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Abstract— We present a solution to a problem of early inter-
vention in autistic learning. This is an addition to our model
of autism which is based on Kohonen Self-Organizing Maps
extended with the Source Familiarity Filter and the Attention
Shift Mechanism. In particular we study the feature map forma-
tion when attention shift is restricted by familiarity preference.
The network learns the stimuli from the source with the lowest
variability in great detail at the expense of the other source. The
early intervention neural controller modifies the probabilities of
presenting stimuli from a given source in response to the attention
shift acceptance/rejection signals.1

I. I NTRODUCTION

In this paper we present a solution to a problem of early
intervention in autistic learning. This is a continuation of our
work on modelling autism using artificial neural networks
presented in [1], [2], [3], [4], [5], [6].

Autism is a developmental disorder with diagnostic criteria
(DSM-IV, 1994 [7]) grouped in three basic categories, namely,
impairments in social interaction and in verbal and nonverbal
communication, and restricted repetitive and stereotyped pat-
terns of behavior, interests, and activities. In our modelling we
concentrate on the subcategory of the third category which
deals with “encompassing preoccupation with one or more
stereotyped and restricted patterns of interest”. Kanner [8], the
first to describe autism, considered an obsessive demand for
sameness to be a cardinal feature of autism, which is clearly
related to the above diagnostic criterion.

It is generally agreed that attention shifting is not normal
in autism but the underlying cause is a matter of debate with
two main hypotheses, a general attention shifting impairment
[9], and attention shifting restricted by familiarity preference
or novelty avoidance [10], [11], [12], [13]. A brief review of
these hypotheses can be found in [1], [6].

In our earlier work on modelling autism [1], [2], [3],
[4], [5], [6] where we examined the use of Kohonen Self-
Organizing Maps (SOMs) subjected to two-dimensional and
multi-dimensional data we found that attention shifting re-
stricted by familiarity preference (mode 3 learning) causes the
feature map to learn the data from the source with the least
variability in its data, whereas normal learning (mode 1), i.e.
learning with attention shifts to that source which presents
new data, resulted in maps which adapt to the data from both

1Proc. Int. Joint Conf. Neural Networks, Budapest, July 2004, pp.29–34

sources. Learning under general attention shifting impairment
(mode 2) resulted in maps that were very similar to the maps
obtained from normal learning.

In this work we consider the problem of early intervention
in the mode 3 learning, with attention shifting restricted by
familiarity preference, and demonstrate how to modify the
probability of presenting stimuli from different sources in
order to achieve the resulting maps similar to that as in the
novelty seeking learning mode (mode 1).

II. T HE MODEL OF AUTISTIC LEARNING

Our model of autistic learning is based on Kohonen Self-
Organizing Maps (SOMs) [14] extended with the Source
Familiarity Filter and the Attention Shift Mechanism as il-
lustrated in the block-diagram in Fig.1. Details of our model
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Fig. 1. A block-diagram of the model of autistic learning

were discussed in [1], [2], [3], [4], [5], [6]. Here we briefly
present aspects of the model related to the early intervention
problem.

The higher-dimensionalstimuli are here chosen to represent
animals arrange in two groups. One group (source A) contains
animals of widely different kinds: mammals, birds, a reptile
and fish. The other group (source B) contains only cats.
Numbers of individuals in both groups are equal. There are
animals which stand out and there are other animals that are
very similar to each other, in some cases separated only by
coloration. The animals are listed below:
Source A: Przewalski’s horse, Grevy’s zebra, canis lupus
(wolf), dingo, white (mute) swan, black swan, Atlantic salmon,



rainbow trout, polar bear, kodiak bear, white rhinoceros, hip-
popotamus, grey western kangaroo, swamp wallaby, anaconda,
grey whale.
Source B: Even colored domestic cat, striped domestic cat,
black panther, leopard, ocelot, jaguar, lion, tiger, black do-
mestic cat, Siamese domestic cat, snow leopard, eurasian lynx,
cheetah, cougar, fishing cat, serval.

The animals have been characterized by weight, food, loco-
motion (fins, wings, two legs, four legs), feet (hooves, claws or
other), coloration (black, white, even colored, spotted, striped),
facial feature (elongated or short nose), aquatic preference
and social structure. Each animal is described by eighteen
numbers. We project the animal characterization on a 19-
dimensional unity sphere. Hence, the width of the afferent
connections in the neural network (dimensionality of theinput
space) is p = 19. Arranging stimuli and weight vectors makes
it possible to measure distances between them by thepost-
synaptic activities as described in [4], [5].

The neural network which is used to map the stimuli con-
sists of sixteen neurons organized in a4× 4 two-dimensional
grid. Due to the high dimensionality of the input space the
feature map cannot be visualized in that space. However the
dimensionality of thefeature space, i.e. of the neuronal grid,
is still low (l = 2) and the feature maps can be illustrated in
this space by attaching to each neuron stimuli located in the
proximity of the relevant weight vector.

