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Abstract. The Radon transform in combination with self-organizing

maps is used to build the rotation invariant systems for categorization of

visual objects. The first system has one SOM per the Radon transform

direction. The outputs from these directional SOMs that represent posi-

tions of the winners and related post-synaptic activities, form the input

to the final categorizing SOM. Such a network delivers robust rotation

invariant categorization of images rotated by angles up to around 12o. In

the second network the angular Radon transform vectors are combined

together and form the input to the categorizing SOM. This network can

correctly categorized visual stimuli rotated by up to 30o. The rotation in-

variance can be improved by increasing the number of Radon transform

angle, which has been equal to six in our initial experiments.

Keywords: Radon transform, Self-organizing maps, Rotation invariant

vision.

1 Introduction

Radon transform has a long history of application in computer tomography, and
relatively recently has been applied in a variety of image processing problems.
Typically, Radon transform is used in conjunction with other transforms, wavelet
and Fourier included. Magli et al. [1] and Warrick and Delaney [2] seem to
initiate the use of Radon transform in combination with wavelet transform. More
recently, a similar combination of transforms has been used in rotation invariant
texture analysis [3,4], and in shape representation [5]. Other approach to rotation
invariant texture analysis uses Radon transform in combination with Fourier
transform [6]. Chen and Kégl [7] consider feature extraction using combination
of three transforms: Radon, wavelet and Fourier. In [8], texture classification
is performed by using a feature descriptor based on Radon transform and an
affine invariant transform. Miciak [9] describes a character recognition system
based on Radon transform and Principal Component Analysis. Hejazi et al. [10]
present discrete Radon transform in rotation invariant image analysis. Close to
our considerations are object identification problems discussed by Hjouj and
Kammler in [11].
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In the above papers the reader can find many variants of detailed description
of Radon transform and its properties. Here, we can only reiterate the basic fact
that Radon transform, R(θ, r), is composed of sums of pixels along the line that
crosses the visual object under the angle θ at the distance r from the origin. It
can be noted that Radon transform of the image rotated be a known angle, θ,
can be easily inferred from the transform of the un-rotated image. This property
makes Radon transform attractive in rotation invariant vision systems.

In this paper we use combination of Radon transform and Self-Organizing
maps [12]. Our original idea was related to the way in which human vision could
possibly recognize rotated characters as in a process of reading. However, the
presented solutions can be used in a variety of systems of rotation invariant cat-
egorization of visual objects. We discuss two networks of self-organizing modules
that perform the above task in different way.

2 One SOM Per Direction

We start with the system presented in Figure 1in which there is one dedicated
self-organizing module, Dir, per Radon transform direction. The image is pre-
sented at the receptive field, RF, and is randomly sampled at the points symbol-
ically indicated as green dots. Each line crossing the receptive field symbolizes
the ‘dendritic’ summation of image pixels implementing a single point of Radon
transform for a given line, (θ, r). In the example of Figure 1 Radon transform
is calculated for m = 6 angles, along the n = 8 lines, hence, dimensionality of
each vector xD is n = 8, whereas the number of self-organizing modules, Dir, is
equal to m = 6, that is, the number of Radon transform directions, θ.

In our particular computational examples presented below the diameter of
the receptive field, RF, is n = 75 pixels normalised into a unity circle. We
use letters of the Latin alphabet in 28-point font as the set of the test images.
Each directional self-organizing module contain a randomly generated number
of neurons approximately equal to πr2, where r is selected to be equal to 16.
Hence that number of neurons varies around 804. Each module produces a 3-
dimensional output yD:

yD = g(xD) (1)

where xD and yD represent input and output signals, respectively, and g(·)
describes the Winner-Takes-All function of WDxD which produces a 2-D po-
sitional vector v and related postsynaptic activity d. Such 3-D outputs can be
thought of as low dimensional signatures, or labels, specific for each input to the
self-organizing modules. In this we follow our other works [13,14,15].

