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Abstract. In this paper we use the Elastic Net (EN) [9] as a visual
category representation in feature space. We do this by training the EN
on the high dimensional Pyramid Histogram of Visual Words (PHOW)
features [2] often used in modern visual categorisation. By employing
the topography preserving properties of the EN we visualise the features
and draw some novel conclusions. We demonstrate how the EN can also
be used as a Region of Interest detector [I]. Finally, inspired by bio-
logical vision we propose a new Visual Categorisation scheme that uses
ENs as visual category representations. Our method shows promising re-
sults when tested on the Caltech101 [12] data set with several interesting
future directions.

Keywords: Elastic Net, Visual Categorisation, Object Recognition,
Caltech101.

1 Introduction

In this paper we use the EN [J], a type of probabilistic self-organising map,
to form a visual category representation in the high dimensional Pyramid His-
togram of Visual Words (PHOW) [2] feature space frequently used in modern
Visual Categorization systems [5]. Employing the topography preserving prop-
erties of the EN we are able to visualise the PHOW features and draw a number
of novel conclusions. We also demonstrate the potential of using the EN as a [2]
detector. We then continue to suggest a novel recognition framework that uses
ENs as category representations in the PHOW feature space.

The task of Visual Categorisation (assigning an image to a category by pro-
cessing the image) remains one of the principle problems of Computer Vision. In
recent years, a general recognition scheme has emerged that is able to produce
good results in challenging data sets such as Caltech101 [12] or the PASCAL
Visual Object Class Challenge [I1]. Central to this scheme is the representation
of image patches by robust and invariant features. The high dimensionality of
these features makes interpreting them in an intuitive way difficult. As the fol-
lowing sections will demonstrate, using the EN as a category representation in
feature space we are able to asses these features, comment on their parameters
and also compare images in a intuitive and useful way.
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The modern approach to visual categorisation can be broadly divided into
the following four steps: extraction of local features (e.g. [2002]), construction of
characteristic codebook, encoding of an image descriptor (see [5[7]), and training
of a classifier (e.g. SVM, Naive Bayes).

As the system’s performance depends on all of the above steps, comparison
of different schemes is difficult. This issue has been rectified to some extent
in [5] where different encoding methods have been compared, keeping the type
of features and codebook size consistent. Inline with this comparison, we have
chosen to study the PHOW features. Further we will use the VLFeat library [23]
to compute these features, maintaining the default settings as in [5].

1.1 Elastic Net

The Elastic Net (EN) was first developed as an analogue approach to the Trav-
eling Salesman Problem [9], and is well known as a model for activity dependent
plasticity in V1 [13].

In the EN, nodes are evenly spaced on a latent space (usually 2D) lattice.
Each node m has a position vector v,, € R? and a weight vector w,, € RP. A
set of observation X = {z1,29,...,ox},2, € RP, is introduced for which the
weights are updated according to the following rule:

Awyy, = anm(wm —xp) +ak Z Wi — wj|2 (1)

n JEAm

Here A, represents the set of weights in the ‘lattice neighbourhood’ of node m,
and « and k are parameters. Typically, A, consists of the nodes directly South,
North, East and West from node m and this is the arrangement we employ here.
The terms py,,, are the ‘responsibilites’ given by
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An EM type algorithm [8] is employed where at each iteration the responsi-
bilities (2]) are calculated, followed by the update equation () and consequent
recalculation of the responsibilities. Throughout this process the parameter k is
gradually reduced so that the weight of the ‘continuity’ term (second term in
(@) compared to the ‘coverage’ term (first term in () is reduced.

