
Technical Report TR2009/240

Multivariable ARMA Systems — Making a Polynomial
Matrix Proper

Andrew P. Papliński
Clayton School of Information Technology

Monash University, Clayton 3800, Australia
Andrew.Paplinski@infotech.monash.edu.au

May 4, 2009

Abstract

We present two algorithms for polynomial matrices particularly useful in dealing
with MIMO ARMA (or left polynomial fraction) models. The first algorithms makes
a polynomial matrix proper by adding a required number of zero eigenvalues. The
second algorithm extracts a nilpotent part of a polynomial matrix. Both algorithms
operate on matrix polynomial coefficients and are easy to implement in MATLAB.

Keywords: Polynomial matrices, Matrix polynomials, polynomial fractions, MIMO dy-
namic systems, ARMA models.

1 Introduction

Since the seminal works [1, 2] polynomial matrices are widely used in theory and practice of
the multi-input multi-output dynamic systems. In this paper we present two algorithms for
polynomial matrices particularly useful in dealing with MIMO ARMA (or left polynomial
fraction) models. The first algorithms makes a polynomial matrix proper by multiplying it
by a properly selected nilpotent polynomial matrix thus adding a required number of zero
eigenvalues. The second algorithm factorises a polynomial matrix into a non-nilpotent and
nilpotent factors. Both algorithms operate on matrix polynomial coefficients using the QR
factorisation and are easy to implement in MATLAB.

The origin of the algorithms presented in this paper can be traced back to [3, 4, 5].
Presentation of this refined version of the algorithm to make a polynomial matrix proper
has been induced by the following description of the polyeig function in MATLAB [6] which

1



implies that the algorithm has not yet been absorbed by the researches interested in multi-
viariable ARMA models.

[X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue problem of degree
p:

(A0 + λA1 + . . .+ λpAp)x = 0

where polynomial degree p is a non-negative integer, and A0, A1, ... Ap are input
matrices of order n. Output matrix X, of size n-by-n*p, contains eigenvectors in
its columns. Output vector e, of length n*p, contains eigenvalues.
(. . . )
If both A0 and Ap are singular, the problem is potentially ill posed; solutions
might not exist or they might not be unique. In this case, the computed solutions
may be inaccurate. polyeig attempts to detect this situation and display an
appropriate warning message. If either one, but not both, of A0 and Ap is
singular, the problem is well posed but some of the eigenvalues may be zero or
infinite (Inf).

In particular, we will show that “If both A0 and Ap are singular” the problem is well
posed and we will describe an algorithm to be used in such a case. This algorithm can be
also used “If either one, but not both, of A0 and Ap is singular”.

We hope that the algorithms presented in this paper will be implemented in the next
version of the Polynomial Toolbox for MATLAB [7].

2 Problem specification

Consider a matrix polynomial of degree p:

A(z) = Apz
p + . . .+ A1z + A0 (1)

where each coefficient Ai is a square n×n matrix. If the leading coefficient, Ap, is nonsingular
the matrix polynomial is called proper.

A matrix polynomial can be re-written as a matrix of polynomials, that is, as a polyno-
mial matrix:

A(z) =


a11(z) a12(z) · · ·
a21(z) a22(z) · · ·

...
...

 (2)

where each entry is a polynomial of, at most, pth degree: aij(z) = aijpz
p + . . . + aij0. Let

the characteristic polynomial of a polynomial matrix:

d(z) = detA(z) = dmz
m + dm−1z

m−1 + . . .+ d0 (3)

2



be of degree m. The matrix A(z) has then typically m eigenvalues. The following properties
relating p, n and m are relatively easy to establish [8, 9]:

A(z) is proper ⇔ m = n · p (4)

rank(Ap) < n ⇔ m < n · p (5)

A0 is nonsingular ⇔ d0 6= 0 (6)

Now we can formulate two lemmas to address the cases when either the coefficient Ap,
or A0 of a polynomial matrix A(z) is singular.

Lemma 1 Making a polynomial matrix proper (eqns (4) and (5) ).

If

• A(z) as in eqn (1) has a singular leading coefficient, Ap, and

• Q(z) is a nilpotent polynomial matrix with mq zero eigenvalues, that is,

detQ(z) = zmq where m+mq = n (7)

then
Â(z) = Q(z) · A(z) (8)

is proper (has a nonsingular leading coefficient, Âp).

Similarly, we can formulate the following factorisation lemma for the case of A0 being
singular, that is, the A(z) having some zero eigenvalues.

Lemma 2 Extracting a non-nilpotent part of a polynomial matrix (eqn (6)).

