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Andrew P. Papliński1, Lennart Gustafsson2, and William M. Mount1

1 Monash University, Australia
Andrew.Paplinski@monash.edu

2 Lule̊a University of Technology,Sweden
Lennart.Gustafsson@ltu.se

Abstract. We present a preliminary model of binding mental objects to their respective spoken names that
aims at mimicking fMRI-tested behaviour. Our model consists of three mutually interconnected association
modules which store mental objects, represent their spoken names and bind these to the mental objects,
respectively. The auditory information is supplied to the unimodal association auditory module from a
sensory or primary auditory module. The mental objects map is created during the learning process by
information from the primary objects module. The information exchanged between modules is reduced to
a 3-dimensional mental ‘label’. It is shown that this highly non-linear dynamic network is able to quickly
reconcile spoken names with congruent and incongruous ‘thoughts’.
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1 Introduction

We present a model of one aspect of processing speech as in the human brain concentrating on the fundamen-
tal problem of how our speech related mental activities excite a variety of interconnected cortical areas. The
current functional neuroanatomy model of speech processing known as the dual-stream model is presented in
[1–4]. This model identifies seven general networks of processing speech information [1]: Spectrotemporal
analysis is carried out bilaterally in auditory cortices, while the Phonological network is responsible for
sub-lexical phonological processing and representation. The model then diverges into two broad streams: the
articulatory stream, concerned with speech development and production, includes a Sensorimotor interface
and an Articulatory network; the lexical stream, concerned with auditory and speech recognition, compre-
hension and lexical access, includes the Lexical interface which links phonological to semantic information
and a Combinatorial network, postulated to integrate lexical and articulatory processing. The final network
in the model is the Conceptual network, a widely distributed system with both posterior perceptual and
more anterior cognitive components. All the above networks are asymmetrically located in both hemispheres
and are also bi-directionally interconnected, resulting in a rather complicated overall structure. Facing such a
complexity we choose to model a small section of the cortical speech processing structure, concentrating on
interaction of the phonological, lexical and conceptual networks.

Our model belongs to the class of models using maps that describe, firstly, mapping multidimensional
sensory signals into a low-dimensionality cortical representation. We direct the reader’s attention to [5] for a
discussion on the existence and significance of cortical maps. For a related neurocomputational account of map-
based processing and its role in speech comprehension and production, see also [6, 7]. In this paper we study
the development of activities over time in modules of our simulated network when thought commands about
different mental objects, in this case animals, and their associated spoken names are simultaneously presented.
This perceptual or mental binding task is considered central to speech understanding and generation. This
case is akin to the fMRI-based study of recognition of spoken words representing animals when subjects had
been cross-modally primed for different animals [8]. Although our work has been influenced by many research
findings, we will only refer to those that are closest to our approach. We first state that the use of Kohonen
self-organizing maps [9] in modeling brain activities is a well-established method. A more recent generalization
is the ability to create networks of such maps. Typically, maps and their interconnections are trained using the
Kohonen learning law, normalised Hebbian learning, or a combination of both as in [10–13, 6, 7].

In our approach, which follows from our earlier works on multi-modal integration ([14, 15]) self-organized
modules form low dimensional labels. These labels are used as afferent signals to up-stream modules, and
may represent any type of perceptual, conceptual or lexical ‘features’, consistent with the neurocomputational
modelling efforts of [16].

2 Initial simulation results

The model presented here is based upon an hierarchical network of idealised cortical modules involved in the
binding of spoken words and names to mental objects. A model, in general, implies a degree of simplification and
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abstraction. In this sense, we do not attempt to represent each and every cortical area taking part in perceptual
and semantic processing of animal names, in particular, or higher-level language and cognitive processes, in
general. Rather our aim is to represent processing in a smaller number of modules or maps aggregating the
processes of several cortical areas. Such simplifications allow us to present better how our computational tools
and methods can be useful in studying problems related to mental objects or concepts and their spoken or
written names.

In our simulation experiments we connect four main modules representing four cortical areas, arranged as
shown in Figure 1. These areas store, represent and perform the following functions

– Mental Objects map (MO) which stores mental concepts, i.e., combination of perceptual features, of 30
animals, including a tiger as shown in Figure 1.

