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Abstract

Neural network models comprise models of neurons, both their firing characteristics and their
plasticity characteristics and of the connectivity between the neuron in a neural circuit. The mod-
els are used in computer simulations and, because of the size and complexity of the central nervous
system, are greatly simplified in all these aspects. A brief overview of such models is presented.
A number of attempts to explain aspects of autism, in particular poor generalization and good
discrimination, have been made, employing neural network models. These attempts are briefly
presented and the biological relevance of the models is discussed. Finally, simulations of learning
processes subjected to abnormalities in attention shifting using self-organizing neural networks
are presented. It is shown that when attention shifting is restricted by familiarity preference exact
learning of objects with little variability occurs, arguably a characteristic of autism, and how early
intervention in this learning process can result in normal learning of a broad range of objects.
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1 Introduction

A great deal is known about neurons, their internal structure and processes, how they are intercon-

nected and how these connections change over time. This knowledge makes it possible to calculate

with some degree of accuracy the efferent (output) signal along a neuron’s axon, given the afferent

(input) signals that reach synapses on the dendritic tree. Given that we can calculate the activity

of a single neuron and knowing how neurons are connected to each other we can also, in principle,

calculate the overall neural activity in an area of e.g. neocortex.

The human central nervous system (CNS) contains a large number of neurons and many more

connections between these neurons. These numbers vary greatly between individuals and at stages of

any individual’s life. For neocortex figures of more than ten billion neurons(1010) and more than a

hundred thousand billion(1014) connections, or synapses, are often given. It is, however, not neces-

sary to take all neural activity in neocortex into account in order to say something interesting about

the activity within one area or a smaller neural structure within an area. This is because neocortex is

compartmentalized into specialized areas and has several levels of organization.

Even if not all the neural activity in neocortex has to be taken into consideration when we wish

to calculate the activity in a small part of neocortex the number of neurons is still staggering — tens

of thousands of neurons in a square millimeter. And a square millimeter is indeed a very small part
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of neocortex. It is obvious that we cannot manage simultaneous input/output relations among many

thousand neurons in any other way than by using a computer.

Some researchers use parallel processing supercomputers and can study nervous systems of sim-

pler organisms, e.g. lampreys, see Lansner et al. (?, ?), on a high organizational level or even in

their entirety. Other researchers design models which have been very greatly simplified in all re-

spects — synapse function, synapse plasticity, connectivity and number of neurons — and hope to

say something interesting about mammals and especially humans from these models. The validity

of the results depends, of course, on how judiciously the models are designed. The ultimate task of

running a model of the entire human CNS with all its complexities at all levels is beyond the capacity

of any supercomputer at the present, but there is no compelling reason to believe it will remain so for

all future.

The first goal in this chapter is to acquaint the reader with some standard models of biological

neural circuits. These models are sometimes called artificial neural networks, but a shorter form is

gaining usage and we will call them neural networks.

The second goal of this chapter is to discuss some attempts that have been made to use such

neural networks to explain autism. We believe it is wise at this time to pursue the study of autism

with different neural network models. If, as there is ample reason to believe, see e.g. Gillberg and

Coleman (?, ?), there are multiple etiologies for autism, it is entirely plausible that several different

neural network models will remain relevant as our understanding of autism widens and deepens.

We agree with Douglas and Martin (?, ?) who state that “. . . it would be rash to press their [models

which differ in important respects from biology] analogy to cortical circuits too far. Nevertheless,

the potential usefulness of network models that are biologically based cannot be overestimated.” It

should be understood, however, that the use of neural networks will not provide “proof” of anything,

but that a number of hypotheses or theories can be generated and these in turn can be subjected to

neurophysiological and neuropsychological tests. Neural networks can also be used to test existing

hypotheses and to strengthen or weaken them. Neural networks are emerging as a useful tool in

research, but are not a final judge.

Have neural networks proven their worth in any biological context? Yes, results obtained from
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neural networks have shown a remarkable likeness with experimentally found neural activity in animal

sensory cortices, see e.g. Ritter et al. (?, ?).

Our presentation of neural networks is on a conceptual level. We have found a mathematical

treatment to be beyond the scope of this chapter and instead we give references to suitable texts for

the reader who wishes to pursue a study of neural networks.