In a probabilistic formulation the EN can be interpreted as a mazimum a
posteriori estimate for a Gaussian Mixture Model (GMM) with a prior over the
weights [10]. Detailed analysis of the EN and the properties of this prior can
be found in [4]. Our choice of the EN over other topography preserving maps
is based on our previous work with this model [6], its biological relevance and
its probabilistic interpretation. Throughout this work we only consider the case
where the latent space is two dimensional and may thus refer to the EN as a
map’.
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2 Using the EN as a Visual Category Representation

We form a visual category representation in the high dimensional PHOW fea-
tures by training an EN on the concatenated features from a set of training
images of a given category. To visualise this representation we select one train-
ing image and one test image and apply their features to the EN. For each
feature we plot the mean location on the 2D map, given by w, = > prmUm.
To improve the visualisation we assign a colour to each feature by transforming
the mean location to the green and blue components, keeping the red component
fixed. We use the same colour to mark the feature’s patch on to the original im-
age. We demonstrate this on the ant category from the Caltech101 data set. To
train the map, 15 images are chosen in random. Fig.[Th and b show the training
and test images we used to visualise.

& iy 200

(a) (b)

Fig. 1. Images from the ant class in Caltech101. (a) An image used in training the EN.
(b) An image used for testing.

Fig.Zh and b show the training and test images with the patches superimposed
and coloured as described. A MATLAB [I7] version of the EN is available from
[B]. Fig. Bh and b show the mean locations for the training and test image
respectively. The gradual shifts in colour seen in Fig. [2] corresponds to nearby
features (features from adjacent patches) being mapped to nearby nodes on the
map. The visualisation suggests that strongly overlapping patches will result in

Fig. 2. Visualising the PHOW features. The feature patch is marked by a circle and
coloured according to the mean location.
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Fig. 3. Mean locations of the training (a) and testing (b) images’ features on the
trained EN

a feature data set that contains duplicate (or very similar) features. This may
unduly increase the computational time in the codebook construction and image
encoding stages (section [I)). In the case where features are extracted over a few
different scales (spatial bin of the PHOW feature), the larger scale features will
contain more duplicates (as the patches will overlap more). This may skew the
quantisation stage towards the possibly over represented, larger scale features.

If many duplicates are present than an an incremental rather than batch type
quantisation approach may converge faster. To reduce redundancy in the data
set the larger scale features can be evaluated at larger step sizes, so that there
is no greater patch overlap in the larger scale features.

The high dimensional features are not directly interoperable as more intuitive
concepts such as “ant rear leg”. Using the visualisations we can identify such
concepts. For example, for the images in Fig. [l (which were intentionally chosen
as similar) we may expect to find similar colours and colour shifts in similar
parts of the ant. This is observed to some degree in Fig.[2l For example, the legs
in both images have the same colour and colour shifts. This is less clear in the
area corresponding to the ant’s antennas, which differs between the ant images
(see Fig. ).

We can improve the correspondence between the images by rejecting features
that are not well represent in the map. We do this by thresholding according to
the ‘posterior entropy’ pH,, = >, 10g(pnm)pnm, which provides a measure of
how peaked the posterior distribution is across the map. In Fig. dh we removed
all the features with posterior entropy below the median for the image. Simi-
larly, Fig. @b shows the remaining mean locations. The correspondence with the
training image is now clearer.

It can be seen in Fig. [@h that features corresponding to the ‘copywrite’ symbol
are removed by the posterior entropy thresholding. By filtering in this way we
may use the map as a Region of Interest Detector. We demonstrate this on an
ant image with a more challenging background in Fig.
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Fig. 4. Visualising the PHOW features by thresholding the posterior entropy (a) Vi-
sualisation after thresholding the posterior entropy. (b) Mean locations of the features
after thresholding.

(a)

Fig. 5. Using the EN as a Region of Interest Detector

3 New Recognition Framework

In this section we demonstrate that the category representations formed by ENs
can be used in visual categorisation. Our approach draws on biological vision
where there is some evidence that distinct region of the cortex represent high level
categories such as faces, animals etc. [I4]. Given that the EN is an established
model for plasticity in V1 [13], we motivate the idea that a similar process may
also occur in higher visual processing areas.