If

• A0 is singular, and

• the characteristic polynomial (eqn (3)) has its mq least significant coefficients being
zeros,

d0 = . . . dmq−1 = 0 , dmq 6= 0

then it is possible to factorize A(z) so that

A(z) = Q(z) · Â(z) (9)

where Q(z) is a nilpotent polynomial matrix such that

detQ(z) = zmq (10)

and Â(z) is a non-nilpotent polynomial matrix, that is, having only nonzero eigenvalues.

In sec. 4, we are going to prove Lemma 1 by construction. As far as Lemma 2 is
concerned, it is possible to note that a polynomial matrix A(z) with a singular least signif-
icant coefficient, A0, can be replaced by a matrix A(z−1) in which A0 is moved to the most
significant position, as in Lemma 1. We will elaborate on it in sec. 4

3



3 Multivariable ARMA Model Interpretation

Consider a discrete-time dynamic system with n output signals, y(k), and ni input signals,
u(k), described by the following ARMA (left polynomial fraction) model in the operator
form

A(z)y(k) = B(z)u(k) (11)

where the output matrix, A(z), is as in eqn (1), and the input matrix, B(z), is a n × ni

polynomial matrix of degree p− 1. The characteristic polynomial of the dynamic system is
given by eqn (3), hence, the system order is m. After multiplication by z−p eqn (11) can be
first rewritten as,

(Ap + Ap−1z
−1 + . . .+ A0z

−p)y(k) = (Bp−1z
−1 + . . .+B0z

−p)u(k) (12)

and subsequently as

Apy(k) = −
[
Ap−1 . . . A0

] 
y(k − 1)

...
y(k − p)

 +
[
Bp−1 . . . B0

] 
u(k − 1)

...
u(k − p)

 (13)

It is easy to note that in order to obtain the modelling ARMA form in which the current
value of the output signals, y(k), is a matrix linear combination of the past output signals,
y(k− i), and input signals, u(k− i), the leading coefficient, Ap must be nonsingular, that is,
the output matrix, A(z), must be proper. However, each time when the system order, m,
the number of outputs, n, and the maximum system delay, p, satisfy eqn (5), the leading
coefficient Ap is singular. In such a case, applying the results of Lemma 1, the dynamic
system 11 can be modified by premultiplication by a nilpotent matrix Q(z as in eqn (8)
which yields the following

Q(z)A(z)y(k) = Q(z)B(z)u(k)

or, finally
Â(z)y(k) = B̂(z)u(k) where B̂(z) = Q(z)B(z) (14)

Now the leading coefficient, Âp is nonsingular, and the ARMA model as in eqn (13) can be
effectively formed.

4 The Algorithms

Before we formulate the algorithm to find Q(z) which can be used to convert a polynomial
matrix into a proper form, as in eqn (8), we first introduce convenient building blocks of the
algorithm. Consider a family of elementary nilpotent n×n first degree polynomial matrices
in the following form:

Uk(z) = Uk0z + Uk1 =

[
0 Ir
zIk 0

]
, k + r = n (15)

4



Note that
detUk(z) = ±zk (16)

The block column matrix of coefficients of Uk(z) is of the size 2n× n:

Uk =

[
Uk0

Uk1

]
=

 0r

In
0k

 (17)

Matrices Uk(z) have the shift-up property, that is, Uk(z) · A(z) shifts rows of the block-
column matrix of coefficients of A(z) up by k positions as presented in Figure 1.

rrr
rrr

���
�:

���
�:

6

?

� -

6

?

6

?





Ap

Ap−1

0r

n

n
k

A(z)

Uk(z) · A(z)

Figure 1: A matrix Uk(z) as a shift-up operator

4.1 Making a Polynomial Matrix Proper

Using the above matrices, the algorithm, based on that presented in [3, 4, 5], to find a
nilpotent Q(z) which makes, A(z) proper as in eqn (8) can be formulated as in Figure 2.
This algorithm can be conveniently written in MATLAB.

The algorithm calculates Â(z) and Q(z) as in Lemma 1, and operates on the coefficients
of the polynomial matrix, A(z), arranged in a block-column matrix, the leading coefficient,
Ap, occupying the top position.