2 A generic neuron’s input/output characteristics and its mod-

elling

There are many different types of neurons in the CNS but most neural networks have only one neuron

model — a generic neuron is modelled. In Figure 1 such a generic neuron is shown. There is a (Figure 1

here)dentritic tree where afferent signals reach the neuron through a number of synapses. From the cell

body or soma, an axon will carry one efferent signal to the dendritic trees of many other neurons. This

efferent signal is the result of the cell’s processing of all the afferent signals. The signal has the form

of trains of spikes of voltages as illustrated in Figure 2. There is a minimum frequency of such spikes (Figure 2

here)— obviously there cannot be fewer than zero spikes per second — and there is a maximum frequency

since there is a refractory period after a spike during which a new spike cannot be generated. A neuron

is said to be firing when it produces trains of spikes of voltages.

The simplest model of a single neuron is shown in two possible forms in Figure 3. Each synapse (Figure 3

here)is a junction where an afferent signal enters a dendrite. The afferent signals are aggregated along

the dendrite to form the postsynaptic activity. The postsynaptic activity is typically a weighted sum

of the afferent signals. This postsynaptic activity is then limited in the neuron body to ensure that

the efferent signal stays between some minimum and maximum values. Often, but not always, the

signals are modelled as voltage levels rather than as frequencies of spikes of voltages. These levels of

voltages are simply the averages of the spikes — a high frequency train corresponds to a high voltage

levels. All neuron models used in the attempts to model autism use voltage levels rather than spikes

of voltages. This is done in order to simplify the models, of course. A critical question will then
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be: does this mean that these models will loose the possibility to display characteristics which are

fundamentally important in autism? There is no definitive answer to this question today.

3 Neurons connected into circuits and neural network models

Neurons form circuits with different characteristics in different parts of the CNS. In cerebral cortex

the neurons form a thin sheet, of typically a tenth of an inch thickness. The sheet consists of six layers

with different types of neurons in different layers. The interconnections between neurons, both local

and far-reaching, are arranged so that the different layers provide different types of connectivity.

The anatomy of cortex is known in much detail but in most neural networks no attempt has been

made to model all the complexities of the cortical sheet. Some neural networks yield results where

the neural activity show striking resemblance with that measured in animal experiments, whereas

others are not designed to yield such similarities. It seems obvious that for modelling biological

neural circuits, the interconnections in the neural network should be modelled on biological neural

circuits. Models may, and for practical reasons must be, simplified, but what is modelled should be

biologically motivated.

The rest of this section contains some mathematical terminology that might be unknown to some

readers. The following sections on modelling autism with neural networks will be intelligible without

a full understanding of this terminology.

There are two basic building blocks of the neural networks which have been employed in mod-

elling autism: a layer of neurons, and a competitive layer. A layer of neurons is presented in Figure 4.

The layer is created from single neurons as shown in Figure 3. There arep afferent signals connected (Figure 4

here)to synapses ofm neurons. Each synapse stores one parameter, a weightwij, which is used to form a

postsynaptic signal as a weighted sum of the afferent signals.

A competitive layer is shown in Figure 5. In a competitive layer the efferent signals are fed back to (Figure 5

here)the competing neurons and form the local self-excitatory and lateral inhibitory connections. The self-

excitatory connection are marked with “1” and the inhibitory connections with “−α”. As the result

of the competition the output of the neuron with the largest input signal (“the winner”) is enhanced,
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whereas all other outputs are suppressed.

Interconnection of layers of neurons forms a multilayer feedforward neural network or multilayer

perceptron (MLP). In Figure 6 two views of a two-layer perceptron are shown. Multilayer feedforward (Figure 6

here)neural networks are often called backpropagation networks due to a popular learning algorithm.