In Figure 2A we show the result of training one of the directional maps, Dir,
namely, the 60o map. Each map is excited with n-dimensional vectors (n = 75
in our example) representing the value of Radon transform for a given direction,
θ. Each Dir map encapsulates directional similarities of the letters capturing
features characteristic for a given direction. The 3-dimensional signatures, or
labels, yD, generated by directional maps are then applied to the combined map,
TrImg. An input vector xT is of dimensionality 3m, where m is the number of
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R0

R30

R60

R90
R120

R150

RF

x n

v,d

x

3

Dir
W V

Dx nDx nDx n Dx n Dx n

Dy Dy
Dy DyDy Dy

3mTx

yT

v,d

x

3

Dir
W Vv,d

x

3

Dir
W Vv,d

x

3

Dir
W V v,d

x

3

Dir
W V v,d

x

3

Dir
W V

v,d V

x

3

W

D

TrImg

Fig. 1. The categorization network with one self-organizing module per Radon trans-

form direction

Radon transform directions. More formally, for the combined module, TrImg,
we can write:

yT = g(
m∑

i=1

WTiyDi) (2)

After training we obtain a combined map as presented in Figure 2B. It can
be observed that the combined map captures, as expected, visual similarities
between letter.

Now we test the responses of the trained network to the rotated images of
letters. The results are presented in Figure 3. We rotate the letters by 2o angles
varying from −12o to 12o as indicated in the map. Firstly, it can be noted
that majority of the rotated letters are correctly clustered. The quality of the
clustering is indicated by the right-hand side plots. The upper plot gives a relative
confidence level as measured by the inner products of respective weights and
input vectors (see sec. 4 for details). Since these are unity vectors, the maximum
of the inner products is equal to 1. The bottom-left plot gives the average size
of the rotated letter clusters. Again the radius of the neuronal circle is unity,
which gives an idea about the size of the clusters.
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Fig. 2. The result of training maps. A: A directional 60o Dir map. B: A combined

categorization map.
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Fig. 3. Categorization of rotated letter by the first network

Although it is encouraging that the above network deliverers categorization
invariance for relatively small angles, it would be interesting to find a solution
that was invariant to relatively large rotation angles. One possibility is pre-
sented in the next section. With reference to eqn (2) and Figure 1 we note that
if we rotate the image by the Radon transform angle, it is equivalent to shift-
ing responses, yDi, between the directional self-organizing modules. This gives
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the potential of the perfect rotation invariant behaviour. This potential is lost,
however, when we multiply yDi by the segments of the weight matrix WTi that
have been trained for non-rotated images.

3 The Single-SOM Network

In this solution we have replaced the directional SOMs by simple summations,
as shown in Figure 4. The circular ‘dendrites’ symbolize the summations of the
respective Radon transform rays. The resulting vectors xS are of dimensionality
n = 75 (8 in Figure 4), and are inputs to a single categorizing SOM, TrImg.
More formally, we can write:

xS =
m∑

i=1

R(θi, r) , yS = g(WT xS) (3)

where R(θ, r) is a Radon transform matrix for a given image and vectors θ, r
of all possible angles and lines, respectively. Summation over all Radon trans-
form angles does remove directional sensitivity, but, unfortunately, ignores the

RF
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Fig. 4. The categorization network with summed Radon transform and a single SOM
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Fig. 5. Categorization of rotated letter by the first network

richness of the image details contained in the full Radon transform. It is, how-
ever, expected that the network will correctly classify images rotated by larger
angles that in the network of Figure 1. The results of testing the behaviour of
the network of Figure 4 are presented in Figure 5. This times we rotate the test
images by angles varying from 5o to 30o. Comparing with the results presented
in Figure 3 we note that visually the letters are also well clustered despite of
larger rotation angles. This is reflected in the left hand side bottom plot of the
average location error, and is confirmed by the higher values of the confidence
level presented in the upper plot.

4 Some Implementation Remarks

All input vectors applied to the self-organizing modules, e.g., xD in eqn (1), or
xS in eqn (3), are normalised and projected on the unity hypersphere by adding
one additional dimension. Similarly, all weight vectors are kept on the unity
hypersphere. As a result of such an arrangement the inner products of weight
and input vectors are equal to the cosine of the angle between such vectors.
Working with unity vectors makes it possible to use the dot-product learning
law [12] which speeds up the training.

The neuronal lattice is organized in such a way that each neuron is assigned a
random position inside a unity circle (see Figure 2). By adding third dimension
the position vectors are projected on a 3-D unity sphere. All position vectors
are stored in the position matrix V of dimension N×3, where N is the total
number of neurons.
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5 Conclusion

We have described preliminary investigation of two networks combining Radon
transform and self-organizing maps that are used in categorization of rotated
images. Radon transform is easy to implement since it involves only summation
of image pixel values along the set of parallel lines crossing the image under a
specified set of angles. We have shown that such networks can produce a degree
of rotation invariance that can be attractive both in image processing tasks and
in analysis of aspects of human vision.
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