First we extract the PHOW features from a number of training images for each
category. The features are concatenated together to form the training data set for
an EN. That is, each category is represented by an EN. In the testing stage, the
test image’s features are provided to each map. The image is then assigned to the
map with the highest log-likelihood. This scheme is demonstrated in Fig.[6l Our
approach is considerably simpler than that described in section [l doing away
with both the encoding and the classification stages. Further, since a classifier
is not employed, categories can be added on the fly by adding another map.
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Fig. 6. New recognition framework

To the best of our knowledge this is the first application of ENs combined with
PHOW features for visual categorisation. Related work in facial recognition and
content based image retrieval can be found in [I6] and [21].

3.1 Experimental Setup

We evaluate the system on the Caltech101 data set. The only pre-processing we
preform is to scale the features so that the the collection of features describing
each image has components in the range [0 — 1]. The model parameters for the
EN are m, « the initial and final values of k (ki and kenq) and the number of
iterations (which determines the rate of annealing). Using the visualisation from
the previous section and with some further experimentation we found that the
following values yield good results. m = 64, = 10, k;,, = 1, kepg = 0.1, iter =
1000. We use this setup for all maps.

Table[dlshows our results for different step and bin sizes of the PHOW features.
The results are obtained by averaging three runs with 15 random training images
and up to random 30 testing images (some categories have less than 45 images)
for each category.

As can be seen from Table [I] the performance varies significantly with the
choice of spatial bin size. To account for this scale variability we add the log-
likelihood from each corresponding map and use this new, cumulative quantity

Table 1. Average recognition rate for different PHOW Step and Spatial Bin sizes

|Step Size, Spatial Bin Size|Average recognition rate|

[4,4] 34.56 + 1.1
[5,10] 45.15 £ 1.2
10,20 50.34 + 0.5
15,30 47.48 £0.8
Cumulative 54.60 &= 1.0
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as our decision criteria. The results for this approach are shown on the last row
of Table [l and improves the performance by a further ~4.5%

These results are comparable with earlier attempts at visual categorisation of
this data set [20U18]. However, still ~10% shy from the state of the art (single
feature) models which achieve ~64% [23].

3.2 Discussion

There are several modifications that will improve the system’s performance.
Firstly, the EN can be extended to include arbitrary covariance rather then the
uni-variance used. Also, the parameters for each map can be optimised separately
through Bayesian estimation of hyper parameters [22]. A Variational treatment
similar to that in [19] is also possible. Our approach did not use any spatial binning
to capture geometric information [I5/1] which will likely improve our performance.

Since we train a map for each category it is possible for maps to share features.
For example, if we assume that we are able to correctly discriminate between the
top three maps (based on the cumulative LLH) than our performance improves
to ~68%. One way of addressing this would be to employ a hierarchical struc-
ture. Another could be to train the EN in a more discriminative manner by, for
example, considering the other ENs nodes when computing the responsibilities.
It seems reasonable to assume that with some of these suggested improvements
our method will rival the state of the art.

Our approach also offers some advantages. Firstly, it is both simple and trans-
parent in the sense that each map represents a category. Secondly, categories can
be added on the fly by simply training another map. Different types of features can
easily be incorporated by training another EN. Our approach is also parallelisable
since each map can be trained and tested independently of the other maps.

4 Conclusion

In this paper we used the Elastic Net as a visual category representation in feature
space. Using this representation we visualised the high dimensional features and
drew some novel conclusions about the PHOW feature parameters. The visuali-
sation also allowed interpretation of the features in terms of higher level concepts.
We demonstrated that the EN could be used as a Region of Interest detector by
rejecting features that were not well represented by the map. We proposed a new
recognition scheme that uses ENs as visual categories and demonstrated its valid-
ity. We suggested a number of possible improvements that would make our pro-
posed approach competitive with the state of the art, while maintaining some key
advantages such as simplicity and being able to add categories on the fly.
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