Self-Organizing Maps (SOMs) are competitive neural networks in which neurons are organized

in a one- or two-dimensional lattice (grid) representing thefeature space. In Figure 7 we present

an example of a self-organizing map consisting ofm = 12 neurons in which theinput space is 3-

dimensional(p = 3) and thefeature spaceis two-dimensional. The first section of the network is a (Figure 7

here)distance-measure layer of neurons consisting ofm = 12 dendrites each containingp = 3 synapses

excited by 3-D input signal vectorsx = [x1 x2 x3] and characterised by the weight vectorwi =

[wi1 wi2 wi3]. The distance-measure layer calculates the distancesdi between each input vectorx

and every weight vectorwi. This distance information,(d1, . . . , dm) is passed to the competition

layer, the MinNet in Figure 7, which calculates the minimal distancedk = min di in order to establish

the position of the winning neuronk. The competition is implemented through the lateral inhibitive

and local self-excitatory connections between neurons in the competitive layer. In addition, every

neuron is located atl = 2-dimensional lattice and its position is specified by anl-dimensional vector

vi = [vi1 vi2].

The synaptic weight vectors,wi, and the vectors of topological positions of neurons,vi, are

grouped into the weight and position matrices,W, V , respectively.

4 Learning is modification of synapses

Perceptions, thoughts, emotions, motor action are all manifestations of neural activity, the firing of

many neurons. Learning is the process by which the neurons change their properties so that new or

modified patterns of neural activity become possible. It is the efficacies or strengths of the synapses

which define the possible neural activities and it is changes in these synapses which constitutes learn-

ing.

What could be the mechanism that changes synapses in such a constructive manner as to make
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learning possible? Hebb suggested in 1949 (?, ?) in a famous statement that

“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently

takes part in firing it, some growth process or metabolic changes take place in one or both

cells such that A’s efficiency as one of the cells firing B, is increased.”

It has since been shown that the strengthening of synapses is not sufficient to make learning

possible, there must also be a mechanism which weakens synapses. A modified statement which

takes this into account is: When the firings of two neurons are correlated then a synapse connecting

them is strengthened but if the firings are not correlated then a synapse connecting them is weakened.

Learning according to this statement is called Hebbian learning and it has been demonstrated in

the CNS. In order to employ Hebbian learning in a computer simulation it must be formulated in

mathematical language. Such formulations have reached a high degree of sophistication but we do

not need to go into these details here.

During the 1990’s it became clear that a modification of a synapse is not only dependent on the

activity of two neurons (the presynaptic and the postsynaptic neuron) but also on the activities of

neurons in a neighborhood. A diffusive agent, nitric oxide, was found to be emitted from firing

neurons and spread in a neighbourhood, strengthening some synapses and weakening others in that

neighbourhood, see e.g. (?, ?).

Hebbian learning is a time consuming form of learning and much more efficient strategies for

learning in a neural network have been designed. Again a question arises: will the results of simula-

tions of learning be valid for biological learning if other, more efficient strategies for synapse strength

modifications are employed? Kohonen (?, ?) has presented some computational results that answer

this question in the affirmative, but caution should be exercised.

5 Learning in neural networks

There are three main paradigms for learning in neural networks, supervised learning, unsupervised

learning or self-organization, and reinforcement learning. Arguably the last two are of biological

relevance. It is, however, the first two that have been employed in modelling of autism.
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In supervised learning a stimulus is entered to a neural network and the resulting output is mea-

sured and compared to a target, or desired output, for that particular stimulus. If, as can be expected

particularly in an early phase of the learning process, the output is not close to the target, the synapse

weights of the neural network are altered to bring the output closer to the target. An algorithm lets a

computer calculate suitable changes of all the synapses. This process is repeated thousands of times

with different stimuli. Even though this may be an effective learning process it is difficult to see a

biological parallel to this calculation of synapse weights by the computer.

In unsupervised learning, or self-organization, the network just strengthens (compare Hebbian

learning!) the tendencies present in the network in its initial state and seemingly magically adapts to

the stimuli, meaning that the weights of synapses for one neuron or one group of neurons will adapt

to and match the characteristics of one category of stimuli. A neuron’s output is maximized when

its input is the stimuli which it has adapted to. Other categories of stimuli will have other neurons

adapted to them. The resulting neural networks are often called feature maps. Feature maps are

important in sensory cortices.

