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Abstract. We introduce a novel system of interconnected Self-
Organizing Maps that can be used to build feedforward and recurrent
networks of maps. Prime application of interconnected maps is in mod-
elling systems that operate with multimodal data as for example in vi-
sual and auditory cortices and multimodal association areas in cortex.
A detailed example of animal categorization in which the feedworward
network of self-organizing maps is employed is presented. In the example
we operate with 18-dimensional data projected up on the 19-dimensional
hyper-sphere so that the “dot-product” learning law can be used. One
potential benefit of the multimodal map is that it allows a rich structure
of parallel unimodal processing with many maps involved, followed by
convergence into multimodal maps. More complex stimuli can therefore
be processed without a growing map size.

1 Introduction and Motivation

We present a generalization of Kohonen self-organizing maps [1] that allows us
to build feedforward and feedback structures consisting of interconnected self-
organizing maps. This work has originated from our attempt to model deficits
in learning, caused by attention abnormalities in autism [2, 3, 4, 5, 6, 7], therefore
is inclined towards modelling functions of brain. However, the results presented
are more general and can be applied to interpretation of any multimodal data.

Self-organizing maps (SOMs) and their applications are very popular topic
to study. The search of IEEEexplore shows that since 2000 75 papers has been
published in IEEE periodicals and another 528 in IEEE conference proceedings.
A significant number of papers have been also published outside IEEE. Most of
the publications are devoted to a variety of applications using a variant of the
basic Kohonen algorithm for a single SOM. In [1] Kohonen discussed possible
variations of SOMs that include: maps of varying topology that has been studied,
for example, in [8, 9], and tree-structured SOMs to improve the winner search
procedure, e.g. [10]. The systems of interconnected SOMs that our paper is
preoccupied with have not been to our knowledge studied yet and is designated
“for future research” in [1] p.194.
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82 A.P. Papliński and L. Gustafsson

There are also self-organizing systems of four hierarchically organized maps,
VisNet and VisNet2 [11, 12]. These systems, designed to capture some essential
characteristics of the visual system, achieve learning through variants of Hebb’s
learning rule and ordering of the maps by lateral connections. These systems,
while in important aspects more biological than the Kohonen maps presented in
this paper, are not multimodal.

1.1 An Introduction to the Modular Architecture of Mammalian
Sensory Processing

Organization of the mammalian neocortex is modular and hierarchical. A colum-
nar structure, consisting of minicolumns and macrocolumns, comprising in the
order of fifty to a hundred and a number of thousand neurons respectively, is
ubiquitous [13]. On a higher aggregational scale sensory processing of different
modalities is done in visual cortex, auditory cortex etc. with a number of areas,
hierarchically arranged, in each (the human visual cortex has upwards of thirty
areas), see e.g. [14]. These areas are primary areas (visual area V1, auditory
area A1, etc.) and several levels of higher unimodal association areas. The pri-
mary areas are organized retinotopically, tonotopically etc., each neuron having
a small receptive field. Higher association areas process information of a more
specific kind, e.g. face recognition, each neuron having a large receptive field.
For an introduction to the organization of neocortex see [15].

The stimuli presented to our nervous system are not restricted to one modality
however, they are generally bimodal or multimodal. We see and hear, we see
and feel, we smell and taste. If we hear an automobile crash it will catch our
attention and guide our vision, through a saccade or a head movement or both,
to the scene of the accident. While lower level processing of stimuli is largely
unimodal, multimodal percepts are formed when the results of the unimodal
processing are combined in multimodal areas in, e.g. the orbitofrontal cortex,
see e.g. [16]. There are different kinds of connections between and within areas.
Between areas in a hierarchy there are bottom up connections but also top down
connections. There are lateral connections between areas on the same level in a
hierarchy and within areas there are recurrent feedback connections. The areas
may be seen as parallel processors, interchanging processing results.

The modular architecture of cortex may be formed from such biological re-
strictions as upper limits of a neuron’s connectivity. It may also offer a processing
speed advantageous to process sensory stimuli in a highly modular way with pro-
cessing in all modules running in parallel. The hierarchical structure of cortex
may even offer a specific advantage to humans. There is evidence that synap-
togenesis is heterochronous in human neocortex as opposed to synaptognesis
in rhesus monkeys ([17, 18]). In humans the maximum density of synapses is
reached earlier in sensory cortices (earlier in visual cortex than in auditory cor-
tex) than in prefrontal cortex, in contrast to the development in rhesus monkeys
where synaptogenesis is concurrent in all neocortical areas. Successive organi-
zation of areas as they appear in the sensory processing hierarchy may well be
advantageous.
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2 The Structure of the Feedforward Self-organizing Maps

Neural networks have been inspired by the possibility of achieving information
processing in ways that resemble those of biological neural systems. Even though
some neural network architectures and learning rules, such as the multilevel
perceptrons and the backpropagation error correcting learning algorithms have
developed into independent signal processing systems, others such as pattern
associators based on Hebbian learning [19] and self-organizing networks [1] show
considerable similarities with biological neural systems. It has been shown that
pattern associators may well simulate the multimodal sensory processing in cor-
tex [16].