At each learning step a stimulus is randomly generated
from one of the sources, A or B. TheAttention Shifting
Mechanism determines if that stimulus is presented to the
neural network for learning.

In the normal, i.e.novelty seeking learning mode (mode
1), attention is shifted to another source if the new stimulus
originates from that source. In mode 2,general attention
shifting impairment learning mode, attention is also shifted
to another source if the new stimulus originates from that
source, but only with the low probability of 1% (the results
are insensitive to this number).

In mode 3, with theattention shifting restricted by
familiarity preference , attention is shifted to another source
if that source presents the next new stimulus, but conditionally,
depending on the map familiarity with that source. Themap
familiarity to a particular source is measured by the time
averaged value of the distance between map nodes and the
stimuli. When both sources are unfamiliar to the map, i.e. in
the beginning stage of self-organization, attention is shifted to
an alternate source if that source presented the next stimulus
as in the novelty seeking mode. As the map develops some
familiarity with the sources, i.e. the node weights begin to
resemble the data, attention is shifted with a higher probability
to the source which is most familiar to the map. If the map
becomes familiar to two or more sources then attention is
unconditionally shifted.

We define thefamiliarity of the network with a source with
the aid of a time average of the distances between stimuli
and their respective best fitting neurons. The familiarity is

changed each time the neural network has been exposed to
a new stimulus. If the neural network learns one source well,
the familiarity with that source will increase and reach a value
close to one, which is defined as perfect familiarity.

III. T HE PROCESS OF LEARNING VISUALIZED

The feature map resulting from the normal, novelty seeking
learning is shown in Fig.2. The map consists of the4 × 4
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Fig. 2. The feature map developed in the novelty seeking learning mode.

neuronal grid. Each animal is shown at the node with the best
match of weights. The angular distance between the animal
vector and the node weight vector is shown after the animal
name. In the map the number of animals for which a given
node is the closest varies from four to zero (“dead neurons”).
All animals are represented — the cats occupying five top-
rightmost nodes. One node is dead (unassigned).

In Fig.3 we show how familiarity with the two sources
grows in mode 1 learning. In this, as well as in all other
simulations in this paper the initial synaptical weight values
have been chosen to be equally distant from the stimuli from
two sources. We see a steady increase in familiarity with both
sources but the result will not reach one since the network
does not have enough capacity to represent all stimuli (sixteen
neurons cannot perfectly match thirty-two different stimuli).

The feature map resulting from learning with a general
attention shifting impairment (mode 2) is shown in Fig.4. The
map shows the same properties as the map resulting from the
normal, novelty seeking learning (see [1], [2], [3], [4], [5],
[6] for discussion and explanation). All animals but whale are
represented in the map, and two nodes are unassigned.

In Fig.5 we show how familiarity with the two sources
grows in mode 2 learning. In this case attention will be directed
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Fig. 3. Attention shift and the Average Source Familiarity for successive
stimuli during the learning process in mode 1
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Fig. 4. The feature map developed in the mode 2 learning.

to one source for a long interval and learning of that source
will proceed for that interval. After an attention shift the other
source is likewise learned. We see that the familiarity with the
sources of course develops in a more “chopped up” fashion
but that the result is very similar to that of mode 1 learning.

The feature map resulting from learning in the attention
shifting restricted by familiarity preference mode is shown
in Fig.6. This map, which has developed largely after the
attention shifting had ceased, reveals the characteristics of
detailed learning in a narrow field, that is, the stimuli source
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Fig. 5. Attention shift and the Average Source Familiarity for successive
stimuli during the learning process in mode 2
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Fig. 6. The feature map developed in the mode 3 learning.

with the lowest variability, i.e. the cats, is learned. Every cat is
represented by its best matching node and all best matches for
a single cat are perfect. Three cat nodes give the best match for
a group of closely related cats. Several of the nodes marked
as “unassigned” have weight vectors which are close to the
cats which have been allocated to neighboring (closest match)
neurons. There is also a poor, “chance” learning of animals
from source A.

In Fig.7 we show how the learning process proceeds in
mode 3 learning. In this case there is an initial period when
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Fig. 7. Attention shifts and the Average Source Familiarity for successive
stimuli during the learning process in mode 3

both sources are unfamiliar to the neural network and attention
shifts occur just as in mode 1 learning. However as learning
proceeds attention shifts to the most familiar source take place
with a greater probability than to the least familiar source.
After some time attention shifts cease to occur and attention
is solely directed towards source B containing cats. In this
case learning of that one source will yield a familiarity value
of one or very close to one, whereas the familiarity with source
A will be poor.

Relevant statistics of learning in all three modes were
presented in [5].