In reinforcement learning a resulting output from a neural network is evaluated from some re-

sponse from the environment as “good or bad”. The neural network changes its synapse weights in

some non-deterministic way and if the result is good than these changes will be strengthened, and if

they are bad they will weaken. This learning has biological relevance and was understood in psychol-

ogy before neural networks had been conceived. Thorndike’s “law of effect” from 1911 (?, ?) offers

this formulation of reinforcement learning:

“Of several responses made to the same situation, those which are accompanied or closely

followed by satisfaction to the animal will, other things being equal, be more firmly

connected with the situation, so that, when it recurs, they will be more likely to recur;

those which are accompanied or closely followed by discomfort to the animal will, other

things being equal, have their connections with that situation weakened, so that, when it

recurs, they will be less likely to occur. The greater the satisfaction or discomfort, the

greater the strengthening or weakening of the bond.”
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6 Cohen’s model of autism

Cohen was first (?, ?, ?) to present explanations of characteristics in autism, based on the theory

of neural networks. If a neural network has an excess of neurons and synapses for a given task it

will learn every required response to the presented inputs exactly but will perform poorly on inputs

which are slightly different than the learned inputs. Overfitting to learned inputs is the opposite of

generalization and renders a neural network useless. A correctly dimensioned neural network has a

sufficient number of neurons and synapses to learn the required response to the presented inputs but

only in an approximate way. The advantage that stems from this is that it will also give good responses

to inputs which have not been presented during learning but are similar to the ones which have been

learned. Such a correctly dimensioned neural network has the capacity to learn to generalize well,

a fundamentally important quality of neural networks. In Figure 8 the neural network’s response to

inputs presented during training and “new” inputs are shown. (Figure 8

here)Noting that parts of the brain, notably the amygdala and hippocampus, have been found to contain

more neurons in brains from some individuals with autism than in normal cases, Cohen hypothesizes

that this can cause autism with its characteristics of exact learning of facts and poor generalization.

Cohen also argues that these characteristics in turn may also cause a demand for sameness, a cardinal

feature in autism.

The case illustrated in Figure 8 has a one-dimensional input and a one-dimensional response or

output. This is of course because this case can be easily visualized. Realistic situations which entail

many-dimensional inputs and outputs cannot be visualized but it is known from neural network theory

that a neural network will loose its capacity to generalize if is over-sized also in these more realistic

situations.

Cohen uses a multilayer feed-forward backpropagation network such as the one presented in Fig-

ure 6 and suggests that even though these networks “are not similar in all respects to biological

nervous systems, they mimic some of their properties and may help to explain the properties of real

nervous systems.” Testing Cohen’s hypothesis on other artificial neural network structures more simi-

lar to biological nervous systems, in particular to those present in the amygdala and the hippocampus,
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is needed.

7 Gustafsson’s model of autism

Starting from a statement by Hermelin (?, ?) that “autistic children do not tend to integrate current

experience with schemas and representations stored from previous sensory impressions”, Gustafsson

(?, ?) presented another model based explanation of autism. Cortical feature maps, specifically

characterized by narrow neural columns, is argued to explain basically the same characteristics in

autism, good discrimination but poor generalization skills, that Cohen had focussed.

Mountcastle (?, ?) had much earlier stated that (referring to cerebral cortex): “Whatever the level

in the processing hierarchy, and the particular task there is a common architecture: the neural columns

(mini- and macrocolumns)”. It has been established that neurons in a minicolumn have similar but

not identical sensitivities to stimuli. Gustafsson argues that narrow columns with fewer than normal

neurons would be responsive to a narrower than normal range of stimuli and therefore exhibit good

discrimination at the cost of poor generalization.

There was no experimental support for this idea in 1997, but in 2002 Casanova et al. (?, ?) reported

that they had found an abnormal columnar organization (narrow and many minicolumns) in autism.

What could cause this abnormal columnar organization?

The artificial neural network Gustafsson discusses in his arguments from 1997 is a self-organizing

map with lateral excitatory and inhibitory feedbacks (both biologically motivated) in which synapses

change according to Hebb’s law. In such one-layered neural networks groups of neurons all of which

are active upon presentation of one class of stimuli, such as a phoneme in speech, also emerge as a

result of self-organization. These neural groups have the same function, albeit much simplified, as the

neural columns in cortex. In the following we will assume that these one-layered neural groups may

represent the six-layered neural columns in cortex and, in agreement with common usage, call them

neural columns.