– Sensory Auditory map (SA) modelling aspects of primary auditory function.
– Unimodal Association auditory map (UA) which performs sub-lexical processing of auditory information

and projects the spoken names to the bi-modal association map.
– ‘Bimodal’ association map (M+A) where perceivable mental objects and their corresponding spoken names

are lexically bound together

Before we describe technical details of the structure and functions of the simulation network, let us imagine, with
reference to Figure 1, that an fMRI scan has been taken when a human subject has been thinking about and
listening to a spoken name ‘tiger’. Our simulation model consists of only four cortical-like areas that respond
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Fig. 1. Interconnection of four simulated cortical maps: MO – Mental Objects map, M+A – Bimodal association map:
mental objects and auditory names, UA – Unimodal association Auditory map, SA – Sensory Auditory map

to this stimulus. The spoken word excites cortical patches representing the mental object ‘tiger’ in its four
manifestations as shown in Figure 1. Note that there is a feedforward path from low-level sensory area (SA)
through the unimodal association area (UA) to the bimodal binding area (M+A). Similarly a forward pathway
exists from the ‘conceptual’ mental objects area (MO) to M+A. These direct feedforward paths assure that
the binding process is rapid – at least in the case of congruous thoughts and inputs. In the case of incongruity
between the mental object and the spoken word (I think ‘horse’, you say ‘tiger’) a feedback loop is activated
from the M+A area back to the to MO and UA areas. We discuss details and provide examples of activations
of the feedforward and feedback paths in the following sections. We also consider the crucial question of what
information is actually passed between the maps.

3 Modules and Maps

Each module consists of a number of artificial neuronal units randomly located in a circular area. Relative
positions of ‘neurons’ inside the circle are described by the position matrix V. The total number of neurons is
selected in proportion to the number of objects represented by the module and in our case, having 30 objects,
the number of neurons is approximately 30× 30 = 900, which is the number of rows in the weight matrices W
characterizing the synaptic strengths in each module.

Conceptually we have two types of modules: sensory modules and association modules. Sensory modules
operate on a relatively large number of afferent signals and produce a low-dimensionality efferent signal labeling
the sensory object. This label information consists of a three-dimensional vector encoding the relative location
of the excited neuron within a given cortical patch, supplemented by the post-synaptic activity level of this
neuron. Such labels form a universal representation of all information passed between object maps within the
hierarchical model. Association modules, in turn use these labels as their afferent signals and produce efferent
labels encoding positions of activated neuronal patches within these maps. This is a fundamental property of
our model.

In Figure 3, which we will discuss in detail later, we present an example of three maps, namely, Mental
Objects, MO, Unimodal association Auditory, UA, and Bimodal association, U+A maps. In the maps, neuronal
positions are marked with the yellow dots and the map area is tesselated with respect to the peaks of neuronal

2

Volume 11, No. 2 Australian Journal of Intelligent Information Processing Systems



activities for each stimulus. We can recognize the patch for ‘tiger’ and compare it with the activity surface for
the same stimulus in Figure 1. Note that the tessellation pattern depicted in Figure 3 is rather nominal and an
approximation to the specific cortical activity map as in Figure 1.

The objects or spoken names are ‘placed’ in the relevant cortical area during the learning process. Once the
learning is completed, the cortical area responds with an activity pattern characteristic to each stimulus. The
operation of a cortical module is functionally equivalent to mapping the higher dimensionality input space to a
three-dimensional output space.

It is assumed that during normal operation each association module performs a static non-linear mapping
of the form:

yMA = g(xMA) , xMA = [yMO,yUA]

where x and y represent input and output signals, respectively and g(·) describes the Winner-Takes-All function
of WMAxMA.

4 The structure and operations of the network

The modules as described above are connected into the network presented in Figure 2. The top row consists
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Fig. 2. The four-plus-one map network

of three mutually interconnected association modules with the ‘bimodal’ integration module (M+A) binding
mental objects from the MO module to their spoken names from the UA module.

The auditory sensory module SA operates upon a pre-processed representation of the spoken animal names.
The names have been obtained from the Merriam-Webster online dictionary [17]. During pre-processing each
name was converted into 36 mel-cepstral frequency coefficients using the VoiceBox toolbox [18] for MATLAB

[19]. For each waveform we use three windows overlapping by 50% each window producing 12 mel-cepstral
coefficients. The output of the sensory auditory (SA) module is a three-dimensional vector ySA indicating the
relative position of the maximum excitation neuron and its relative postsynaptic strength.

To create the map of mental objects, MO, we first categorize selected animals in the additional primary
objects module, P. During the learning process this module is supplied with a feature vector xP describing the
animals. Following training, the object categorizing module P is disconnected and the signal yP is interpreted
as thought commands used for recalling mental objects stored with the module MO.

Adding feedback to a highly non-linear and complex network is always a challenge. For the bi-modal asso-
ciation module we can write the following formal dynamic equation:

yMA(t + 1) = M(yP(t),ySA(t),yMA(t)) (1)

however this does not help apart from emphasising the recurrent and non-linear nature of the network. Nonethe-
less from the simulation perspective it is pleasing to note that the trained network settles immediately if we
apply known stimuli congruent with the thoughts. In other words, if the labels in the network are known and
congruent, the network quickly converges to a stable state.