IV. A N EARLY INTERVENTION SCHEME IN MODE 3
LEARNING

It is obvious that source A, having more variability among
its stimuli than source B, demands more extensive learning
than source B in order that the neural network will become
equally familiar with source B and thus not reject attention
shifts to source A.

If this is known a priori then of course presenting stimuli
from Source A with a greater probability than stimuli from
Source A would seem a reasonable scheme to explore. We
will not here assume any prior knowledge about the variability
among stimuli in the two sources. Instead we will attempt
to adjust the probabilities of presenting stimuli from the two
sources according to the attention shifts rejections, i.e. those
instants when the next stimulus is presented by the source not
attended to and attention shift does not occur.

A successful scheme for this change in probabilities follows.
After a first attention shift rejection, which here is the first
instant when an attention shift to source A is rejected, the
probability of presenting stimuli from source A is drastically
increased, very quickly to a value of 0.95. Soon an attention
shift to source A will be accepted and learning of source

A stimuli will proceed more rapidly than learning of source
B, simply because the neural network will be more exposed
to source A. After some time this will result in a reversal
of roles — source A will be more familiar to the neural
network than source B and attention shifts to source B will be
rejected. An opposite change in probabilities is now introduced
and learning of source B will dominate and the degrees of
familiarity of the neural network to the two sources will again
be interchanged.

The two familiarity curves will be intertwined and this can
go on for some more periods of changing probability but when
the intervention has been successful — and this is almost
always the case — both sources have become familiar to the
neural network and attention shift rejections cease to occur.

Mode 3 learning with such early intervention is shown in
Fig.8. After the first attention shift to source A (animals)
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Fig. 8. Early intervention in learning in mode 3.

has been rejected, the probabilitypA for presenting stimuli
from the source A is drastically increased. After a long period
when the network is most often exposed to stimuli from
the source A, this source will become more familiar to the
network than stimuli from the source B and eventually an
attention shift to the source B (cats) will be rejected. The
probability for presenting stimuli from the source A is then
drastically decreased. After this learning may have succeeded
and several more attention shift rejection will occur and
subsequent adjustment of the probability for presenting stimuli
from the source A will be necessary.



Note from Fig.8 that the extreme values of the probability
pA have been chosen. This is to achieve the fastest corrective
action possible. Since a change in probability follows after a
rejection of attention shift, it may be inferred that an unbalance
in the familiarity of the neural network with two sources has
already developed and it must be counteracted as forcibly as
possible to bring the least familiar source back into play, i.e.,
back into the process of learning. Note also that the extreme
values of the probabilitypA have been chosen close to 1
and 0. If it is chosen exactly 1, then stimuli from source
B will not be presented ever and the neural network will
not have its attention turned back to source B when this
is appropriate. The reciprocal can be stated for choosing
the probability as 0. When the neural network has become
familiar with both sources and no more attention shift rejection
occur the probability is allowed to slowly change towards its
“natural” value where all stimuli have an equal chance of being
presented.

The resulting map, as is to be expected, has the same
character as those for mode 1 and mode 2 learning as seen in
Fig.9. All 32 animals are represented in the map.
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Fig. 9. The feature map developed in mode 3 learning with the early
intervention process.

V. SOME IMPLEMENTATION DETAILS

The structure of an autistic learning system with an early
intervention neural controller is presented in Fig.10. From the
autistic learning system we are able to observe an attention
shift to a specific source. We can say that the learning system
generates four binary, mutually exclusive signals, namely, two
acceptance signals,aA andaB — when the attention shift to
a specified source is accepted, and two rejection signals,rA
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Fig. 10. The block-diagram of the interaction between the autistic learning
system and the early intervention neural controller

and rB — when the attention shift to a specified source is
rejected.

The only way we can externally influence the learning
process is through the modification of the probabilitypA of
presenting stimuli from the source A, or, conversely, from
the source B,(pB = 1 − pA). The controller is a single
neuron recurrent neural network with appropriately designed
synaptic weights as illustrated in Fig.11. The probabilitypA is

aA aB rA rB pA(k−M) . . . pA(k−1)
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Fig. 11. The structure of the early intervention neural controller. Triangles
represent synapses with weights as indicated. The block “D” is the first delay
unit of the tapped delay line which forms the past samples of the probability
pA

calculated as a capped linear combination of the four attention
shift signals (moving average terms) andM past values of
probabilitypA(k− 1), . . . , pA(k−M) (autoregressive terms).

VI. CONCLUSION

We have presented a solution to a problem of early in-
tervention in autistic learning. This is an addition to our
model of autism which is based on Kohonen Self-Organizing
Maps extended with the Source Familiarity Filter and the
Attention Shift Mechanism. In particular we study the feature
map formation when attention shift is restricted by familiarity
preference. The network learns the stimuli from the source
with the lowest variability in great detail at the expense of the
other source. The early intervention neural controller modifies
the probabilities of presenting stimuli from a given source in
response to the attention shift acceptance/rejection signals.
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