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Abstract

This paper presents a method to fit a 3D Morphable
Model to a sequence of extracted facial features. The ap-
proach is a direct extension of a single view method. The
novelty is presented as a new mathematical derivation of the
same method but for multiple views where identity and pose
are known. The new fitting method exploits point-to-model
correspondences and can deal with occlusion since features
are not required to correspond across views. The mathe-
matics is explained in detail and the methods single tunable
parameter is empirically determined using a database of
scanned heads.

1. Introduction
Perhaps the most important recent discovery in computa-

tional face modelling is the 3D Morphable Model (3DMM)
introduced by Vetter et al. [14]. A 3DMM is a represen-
tation of both the 3D shape and 2D texture of the human
face. It is a direct extension of the 2D Active Appearance
Model (AAM) that allows for more accurate modelling in
the presence of pose and illumination variations. A Mor-
phable Model is built from 3D laser scans of human faces
that are put into dense correspondence [2] using their pixel
intensities and 3D shape information. The correspondence
of heads is achieved using a modified optical flow algo-
rithm and provides a dense vertex to vertex mapping. Us-
ing the corresponding heads, shape and texture matrices are
formed, where each column is a vectorized representation of
the 3D data. In all cases, the dimensionality of each shape
and texture matrix is very high. The dimensionality of the
data must be reduced both for practicality and for model
parametrization. This is achieved using the same principles
as the AAM to provide the equations for shape and texture
variation:

ŝ = s̄ + S · diag(σ)α, t̂ = t̄ + T · diag(σ)γ (1)

where ŝ ∈ <3n×1 and t̂ ∈ <3n×1 are novel shape and tex-
ture vectors, s̄ ∈ <3n×1 and t̄ ∈ <3n×1 are mean shape and

texture vectors, S ∈ <3n×m and T ∈ <3n×m are column
spaces (eigenvectors) of the shapes and textures, with σ
as their corresponding eigenvalues, finally, α ∈ <m×1 and
γ ∈ <n×1 are shape and texture coefficients. These linear
equations describe the variation of shape and texture within
the span of the 3D training data. By varying the shape
and texture coefficients, different shapes and textures are
formed.

1.1. 3DMM Fitting Algorithms (texture based)

The first to introduce texture based fitting was Vetter et
al [14]. Vetter’s approach to fitting is holistic and makes
use of image pixel intensities alone. In this approach model
coefficients are inferred from the difference between the
rendered model and the original image, in a similar fash-
ion to AAM fitting. This is done using a modified gradi-
ent descent algorithm but is prohibitively slow. To improve
convergence times the approach was extended to make use
of image features such as edges and specular highlights by
Romdhani et al [12]. There have also been many other al-
gorithms for 3DMM fitting [5, 7, 11], where the best fitting
times range from within 30 seconds [12] to 5 minutes per in-
put image [5]. Although, the result of such (texture based)
fittings is of course a highly accurate shape estimate and of-
ten produces a photo-realistic rendering of the human face.
However, due to long fitting times, such approaches should
be considered only for animation or off-line face recogni-
tion tasks.

1.2. 3DMM Fitting Algorithms (feature based)

Since the most significant problem with texture based fit-
ting of the 3DMM is the amount of time required. In real-
time applications, such as on-line face recognition, feature-
fitting approaches that avoid the use of the 3DMM texture
model and fit only on the basis of 2D projections of the 3D
shape model have been developed. The benefit of not using
the texture information in the 3DMM is two fold. Firstly,
the dimensionality of the problem decreases, and secondly,
the complexity of the problem also decreases. Although,
fitting from feature points assumes that the 2D features in
an image can be found without the use of the 3DMM. An-
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other critical assumption is that such 2D image features cor-
respond directly to points in the 3D shape model of the
3DMM. However, given these assumptions, there has been
a number of proposed feature-fitting algorithms [4, 10, 15].

The fundamental theory behind feature based fitting is
that 3DMM shape coefficients can be extracted from an in-
complete set of shape feature points in either 3D or 2D. In
this vein, one of the first feature-based fitting algorithms
was demonstrated by Hwang et al. [8] by reducing the shape
basis vectors to the same dimensionality as the small set of
texture or shape features. This can be achieved in a straight-
forward way after re-writing the problem as:

VSα = ŝ

α = (VSTVS)−1VSTŝ (2)

where S are the reduced shape basis vectors, reduced with
the mapping matrix V, α are shape coefficients and ŝ is
the occluded shape. This shows a solution for shape co-
efficient estimation from partial information as a pseudo-
inverse and in [8] it is shown to be plausible even when face
models were significantly occluded. However, an impor-
tant oversight of the approach is that the shape coefficients
are not constrained to be valid shape model parameters. To
achieve this, the parameters must be restricted in some fash-
ion, which a pseudo-inversion does not achieve.

