assess the categorization characteristics of the maps it is necessary
to establish the “likeness” among these animals. In Table [ pairs of greatest
likeness are presented and a measure of their angular distance on the hyper-
sphere. The first animal is chosen and then the animal that most resembles it is
calculated. It is clear from Table[d] that the anaconda and the whale stand out

Table 1. Angular distances in the pairs of the closest animals

l Source A

Horse Zebra, 28 l Source B ‘
Zebra H?rse 28 CatEcld catSiam 9
WOH Dingo 55 catstrp  catSiam 9
Dingo Wolf 55 panther leopard 12

WSwan Bswan 38
BSwan WSwan 38
Salmon  Trout 36
Trout Salmon 36
PBear KBear 50

leopard  panther 12
ocelot lynxEur 41
jaguar tiger 40
lion tiger 45
tiger jaguar 40

KBear  Pbear 50 l Test cats ‘
Rhino Hippo 42

Hippo Rhino 42 catBlck catSiam 9
Kangaroo Wallaby 44 catSiam catEcld 9
Wallaby Kangaroo 44 snowLprd leopard 13
Anaconda PBesr 103 lynxEur ocelot 41

Whale Hippo 406
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and that the domestic cats are very similar to each other. There are also many
pairs like horse — zebra and a group of three similar big cats, jaguar, lion and
tiger. A good map of only sixteen nodes would thus assign one node each for
the whale and the anaconda, let the domestic cats share one node, let the three
big cats share one node and let a number of pairs of animals share one node per
pair. In a map formed by attending to Source B only, a good map would assign
one node to each of the cats.

The feature map resulting from the normal, novelty seeking learning is shown in
Figure fh. The map consists of the 4 x 4 neuronal grid. Each animal is shown

a Normal attention shifting Attention shifting restricted by familiarity preference
Hippo 21 KBear 23 t‘iger .
Rhino 22 PBear 27 .Ilon 19 ocelot 0 leopard0 panther0
aguar 29,
Zebra 11 leopard4
Horse 16 panther8 3
catBlck
Wallaby25 Dingo 22
Anacond0 Kangaro19 ) | wolf 33

@ ©
catBlck
Trout 19 BSwan 17 ocelot 4 -
111 saimon 17 ) (wswan 21 catStrp29 jaguar 0
atEcld2g
2 3 3

4

IS

IS

(&)

)

N

1 4 1 2
Attention shift = 67.5% Attention shift = 0.0%
Shared = 62.5% Singles = 12.5% Unassigned = 25.0% Shared = 0.0% Singles = 50.0% Unassigned = 50.0%

Fig. 4. The feature maps developed in the a. novelty seeking, and b. attention shifting
restricted by familiarity preference learning modes. The shaded ovals represent the
network response to a test animal

at the node with the best match of weights. The angular distance between the
animal vector and the node weight vector is shown after the animal name. In the
map the number of animals for which a given node is the closest varies from three
to zero (“dead neurons”). As expected the whale is represented by its own node
with distance 0, i.e. a perfect match between the animal and the best matching
node has been achieved. As also anticipated the three big cats share one node
almost in the middle between them. Other animals are likewise represented as
anticipated. Four nodes are dead (unassigned).

The feature map resulting from learning in the attention shifting restricted by
familiarity preference mode is shown in Figure [b. This map, which developed
when the attention shifting has ceased, reveals the characteristics of detailed
learning in a narrow field, that is, only the stimuli source with the lowest vari-
ability, i.e. the cats, is learned. Every cat is represented by its best matching node
and all these best matches are perfect because the number of neurons consider-
ably exceeds the number of cats. Several of the nodes marked as “unassigned”
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have weight vectors which are close to the cats which have been allocated to
neighboring (closest match) neurons.

Testing for Generalization: A good map should have acquired some generaliza-
tion capability, i.e. when presented with a stimulus it has not learned, it should
be represented by a node with weights that are similar if such a node exists. We
presented the maps from Figuresdh and[@b with the “Black Cat” stimulus which
has not been used in learning. In both cases the node closest to this test stimulus
is the one allocated to the striped cat, possibly shared with other similar cats.
These nodes are shaded in Figure @l

5 Conclusion

Self-organization of feature maps presented with stimuli from more than one
source will result in very different maps depending on the rules for attention
shifting between the sources. In learning under novelty seeking the resulting
map will represent all sources and group stimuli in an “economic” way — similar
stimuli will share the same node. In learning under familiarity preference — a
characteristic well-known in autism — the resulting map will represent only the
map with the lowest variability and will use its representational capacity so that
stimuli with very minor differences, such as the coloration of domestic cats, each
have their own nodes. The learning which is modelled by such self-organization
corresponds to detailed learning in narrow fields, a characteristic well-known in
autism.
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