The width of these neural columns emerging in the model depends on the balance of excitatory

and inhibitory effects as illustrated in Figure 9. It has long been known that (?, ?) too little excitatory
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effect and too much inhibitory effect both result in narrow columns. (Figure 9

here)It is, however, not clear whether any such imbalance exists in autism. One argument against high

inhibitory effects raised by Casanova et al (?, ?) is the relatively high co-morbidity of autism with

epilepsy. Increasing the level of GABA is a well-established therapy against epileptic seizures. GABA

is an inhibitory neurotransmitter and one would expect this to aggravate autism, if the hypothesized

excessive lateral inhibition would hold. This is, however, not the case. In the case of co-morbid

autism and epilepsy the hypothesized excessive lateral inhibition is obviously not convincing. The

hypothesis might of course hold in the majority of cases of autism with no co-morbid epilepsy.

It is possible, of course, that the simple neural network model chosen by Gustafsson with its

emergent neural columns does not adequately represent the columnar structure with both mini- and

macrocolumns in cortex. If this is so, then causes for the narrow minicolumns in autism might not be

possible to obtain from neural network theory, applying this model. See also (?, ?) for a discussion

on this issue.

Searches for a genetic linkage to autism have shown that it is not a “single-gene disorder” but

rather that multiple, possibly interacting, genes are involved in causing autism, see (?, ?). There-

fore it is reasonable to search for complementary explanations for narrow minicolumns. Two such

alternative/complementary explanations have been presented by Gustafsson (?, ?, ?)

8 Are narrow neural columns in autism an effect of a serotonin

abnormality?

Although no strong candidate-genes for autism have been found, the linkage studies have indicated

a serotonin transporter gene as the most consistent genetic linkage to autism (?, ?). A serotonin

abnormality in the CNS has also been found in autism. In early development children with autism

have been found to have a lower capacity to produce serotonin than normal children, but maintain this

capacity while it declines in normal children (?, ?).

Serotonin has more than one role in the CNS, an early role being in synaptogenesis in sensory
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cortices (?, ?, ?). The barrel fields in rats are decreased if serotonin levels are lowered (?, ?).

If serotonin plays a similar role in early development in humans, then the reported initial low

capacity for producing serotonin could contribute in causing narrow cortical columns and thus con-

ceivably autism.

We have good reason to believe that a serotonin abnormality contributes in causing autism and the

narrow neural columns implicated in autism. The genetic studies suggest that we should try to find

complementary mechanisms. Neural network theory proves helpful in this search.

9 A neural network theory finding: insufficient nitric oxide causes

narrow neural columns

It is well established that nitric oxide plays an important role in synaptic plasticity, both for long term

potentiation and long term depression, see e.g. (?, ?). There are also results that suggest that nitric

oxide is important in the metasynaptic columnar organization of cortex, (?, ?).

The influence of nitric oxide on synaptic plasticity has been included into the mathematical models

of synaptic modification, employed in neural network modeling. Simulations with such models have

shown that a stable neural columnar structure emerges when the neural network self-organizes (?, ?,

?). Mathematical analysis of such self-organization has yielded as a correlate that the width of the

neural columns depends on the production of nitric oxide during self-organization — low levels of

nitric oxide results in narrow neural columns (?, ?, ?).

Results from two simulations of self-organization with nitric oxide as a mediator are shown in

Figure 10. All factors except production of nitric oxide, were the same in the two simulations. The (Figure 10

here)result from theory on the dependence of the neural column width on the level of nitric oxide is clearly

illustrated.

It has been hypothesized by Gustafsson (?, ?) that insufficient production of nitric oxide could

cause the narrow neural columns implicated in autism. Further aspects of this hypothesis are discussed

in the following.
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It is well known that vision is relatively spared in autism. This could then, according to the

hypothesis, be explained if nitric oxide does not play a role in the columnar organization in visual

cortex and there are results that suggest this to be the case (?, ?). In animal experiments it has also

been directly demonstrated that visual discrimination and also other visual capacities are not affected

by inhibition of nitric oxide (?, ?).