The purpose of this paper is to show that the Kohonen networks, contrary to
popular belief, lend themselves very well to building networks in a modular and
multimodal way. Simulation of such modular networks consisting of intercon-
nected Kohonen networks are suitable for execution on parallel processors. Also,
a large number of interconnected Kohonen networks may serve as a simulation
model for biological sensory processing.

Kohonen Self-Organizing Maps (SOMs) [1] are well-recognized and efficient
tools for mapping multidimensional stimuli onto a low dimensionality (typically
2) neuronal lattice. Example of such a map is given in Fig. 1.
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Fig. 1. A SOM mapping a 4-dimensional stimuli onto a 2-dimensional 3 × 4 neuronal
lattice

For our purposes we can identify a similarity layer, a competitive layer based
on lateral inhibition and local self-excitatory feedback and a mapping mechanism
to the output layer. We can say that for a given matrix of neuronal weights, W ,
the nth stimulus x(n) is mapped into a position of the winner v(n), that is,
the neuron with the weight vector most similar to the stimulus.

v(n) = g(x(n); W ) ; v ∈ IRl (1)
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Fig. 2. A simple feedforward structure of self-organizing maps built from self-organizing
blocks.

where l is a dimensionality of the neuronal grid. The self-organizing building
block can now be used to form feedforward and feedback structures. In this
paper we concentrate on the feedforward networks as in example in Fig. 2.
The bottom level maps, SOM1,k, received sensory stimuli x1,k of different dimen-
sionality p1,k representing different modalities of afferent signals. Dimensionality
of each map is, in general, equal to l1,k, but is, most typically, equal to 2 for the
ease of visualisation. The higher level map, SOM21, received the re-coded stimuli
from each lower level map of the total dimensionality p21 =

∑K
k=1 l1,k, e.g. 6 for

the example of Fig. 2. Each individual map, e.g. the one from Fig. 1, consists of
M = m1 × m2 . . . × ml neurons, where mi is the map size in the ith dimension.
In a fedforward structure as in Fig. 2 learning takes place concurrently for each
SOM, according to the well-known Kohonen learning law.

In the practical example presented below we work with normalised stimuli
and activity data, therefore we use the simple “dot-product” learning law [1, 5].
In this case the update of the weight vector for the jth neuron is described by
the following expression:

∆wj = η · Λj · (xT − dj · wj) ; dj = wj · x (2)

where Λj is a neighbourhood function, Gaussian in our case, centred on the
position of the winning neuron, and dj is the post-synaptic activity of the jth
neuron. It is easy to show that for the above learning law, if the stimuli x are
on a unity hyper-sphere, the resulting weight vectors w are located on, or close
to such a sphere.

The higher level map learns from the combined centres of activity produced
by the lower level maps. During testing, a multimodal stimulus is applied and
for each i, k map on every level, we can record the position of the winning
neuron, vi,k.

3 Example of Mapping Multi-modal Stimuli

As an illustrative example we consider a well-known problem of categorization of
animals. Our animal kingdom that we have also used in our work on modelling
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autism [5, 4, 3] consists of 32 animals each characterized by 18-dimensional data.
Half of the animals are variety of cats. The animals are listed below sorted
according to their weight:

Grey whale, Hippopotamus, White rhinocerous, Kodiak bear, Polar bear,
Grevy’s zebra, Przewalski’s horse, Tiger, Lion, Anaconda, Jaguar, Puma or
cougar, Panther, Leopard, Snow Leopard, Canis lupus (Wolf), Atlantic salmon,
Cheetah, Grey western kangaroo, Eurasian lynx, Rainbow trout, Dingo, Swamp
wallaby, Serval, Ocelot, Fishing cat, Mute (white) swan, Black swan, Domestic
cat (even coloured), Domestic cat (striped), Domestic cat (black), Siamese cat.