In order to improve performance of the network, particularly during the learning phase, we project all n-
dimensional vectors onto a surface of a n+1-dimensional unity hypersphere. Working with unity vectors makes
it easy to compare them by calculating relevant inner products. This allows us to use a simplified dot-product
learning law [9]. The sensory-level maps, P and SA, are trained first, independently of each other, producing
maps similar to that presented in Figure 3. The learning parameters are carefully selected so that learning
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Fig. 3. Incongruent, but similar objects (think ‘cat’, hear ‘dog’). The red line is the trajectory of winners. The starting
and terminal points are marked with ‘�’ and ’*’, respectively. Relative post-synapic strength is measured as cos α

proceeds relatively quickly through the competition and cooperation phases (see [9] for details). After a few
hundred epochs the maps are typically fully developed. The three association modules forming the recurrent
part of the network are then trained together. This time, after each learning step we perform several relaxation
steps running the network as in eqn (1), until all efferent signals in the network are constant. There is a limit
on the number of iterations imposed that is important in the initial learning stages. Once the maps are fully
developed, the network stabilizes quickly after a small number of iterations depending on congruence between
the thoughts and auditory inputs.

5 Simulating incongruent thoughts and names

Now we can conduct number of tests exposing the network to congruent, noisy and incongruent stimuli. When
we apply auditory sensory inputs congruent with internal ‘thoughts’ the network quickly activates corresponding
patches across cortical areas as in Figure 1. In our previous works we tested responses of similar networks [14, 15]
to congruent, but noisy stimuli (phonemes and letters). Here we present the results for incongruent ‘thoughts’
and objects’ spoken names. In general we have identified three basic types of behaviour depending on the level
of similarities between the incongruent objects and related thoughts.

First we consider the situation when the objects are similar, but names are dissimilar e.g. think ‘cat’, hear
‘dog’. The results of such simulation are presented in Figure 3. In this simulation only three association modules:
MO, UA and M+A, which are interconnected by the feedback loop (see Figure 2) actively participate. At the
starting point, the MO module thinks ‘cat’, whereas the auditory unimodal association module UA hears the
word ‘dog’. The bimodal association map, M+A is arbitrarily initialized with a mental object ‘cat’. This initial
state is marked on three maps in Figure 3 with the ‘�’. Since these positions have been learned during the
training procedure, the relative post-synaptic strengths are initially at their maximum value, as seen in the plot
in Figure 3.

Due to the corrective feedback through the network, the perceptual strengths at each of the maps varies
from the initial points, but after just five steps, settles to a stable pattern of activity. The MO and M+A maps
confabulates from their initial ‘cat’ position to a position in the ‘dog’ area, with a post-synaptic strength that
indicates that the level of confidence has been reduced (see the plot in Figure 3) because the thought ‘cat’
is still being supplied. Similarly, the auditory UA map shifts its response from the original ‘dog’ positions to
modified positions within the same patch, showing slightly reduced confidence levels. This is a good result in
two respects, processing speed and correctness; the maps quickly negotiate the initial confusion and select a
sensible, “predominantly ‘dog’ ” solution.

The space limitation allows for only a brief description of two other types of results. Consider now the
think ‘frog’, hear ‘dog’ situation when the objects are dissimilar but the names are acoustically similar. In this
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case the network quickly settles to a solution when the thought prevails: the UA map moves from the initial
‘dog’ position into the ‘frog’ area. Finally, when both, objects and names are dissimilar, the maps can oscillate
between two positions until the thought is changed to coincide with the name.

We hope that the above examples clearly demonstrate the power of presented simulation model.

Conclusion

We presented a model for binding spoken names to mental objects and provide preliminary results to demonstrate
how this can potentially emulate several realistic cognitive behaviours related to speech and language processing.
These include the virtual immediacy by which object names are perceptually bound to perceivable objects during
typical human activities such as reading and listening, cognitive delays typically experienced when resolving
conflicts with partially incongruous, or perhaps misheard auditory information and even the rivalrous sequences
of perception or oscillating mental activity that can result when exogenous stimuli (evidence of the senses)
contradict endogenous patterns of thought.

In the interest of maintaining structural simplicity of the model, several assumptions have been made and
in the case of the mental objects map, the distinction between perceptual modalities, conceptual categories
and semantic relationships have been somewhat blurred. This simplification has distinct advantages in terms of
computational efficiency, allowing conceptual information to be encoded as arbitrary lists of features and object
qualities. In a more comprehensive and biologically realistic model, the auxiliary ‘P’ module could be divided
into specific sensory modalities or sub-modalities, used to represent visual, tactile, spatial or other modally-
grounded perceptual features applicable to mental object categories (such as animals). The representation of
the mental objects would then involve a multi-modal integration of such features and lexical binding of these
to their associated written or spoken names.
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