At each ith step of the algorithm1, using the QR factorisation, the current leading
coefficient, Ap, is expanded into a product of a unitary matrix, Pi, and a triangular matrix,
Ri. If the rank of Ap is ki, then the triangular matrix Ri has ki zero rows, as presented in
Figure 2. Using a shift-up nilpotent polynomial matrix Uki

(z), the block-column matrix of
coefficients is shifted up by ki positions, and if the new Ap is still singular, the algorithm step
is repeated. Finally, the Q(z) matrix can be expressed as a product of elementary nilpotent

1For the sake of simplicity, in the flow-chart of Figure 2, the successive values of Â(z) are marked A(z),
and the subscript i has been dropped out.

5



�� ��start

?
Q(z) = Im

?

[P R] = qr(Ap)
Ap = P ·R
r = rank Ap

k = n− r

?

�
�

@
@

@
@

�
�

r = n

�
�

�
�stop-Y

?
N

A(z)⇐ Uk(z)P TA(z)
Q(z)⇐ Uk(z)P TQ(z)

?

P T A(z)

0k }

R̂


...

0

0{

Ap

Ap−1


...

��
��*

��
��*

��
��*

P TAp = R =
0 k

rR̂

-� n

Figure 2: The algorithm

matrices, Uki
(z) and unitary n × n matrices, Pi, obtained during the QR factorisation,

that is,
Q(z) =

∏
i

Uki
(z) · P T

i (18)

Eqn (18) is a constructive proof of the Lemma 1.

4.2 Extracting a Non-Nilpotent Factor

The algorithm presented in Figure 2 can be also used to extract the non-nilpotent part of a
polynomial matrix as in Lemma 2 (eqn (9)).

Let us assume that the least significant coefficient, A0, is singular, which implies the
presence of zero eigenvalues.

We first observe that the following matrix polynomial

Ã(z−1) = z−pA(z) (19)

6



have the same coefficients asA(z) only arranged in the reversed order. The leading coefficient
of Ã(z−1) is now A0. If A0 is singular, we can now apply the algorithm of Figure 2 to the
polynomial matrix, Ã(z−1) so that we obtain the following proper polynomial matrix:

ˆ̃A(z−1) = Q(z−1) · Ã(z−1) (20)

Multiplication of eqn. (20) by zp ·Q−1(z−1) yields the following factorization:

A(z) = Q̃(z) · Â(z) (21)

where
Â(z) = zp · ˆ̃A(z−1) (22)

is the non-nilpotent factor representing a non-zero eigenvalue part of the dynamic system
(11) and Q(z) is the nilpotent factor

Q̃(z) = Q−1(z−1) = Pi ·
∏
i

U−1
ki

(z−1) (23)

where the elementary shift matrices are of the following form

U−1
k (z−1) = Vk(z) =

[
0 zIk
Ir 0

]
(24)

Concluding Remarks

The two algorithms presented above aim at making either the most or the least significant
polynomial matrix coefficient non-singular. This is important specifically when the Sylvester
matrices approach is utilised [5, 10].

References

[1] T. Kailath, Linear Systems. New York: Englewood Cliffs, 1980.

[2] F. M. Callier and C. A. Desoer, Multivariabe Feedback Systems. New York: Springer-
Verlag, 1982.

[3] M. W. Rogoziński, A. P. Papliński, and M. J. Gibbard, “An algorithm for the calcula-
tion of a nilpotent interactor matrix for linear multivariable systems,” IEEE Transac-
tions on Automatic Control, vol. AC–32, pp. 234–237, March 1987.

[4] A. P. Papliński and M. W. Rogoziński, “Right nilpotent interactor matrix and its
application to multivariable stochastic control,” in Proceedings of the 1990 American
Control Conference, San Diego, May 1990.

7



[5] P. Stefanidis, A. P. Papliński, and M. J. Gibbard, Numerical Operations with Poly-
nomial Matrices — Application to Multi-Variable Dynamic Compensator Design.
Springer-Verlag, 1992.

[6] MATLAB Function Reference. Natick, MA 01760-1500, USA: The MathWorks, Inc.,
1999. Version 5.

[7] M. Šebek, H. Kwakernaak, D. Henrion, and S. Peichová, “Recent progress in polynomial
methods and polynomial toolbox for MATLAB version 2.0,” in Proceedings of the 37th
IEEE Conference on Decision & Control, vol. 3979, (Tampa, Florida, USA), December
1998.

[8] S. Barnett, Polynomials and Linear Control Systems. New York and Basel: Marcel
Dekker, 1983.

[9] I. Gohberg, P. Lancaster, and L. Rodman, Matrix Polynomials. London: Academic
Press, 1982.

[10] P. J. Antsaklis and Z. Gao, “Polynomial and rational matrix interpolation: Theory
and control applications,” International Journal of Control, vol. 58, no. 1, pp. 349–404,
1993.

8