Nitric oxide has in animal experiments been demonstrated to have effects also in regard to epilepsy,

but the effects are surprising: nitric oxide has been found to be both a proconvulsant and an anticon-

vulsant, see e.g. (?, ?, ?, ?). Nitric oxide has three different origins in the CNS, neuronal nitric

oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), and inducible nitric oxide synthase

(iNOS). Selective inhibition of nNOS makes it more difficult to induce epilepsy but inhibition of

eNOS makes it easier to induce epilepsy. This would indicate that insufficient nNOS could contribute

in causing autism without co-morbid epilepsy while insufficient eNOS could contribute in causing

autism with co-morbid epilepsy. iNOS appears to be similar to nNOS in this respect.

10 Does columnar structure in neural networks represent colum-

nar structure in cortex?

There is presently no definitive answer to the question what might cause narrow minicolumns in

autism. In neural networks of the self-organizing kind neural columns do emerge, both as a result

of lateral excitatory and inhibitory feedback and as a result of the influence of a diffusive messenger,

assumed to be nitric oxide. It is, however, not certain that this emergence of neural columns models the

columnar structure in cortex. The latter contains two levels, the minicolumns and the macrocolumns.

In the self-organizing neural networks discussed above there is no given initial structure. The

columnar structure emerges to fulfill the functional requirements to represent different classes of the

stimuli presented to the network.

In cortex there is an initial structure in the form of ontogenetic columns (?, ?), not stimulus-driven

but prenatally formed. If the functional minicolumns are the same as the ontogenetic columns, then
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the synaptic plasticity of the neurons in the minicolumn allows for tuning the minicolumn to a given

stimulus, but the minicolumn itself would not be an emergent structure, as the columns are in the

neural network models.

Can the results obtained from a model which is not initially constrained by grouping neurons

together in columns be of interest for understanding the development of cortex and the activities

in minicolumns? One obvious possibility is that the development of a neural column of the model

represents the tuning of the neurons in the minicolumn to a particular stimulus with some limited

variability. This is all the more natural an interpretation since both the lateral inhibitory feedback

surrounds the minicolumn (?, ?) and the activity of nitric oxide is prominent along the minicolumnar

periphery (?, ?).

A narrow neural column in the model would correspond to the case where few neurons in the

minicolumn get tuned to the stimulus. The total neural activity from such a minicolumn as a response

to a stimulus would then be lower than normal. The total number of neurons in the minicolumn would

set an upper limit to the width of the neural columns formed in the model — larger widths could not

then be interpreted in a meaningful way.

A correspondence between the neural network column and the cortical macrocolumn should not

be ruled out, however. The basket cells are inhibitory interneurons that reach across a macrocolumn

and the diffusion of nitric oxide and its sphere of influence is estimated to reach a distance exceeding

150 mm (?, ?) i.e. covering several minicolumns. Both these properties of cortex can be included

in a self-organizing neural network and result in neural columns much wider than the minicolumn,

possibly corresponding to the macrocolumn. The shape of the macrocolumns of sensory cortices

may be determined by information from sensory inputs rather than being prenatally formed as the

minicolumns, for a review see (?, ?). In this respect the macrocolumns of cortex correspond to the

neural network columns.

It should be noted that (?, ?) argue that the increased number of minicolumns in autism may have

its origin in a disruption in the early prenatal development and that the larger number of minicolumns

rather than their width is important in causing autism.

14



11 McClelland’s model of autism

In 2000 McClelland, like Cohen and Gustafsson before, takes hyperspecificity, or poor generalization

in autism as the starting point for a discussion drawing on insights from design of neural networks that

can group similar objects into one category when they are sufficiently close but distinguish between

objects which should form different categories (?, ?).

The balance between generalization and discrimination is of paramount importance in the design

of neural networks. McClelland suggests that one technique employed in the design of neural net-

works to facilitate discrimination, conjunctive coding, might be utilized also in the central nervous

system. McClelland further suggests that

“in the brains of children with autism, they may be predisposed to use an excessively

conjunctive form of neural coding [. . . ] This could prevent them from exploiting overlap

in cases where overlap leads to the useful ability to generalize. Instead, it would leave the

child with the ability to learn associations to particular, specific inputs and without the

ability to extend what they have learned to other similar experiences.”