As in [8] where 2D shapes were addressed, by using 2D
image features that correspond to 3DMM vertices it is pos-
sible to determine 3DMM shape coefficients directly. This
is an approach presented by Blanz et al. [3] as a technique to
linearize what would otherwise be a non-linear 3DMM fit-
ting problem. Using corresponding points the solution for
3DMM shape coefficients can be found using a regularized
inversion. As the first step [3] defines the measurements
in an image plane as the 2D projection of a subset of the
3DMM shape model:

r = LVs̄ + LVS · diag(σ)α (3)

where L ∈ <2p×3p is a camera matrix, containing the full
set of intrinsic and extrinsic parameters, V ∈ <3p×3n is a
subset selection matrix, S ∈ <3n×m is the column (eigen-
vectors) space of the 3DMM training shapes, σ are the cor-
responding eigenvalues, α ∈ <m×1 are shape coefficients
and r ∈ <2p×1 set of feature points. It is clear in this repre-
sentation that model coefficients can easily be derived from
Equation 3 using only the pseudo-inverse (+) operation.
However, it is shown in [3] that simply applying the pseudo-
inverse will not produce a perceptually pleasing result. This
is because the method only minimizes the 2D re-projection
error between the 3D model and the 2D features, r. Specif-
ically, this perceptually poor result is the result of shape co-
efficients α that are not suitably restricted to the span of the
3DMM shape model. Actually, it was shown in [3] that the

correct approach is a statistical one which guarantees the
maximum posterior probability coefficient estimate. This
derivation presented a modified cost function, namely:

ε =‖ LVSdiag(σ)α− (r− LVs̄) ‖ 2 + η ‖ α ‖ 2 (4)

In [3], for clarity, matrices are combined to form a simpler
cost function:

ε =‖ Qα− y ‖ 2 + η ‖ α ‖ 2 (5)

where Q = LVS · diag(σ) and y = r− LVs̄. In this form
the cost function can be solved in a straight forward fashion:

5ε = 2QTQα− 2QTy + 2α = 0
QTy = QTQα+ ηα

Now SVD can be applied to compute the inverse,
specifically in the case QTQ, where Q = U ·WVT and
QT = V · SUT.

QTy = QTQα+ ηα

V ·WUTy = V ·WUTU ·WVTα+ ηα

V ·WUTy = V ·W2VTα+ ηα (6)

This leads to the solution (after multiplying both sides of
Equation 6 by VT) for α in Equation 5:

α = Vdiag
(

wi

w2
i + η

)
UTy (7)

This solution adds the regularization constant to the diag-
onal of the singular values of the SVD factorization of Q.
It solves the problem of estimating shape coefficients from
a sparse set of 2D features while also assuring a plausible
result. However, the solution is dependent on the selection
of the regularization term η and a correct estimation of the
camera matrix, L.

(a) ŝ (b)
η = 10−3

(c)
η = 101

(d)
η = 103

(e) s̄

Figure 1. The variation of η, on a random 3D head, ŝ, demonstrat-
ing how the estimate approaches the mean, s̄.

As η increases the 3D shape estimate tends to the mean
3DMM shape, or rather, the norm of the estimated coeffi-
cients approach zero. This is shown in Figure 1 where η is
increased to demonstrate its regularizing effect. However,
introducing a regularization introduces a trade-off between
a perceptually smooth 3D shape estimates and a minimum
re-projection error between the 3DMM and the extracted
2D image features.



2. Fitting Morphable Models to 2-Views
A significant problem with the approach presented in [3]

is that it is only derived for a single set of 2D features and
consequently can only be applied to a single image. For-
tunately, it is straightforward to extended the method to es-
timate shape coefficients given multiple images which al-
lows 3DMM fitting to extend to multiple views of the same
face over time and across pose changes. In the first case the
problem of estimating 3DMM shape coefficients using two
views is shown. The key difference is to solve a modifica-
tion of Equation 5, for example:

ε = ‖ L1VSdiag(σ)α− (r2 − L1Vs̄) ‖ 2 +
‖ L2VSdiag(σ)α− (r2 − L2Vs̄) ‖ 2 + . . .