The features chosen to characterize these animals are as follows: x1 = log(wei-
ght); x2 ∈ {1, 2, 3} – food (herbivores, omnivores, carnivores); x3, x4, x5, x6 (bi-
nary) – locomotion (fins, wings, two legs, four legs); x7 (binary) – equipped with
hooves (perissodactyls) or cloven hooves (artiodactyls); x8 (binary) – equipped
with claws; x9 (binary) – equipped with other feet; x10 ∈ {1, 2, 3} – cover (fur,
feathers and scales); x11 (binary) – colour black; x12 (binary) – colour white; x13
(binary) – even coloured; x14 (binary) – spotted; x15 ∈ {0, 1/4} (binary) – striped;
x16 ∈ {2, 4} – facial feature (short faced, long faced); x17 ∈ {1, 2, 3} – aquatic;
x18 ∈ {1, 2, 3} – social behaviour (single living, pair living, group living). In addi-
tion, for testing of the generalizationof the multi-map structurewe use twounusual
animals, one being a domestic catweighing two tonnes (‘catWhale’), the other,An-
drewsarchus mongoliensis, is an extinct cloven-hoofed 1-tonne carnivour.

The features by which we describe our animals are of course multimodal and
some, like behaviour, represent semantic memory data rather than immediate sen-
sory stimuli. This example does not imply that a biological neural system would
treat the total data in three primary unimodal and one multimodal map. Rather
the example illustrates the functioning of a very small multiple map system. The
18-dimensional vector representing an animal is split into three sub-vectors, repre-
senting three modalities: x1,1 = x1 (weight), x1,2 = (x2 . . . x9) (food and locomo-
tion), x1,3 = (x10 . . . x18) (coloration, facial features, behaviour). Single modality
stimuli of dimensionality p11 = 1, p12 = 8, p13 = 9, excite three first-level maps
as shown in Fig. 2. In the example below we use 16 neurons in each sensory map
organized on a 1 × 16 grid for the (1,1) map and 4 × 4 grids for (1,2) and (2,3)
maps. The second level map has 36 neurons organized on a 6×6 grid. The result of
learning can look like in Fig. 3. The numbers that follows the animal’s name is a
relative distance between the animal and the closest neuron. In well-developed
maps most of these distances are expected to be zero.

The organization of the three unimodal maps justifies some comments. The
first modality map, representing weights, is a one-dimensional map with the
animals simply arranged in descending weight order from left to right. The neu-
ron which is the best fit for a particular animal has an oval shape with the name
of the animal written in. Since there are thirty-two animals and the map was
provided with only sixteen neurons, in some cases several animals have to share
one neuron for its best fit. The second modality map represents food and loco-
motion. Therefore it is natural that salmon, trout and whale share one neuron,
whereas almost all land predators share one neuron. The other animals can be
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Fig. 3. Categorization of animals with the feedforward multimodal maps and a con-
ventional single map

commented in similar ways. The third modality map represents coloration,
facial features and behaviour. This map results in more discrimination than the
second modality map. The cats which forms a tight knit group in the second
modality are here split onto three neurons, cats which appreciate water, cats
which do not and the lion which lives in larger groups. The Kodiak bear and the
wallaby might seem an odd pair, but they both have very elongated faces, they
are both even colored and they both are solitary animals. The kangaroo lives in
groups and is therefore grouped with zebras, wolves and other social animals.
The clustering of animals seen in the third modality map may at first seem
absurd but it quite correctly reflects the features that were chosen for this map.
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In the multimodal map we see that the animals are represented in a way which
we find natural. Some animals like the whale and the anaconda are solitary in the
multimodal map in all experiments with these data, simply because no other an-
imals in our animal kingdom resemble them. Other animals form pairs and then
they are very similar, as described by the features we chose. The dingo and the
wolf are solitary in this map while in other experiments they appear as a pair. The
same is true for the wallaby and the kangaroo, and the Kodiak bear and the polar
bear. The cats are more often than not grouped with other cats, usually distin-
guished from other groups of cats mainly by weight. The four house cats which is
one species with different coloration are grouped together here and this is the case
for all experiments with maps of this size. The lion often has its own neuron, in
some experiments it shares one neuron with the tiger and the jaguar. There are
quite a number of neurons which are not best fits for any animal. This is in the
nature of Kohonen maps. The two animals that were presented to the map with-
out any prior learning, the fictitious catwhale and the extinct Andrewsarchus are
represented in a reasonable way. The catwhale is close to the lion which is a good
compromise for an animal with the conflicting features of a house cat except for
the weight of a rhino. The Andrewsarchus is grouped with the Kodiak bear, which
is reasonable, given the features by which it was described.

For comparison, the “single map” in figure 3 has been generated using a tra-
ditional unimodal Kohonen algorithm. This map has the same characteristics as
the multimodal map. The detailed results are different but different experiments
yield slightly different results and it is not possible to tell by the result if the
map was generated as a multimodal map or as a single map.

4 Conclusion

The multimodal maps discussed in the paper have many potential benefits over
their single map counterparts. One potential benefit of the multimodal map is
that it allows a rich structure of parallel unimodal processing with many maps
involved, followed by convergence into multimodal maps. More complex stimuli
can therefore be processed without a growing map size. A second potential ben-
efit to be explored is that this modular multimodal structure may be used to
simulate biological neural systems.
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