McClelland does not suggest any biological mechanism which would provide for this conjunctive

coding and identifying such a mechanism will require further work, preferably employing neural

networks which more closely model parts of the central nervous system than the traditional feed-

forward networks discussed by McClelland do.

12 The temporal binding deficit hypothesis of autism

It has been known for more than a hundred years that cerebral cortex has functionally specialized

areas. These areas have extensive two-way connections and simultaneous neural activity in several

areas may constitute e.g. the neural response to a complex object. It is then of course necessary

that the connections between the areas involved function properly. In 2002 Brock et al. suggest that

the different areas may work well seen as single entities but do not function properly together and
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therefore do not integrate different properties of, e.g. a complex object, well (?, ?). This would offer

a neural explanation of the weak central coherence theory of autism, proposed in 1989 by Frith (?, ?).

The hypothesis is not based on neural networks, rather on biological and behavioural arguments,

but the authors compare this hypothesis with the three models based on neural networks presented

above and stress that whereas these models are relevant within areas, i.e. they are local models, the

binding deficit hypothesis is of a global character. This hypothesis needs to be investigated experi-

mentally but it is of a kind which could also be advantageously studied by employing neural networks.

13 Learning under attention shifting restrictions shows autistic

characteristics

Attention abnormalities, among them attention shifting abnormalities, are common in autism. The

nature of the restricted attention shifting is not agreed upon, however. One school of thought, led by

Courchesne (?, ?, ?, ?, ?, ?, ?), suggests that there is a general attention shifting impairment caused

by the deficit in number of Purkinje cells in the cerebellum, an almost universal finding in autism. A

number of researchers, among them Dawson et al. (?, ?), Pascualvaca et al. (?, ?) and Minshew et

al. (?, ?), hold a different opinion — there is a higher executive function impairment which restricts

attention shifting. Some of these authors argue that people with autism tend to not shift attention

to a source of stimuli which they expect to be novel, they are influenced by novelty avoidance or

familiarity preference. This of course can be seen as a consequence of the insistence on sameness

which Leo Kanner in 1943 (?, ?) found to be a prominent feature of autism.

Gustafsson and Papliński have translated this scientific debate into a test, employing neural net-

works (?, ?, ?). They present stimuli from two different sources to a Kohonen (?, ?) self-organizing

map such as presented in Figure 7, which during learning adapts to the stimuli from one or both

sources. It should be stressed that the neural networks are assumed to be completely adequate for the

task they are presented with, it is only the attention shifting which shows any abnormality.

The simulation employs three different modes of attention shifting when a stimulus is presented
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by the source momentarily not attended to. Normal learning is understood to mean that attention is

then unconditionally shifted — normal learning is understood to be novelty seeking. Attention will

shift but only with a low probability in the case of a general attention shift impairment.

The case of attention shifting restricted by familiarity preference is more complicated. In the

beginning of the learning process both sources are unfamiliar to the self-organizing map and attention

is shifted unconditionally. Then as familiarity develops the shifting will show a statistical bias towards

the most familiar source. Finally, if both sources become familiar to the map, attention will shift

unconditionally.

The results have so far, without exception, yielded maps of the same character for normal learning

and learning when attention shifting is restricted by a general attention shifting impairment. Learning

when attention shifting is restricted by familiarity preference yields maps characterized by detailed

learning of the source which exhibits the least variability among its stimuli. This is detailed learning

in narrow fields, a learning with arguably autistic characteristics.

This should not be seen as a proof that the general impairment in attention shifting hypothesis is

invalid, there are many more comprehensive simulations that must be done before such a statement

could be warranted.