η ‖ α ‖ 2 (8)

In the same fashion as [3], the cost function matrices are
combined to show a simple solution for its minimum exists:

ε =
1
2
‖ Q0α− y0 ‖ 2 +

1
2
‖ Q1α− y1 ‖ 2 + η ‖ α ‖ 2

(9)
where:

Q0 = L1VS · diag(σ)
Q1 = L2VS · diag(σ)
y0 = r1 − L1Vs̄

y1 = r2 − L2Vs̄

Representing the cost function for a two view case,
where r1, r2 are the set of 2D image features and L1,L2 ap-
proximately align the 3D model to these features. As in [3],
it is possible to solve for the coefficients α in a straight for-
ward fashion. Unfortunately, the elegance of the SVD iden-
tities cannot be exploited, because of multiple instances of
the Q matrix. Instead a solution is derived:

5ε = QT
0 Q0α− . . . (10)

QT
0 y0 + QT

1 Q1α−QT
1 y1 + 2α = 0

QT
0 y0 + QT

1 y1 = QT
0 Q0α+ QT

1 Q1α+ 2ηα

This equation simplifies by factorizing and re-arranging
with respect to η:

QT
0 y0 + QT

1 y1 =
(
QT

0 Q0 + QT
1 Q1 + 2Iη

)
α

In a similar fashion to [3] the solution forms a regularized
pseudo-inverse:

α =
(
QT

0 Q0 + QT
1 Q1 + 2Iη

)† (
QT

0 y0 + QT
1 y1

)
(11)

Importantly, the principle assumption when solving for
shape coefficients across multiple views is that both the

identity and expression is fixed (images of the same person
in rigid motion). In this case the problem is somewhat sim-
plified and the possible source of error is reduced to model
alignment due to a poor estimate of the camera matrix L.
In this solution the regularization cost ( η ‖ α ‖ 2 ) is also
ensured. This forces a plausible set of coefficients. It must
also be assumed that the cost associated with each view is
equal, hence the scaling of 1

2 for the 2-view case.

3. Fitting the Morphable Model to n-Views

The 2-view case can be made into a generic solution and
extended to n-views. This is achieved in a similar fashion
to §2 and requires the cost function shown in Equation 9 to
be modified. In its new form the cost function is a now the
summation:

ε =
1
n

n∑
i=1

‖ Qiα− yi ‖2 +η ‖ α ‖2 (12)

where n is the number of views, Qi = LiVSdiag(σ) and
yi = ri − LiVs̄. As in§2, the regularization cost is added.
However, an important difference is the introduction of a
view scaling constant, 1

n . The role of the view scaling con-
stant is to allow for the individual views to have the same
importance in the summed cost function. It also has the de-
sirable effect of reducing the cost difference between the
summed views and the additional regularization cost. Af-
ter expanding the cost function it can be solved in a similar
manner to §2, where:

ε =
1
n

n∑
i=1

‖ Qiα− yi ‖2 +η ‖ α ‖2

=
1
n

n∑
i=1

(Qiα− yi)
T (Qiα− yi) + η ‖ α ‖2

=
1
n

n∑
i=1

(
αTQT

i Qiα− 2QT
i yiα+ yi

Tyi

)
+ ηα2

5ε =
1
n

n∑
i=1

(
2QT

i Qiα− 2QT
i yi

)
+ 2ηα (13)

Now the optimum,5ε = 0, can be solved in a similar fash-
ion to §2:

0 =
1
n

n∑
i=1

(
2QT

i Qiα− 2QT
i yi

)
+ 2ηα

1
n

n∑
i=1

(
QT

i yi

)
=

1
n

n∑
i=1

(
QT

i Qiα
)

+ ηα

1
n

n∑
i=1

(
QT

i yi

)
=

1
n

n∑
i=1

(
QT

i Qiα+ nIη
)
α



The solution is, as before, the pseudo inversion:

α =

(
n∑

i=1

(
QT

i Qi + nIη
))+ n∑

i=1

(
QT

i yi

)
(14)

Equation 14 therefore demonstrates a method for estimat-
ing 3DMM shape coefficients from multiple sets of mea-
surements. Significantly, the solution also ensures that the
shape coefficients are within the span of the 3DMM shape
model by including the regularization cost ( η ‖ α ‖ 2 ) in
the summed cost function of Equation 12.