In the simulations presented below the two sources contained stimuli, or objects, that were for

one source a number of animals (mammals, birds, fish, reptiles) and for the other source a number

of felines. Naturally the feline source has much less variability than the general animal source. In

Figure 11 we show the resulting maps consisting of 16 neurons, arranged in a4× 4 matrix, and how

they have adapted to the different stimuli. Each stimulus is shown at the neuron which has adapted

best to that stimulus. Since there are more stimuli than neurons in this case, some stimuli will share a

neuron. (Figure 11

here)In Figure 11a a typical map resulting from normal learning and from learning with a general

attention shift impairment is shown. This map shows a very economic use of the neural capacity to

represent all stimuli. Stimuli which are not similar to any others, like the gray whale and the anaconda

have “their own” neurons with exact adaptation (the number after each stimulus is a measure of the

adaptation with a smaller number being better). Stimuli which are similar, like the great cats share
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one neuron. Some neurons have not been identified with any stimuli. This is a common situation —

some neurons are “dead”, i.e. they have not adapted to any stimulus, while others have but not as well

as those identified with the stimuli.

In Figure 11b a typical map resulting from learning with attention shifting restricted by familiarity

preference is shown. Here the map has ceased shifting attention to the source containing general

animals, devoting almost all the neural capacity to the feline source, learning its stimuli very well, in

this case exactly.

Even though these simulations employ neural networks to yield the maps shown above, there is

also a rule driven part of the system which is simulated. The attention shifting rules are written to

agree in character with experimentally verified behaviour but they are not modelled as neural net-

works. In autism attention shifting is, of course, also caused by neural activity. A complete neural

model of autism based on attention shifting restricted by familiarity preference will demand a non-

trivial research effort.

14 Simulating a scheme for early intervention in autism

The process that leads to exact learning of the source with the least variability when attention shifting

is restricted by familiarity preference can be observed — when an attention shift to the alternate

source is rejected we understand that that source is the least familiar of the sources.

It is then conceivable that we can overexpose the neural network to stimuli from that source to

compensate for this relative unfamiliarity. This compensatory action will very possibly have to be

repeated but can lead to a map which learns both sources with a resulting map which is identical to

that obtained in normal learning. The learning process is, however, entirely different.

In Figure 12 we show two diagrams, representing different aspects of the same learning process.

In the top diagram we see how the number of attention shifts initially grows linearly and then grows (Figure 12

here)less rapidly as familiarity preference starts to play a role in the learning process. Finally the number

of attention shifts again grows linearly, as rapidly as in the initial stage, this is after the neural network

has become familiar with both sources.
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The intervention activity which makes it possible for the neural network to develop into a normal

map is shown in the lower diagram in Figure 12. The probability for presenting a new stimulus

from the source with general animals is in the initial stage constant and such that each individual

stimulus has an equal chance for presentation, regardless of source. When familiarity with the feline

source start to manifest itself through fewer attention shifts to the source with general animals, then

the probability for presenting a stimulus from the source with general animals is immediately and

drastically changed. After some such large changes of probability have passed the neural network has

become familiar with both sources and no more intervention is necessary.

15 Suggestions for further reading

A reader who is willing to face some mathematics can find a great many books and journal papers on

neural network theory. Some of this literature is devoted to the study of biological nervous systems

and to “mind modelling”. We will here make two suggestions which for the most part demand high

school mathematics or first year college calculus and algebra.

Neural Networks and Brain Function by Rolls and Treves (?, ?) gives an overview of different

neural network architectures and discusses their usefulness in explaining function in different parts of

the CNS, such as sensory cortices, hippocampus etc.

Rethinking Innateness: A Connectionist Perspective on Development (Neural Networks and Con-

nectionist Modeling) by Elman et al. (?, ?) argues strongly for the importance of the environment,

as taken in by the senses, in the development and organization of cerebral cortex and uses neural

networks broadly in the argumentation.
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Figure 8: Left figure shows a good fit to the test set and mediocre fit to training set. Right figure
shows a poor fit to the test set but perfect fit to the training set.
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Figure 9: Left figure shows “normal” activity column resulting from good balance of excitatory and
inhibitory lateral feedback. Right figure shows narrow activity column resulting from poor balance
— weak excitatory/strong inhibitory lateral feedback
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Figure 10: Narrow and wide neural columns driven by the nitric oxide level. In the left figure the
nitric oxide level is low and in the right it is high.
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Figure 12: Early intervention. The pA probability is the probability that the next stimulus presented
will be chosen from the source containing general animals. The lower row of rejection states indicates
when attention shifting to the source containing general animals has been rejected and the upper row
of rejection states indicates when attention shifting to the source containing felines has been rejected.
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