3.1. Missing 2D Features

In [3] shape coefficients are inferred from a single view
using correspondence between the 3D Model and the 2D
image features. In the extensions presented in §2 and §3
many sets of 2D features and different correspondences
with the 3D model are used to estimate shape coefficients.
In many ways the extension to [3] is similar to the popu-
lar ‘structure from motion’ (SfM) approach introduced by
Tomasi and Kanade [13]. In SfM the structure and camera
properties of a 3D object are inferred from a set of corre-
sponding 2D features. However, an important limitation of
this method is that the features must be tracked across a se-
quence, without failure. When features are missed because
of failed tracking their values are estimated through a pro-
cess called imputation. The common problem with SfM is
the reliance on feature correspondence, either inferred or
actual. This is an important problem that this paper implic-
itly solves.

This is shown in the solution presented in §2 which is not
coupled to features corresponding between views or across
an image sequence. Unlike SfM there is no need to impute
or predict the location of 2D features that have not been
tracked in different views. This is due to the product of
QTQ and QTy in Equation 14. Since the outer dimensions
are fixed, the number of features per view is independent
of the estimated 3DMM shape coefficients. Furthermore
the solution presented in §2 also has the benefit of being
domain specific. Since it uses a face model to estimate the
3D structure of faces its solutions will only ever be plausible
3D faces. SfM is not constrained in this way and can, in
practice, yield inappropriate 3D estimates.

3.2. The Shape Update Algorithm

Using the derivations from §3 a novel algorithm to in-
crementally fit a 3DMM from set of images features is
presented. Called the Shape-Update algorithm, the new
approach is a modification up of the solution presented
to Equation 14 to allow for incremental computation of
3DMM shape coefficients. In doing so, the algorithm relies
on prior information about each view being known. Specif-
ically, the information required is the current measurement

Algorithm 1 shapeUpdate ( ri, Li, Vi, n, η )
Require: n ≥ 1.
Ensure: A and B are static variables.

1: Qi = LiViS · diag(σ) {Compute the subselection of
projected eigenvectors}

2: yi = ri − LiVis̄ {Compute the demeaned measure-
ment vector}

3: if n = 1 then

4: USVT = Qi {Apply SVD to Qi}
5: A = QT

i Qi

6: B = QT
i yi

7: return α = Vdiag
(

wi
w2

i +η

)
UTyi {Equation 7}

8: else

9: A = A + QT
i Qi

10: B = B + QT
i yi

11: return α = (A + nIη)+B {Equation 14}

12: end if

vector ri, the camera matrix Li, the mapping matrix Vi, the
number of views n and the regularization constant η. With
this information it is possible to split the summed cost func-
tion of §3 and the process is shown in Algorithm 1.

Importantly, in the first view n = 1 the optimal solution
for shape coefficients is to use [3] regularized fitting. In
this step it is also important to cache the products A and
B. However, when n increases the Shape-Update algo-
rithm must switch to minimize the modified cost function
shown in Equation 12 (also caching the products A,B). The
caching of the products A and B allow the approach to be
applied to any number of views without the dimensionality
of the problem increasing. This fixed dimensionality is a
feature of the approach that was briefly explained in §3.1.

A computational aspect of the algorithm is the initial
SVD (for inversion) operation. This is an order N3 oper-
ation that is used to compute both the single view fitting [3]
and the multiple view pseudo inversion. However, the SVD
is computed on a constant size matrix. This implies that the
effective dimensionality of the of the solution does not in-
crease as it processes more views from an image sequence.

4. Experiments

Using a 3D head database [1] the set of 75 aligned
heads was randomly divided into 4 subsets. In accordance
with the cross-validation algorithm permutations, these sub-
sets were used to provide training and testing data to con-
struct 3DMMs for subsequent Shape-Update experiments.
Since the Shape-Update approach to 3DMM fitting from



(a) Yaw Rotation Axis

(b) Pitch Rotation Axis

(c) Roll Rotation Axis

Figure 2. Examples of the yaw, pitch and roll axis rotation and the
select 2D feature points.

addresses the problem of fitting given a sequence of mea-
surements, the testing data was used to provide accurate sets
of measurement vectors r and camera matrices L. For each
head, three tracking sequences were generated that corre-
spond to yaw, pitch and roll motions in the range of −50 to
50 degrees. The same subset of anthropometrically mean-
ingful feature points were then tracked through these mo-
tions, demonstrated in Figure 2.

During 3DMM fitting, it is important to obtain an esti-
mate of all camera projections L which align the reduced
3DMM shape model to each measurement vector r in the
tracking sequences. Such an alignment process is otherwise
known as exterior orientation and must be applied to each
tracking in the four testing sets. For the sake of evaluating
the Shape-Update algorithm, a modification of the method
from [9] is applied.

4.1. Shape Estimation

Using the experimental setup described in §4 the Shape-
Update algorithm is evaluated with respect to 2D (re-
projection and 3D (shape) errors. To compute the 2D er-
rors the (aligned) estimated 3D heads are projected to 2D
for each face in the 3 tracking sequences. Notably, in this
case the 2D re-projection error is directly minimized by the
algorithm. As a by product, the method also minimizes the
3D Euclidean error between the test and estimated 3D head.
This is computed as the Euclidian distance from the esti-
mate head, fitted using the features from a tracking, to the

test head. Importantly, the outcome of the 2D and 3D exper-
iments is the selection of a good value for the regularization
constant η. The only way to accurately select a value for η is
to measure both the 2D and 3D error and pick the trade-off
point where the error in both measures is minimized.

To demonstrate the dependence on η a series of cross
validation experiments are performed using a suitable range
for η extracted from [3]. The result is presented in Table 1:

YAW PITCH ROLL
η µ± σ µ± σ µ± σ

0.0001 1.108± 0.218 1.045± 0.181 0.664± 0.129
0.01 1.112± 0.220 1.050± 0.179 0.662± 0.129

1 1.202± 0.203 1.142± 0.191 0.856± 0.148
10 1.596± 0.241 1.548± 0.253 1.342± 0.226
100 2.275± 0.388 2.170± 0.368 2.043± 0.384
1000 2.717± 0.544 2.578± 0.530 2.510± 0.601

Table 1. The 2D re-projection error (pixels) for various η values,
for a yaw, pitch and roll motions. Where µ is the mean 2D fitting
error and σ represents one standard deviation.

YAW PITCH ROLL
η µ± σ µ± σ µ± σ

0.0001 5.659± 1.476 5.313± 1.576 6.314± 1.745
0.01 5.740± 1.501 5.385± 1.602 6.486± 1.826

1 4.598± 1.203 4.461± 1.255 4.797± 1.263
10 4.281± 1.106 4.220± 1.127 4.392± 1.138
100 4.484± 1.120 4.469± 1.144 4.509± 1.144
1000 4.741± 1.161 4.738± 1.165 4.741± 1.166

Table 2. The 3D Euclidean distance of the estimated head from
ground truth head (millimeters). For various η values and yaw,
pitch and roll motions. Where µ is the mean 3D-3D Euclidian
distance and σ represents one standard deviation.

Importantly, the regularizing constant η also strongly in-
fluences the 3D shape error. The result is shown in Table
2. Importantly, the 3D error table shows there is an op-
timal trade-off between the 2D re-projection error and the
3D distance from test set with an η value of 10. This is the
cross-over point for for the average 3D error and the 2D re-
projection error using the USF database [1]. It is also shown
that for high values of eta η the 3D error is fixed (equivalent
to the aligned 3DMM mean shape) but as η decreases the
shape coefficients change and the 3D shape also error de-
creases. The reader should note this is the inverse effect in
the case of 2D re-projection errors. An example of multiple-
view 3DMM fitting is shown in Figure 3. Given the three
sets of features, the 3DMM shape can be computed, either
in a batch fashion or incrementally using the Shape-Update
algorithm.



(a) Salient feature points on non-frontal faces.

(b) From left to right the incremental shape adaptation using the Shape-Update algorithm can be seen. There is an
obvious change in the estimated chin after three updates.

Figure 3. Shape estimation of a subject from the Pointing database [6].

5. Conclusion

This paper has presented a novel multiple-view exten-
sion to the 3DMM fitting algorithm presented by Blanz et
al. [3].The mathematics for the method has been outlined in
the paper and it has been evaluated using ground truth data
using a 3D head database. The evaluation shows that the
regularization term (the only parameter for the fitting) can
be found empirically. The end result is a fast multiple view
3DMM fitting algorithm that can be used to supplement ro-
bust facial feature detectors (such as AAM’s).
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