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Abstract—In this paper we compare the self organising capa-
bilities of the Generative Topographic Map (GTM) [1] and Elastic
Net (EN) [2]. We analytically compare the two algorithms and
examine the different ways in which they preserve topography
by considering their respective ‘state space trajectories’. We
present simulations that demonstrate the differences between the
two algorithms. We conclude by using the GTM to simulate
the formation of Ocular Dominance (OD) stripes and compare
against earlier simulations using the EN. Our findings indicate
that the GTM produces patterns with some of the required
characteristics and match results obtained with the EN to a
degree.

Index Terms—Generative Topographic Mapping, Self-
organisation, Elastic Net, Ocular Dominance

I. INTRODUCTION

In this paper we compare the self organising capabilities of

the Generative Topographic Map (GTM) [1] and Elastic Net

(EN) [2]. We present analytical and experimental comparisons

and investigate the way topography is preserved by considering

the algorithms in ’state space’. We present simulations that

highlight the differences between the two algorithms and

conclude by using the GTM to simulate the formation of

Ocular Dominance (OD) stripes.

Today topography preserving latent space models are widely

used for data visualisation and dimensionality reduction in a

variety of fields (e.g. [3], [4], [5]). The best known such model

is the Self-Organizing Map [6]. Much of the current research

is focused on formulating and improving these models through

probabilistic treatments, in line with current trends in Machine

Learning [7], [3]. Both the GTM and EN are examples of such

probabilistic models and are often referred to as probabilistic

alternatives to the SOM. One prominent use of the EN is

to model the formation of OD stripes, which are formed as

neurons in early visual processing associate more strongly

with one of the two eyes. This results in a stripe-like pattern

segregating neurons with different ocular preferences [8], [9],

[10]. The use of self organising models to simulate this phe-

nomena is often motivated under a ‘wire length minimisation’

approach, where the brain is alleged to develop in a way that

minimises the length of neuronal connections [11], [12]. From

a functional perspective, it has been suggested that the brain

may utilise such an ordered representation in a hierarchical

fashion to reduce the dimensionality of the input space [13].

The EN and SOM match the experimentally observed OD

patterns very closely, motivating the idea that the Hebbian

type learning which both algorithms employ underlies the

formation of the observed pattern [14], [9]. It is therefore of

interest to determine whether other such models are able to

produce these patterns. The model of interest to us is the GTM

as the way in which it preserves topography offers biological

interpretation in the form of a feed-forward neural network

(I-B). Such feed-forward models have been used in earlier

attempts to model OD stripes [10] and remain a successful

model and active area of research in modelling of early visual

processing [15].

Further, there is a large body of work in Computational

Neuroscience that has successfully employed probabilistic

treatments [16], [17], [18]. Probably the most extensive such

example is the recently proposed free-energy principle [19],

[20], [21] which is centred around a type of probabilistic

inference. Therefore, explaining the OD stripes formation

process using a probabilistic model may allow us to generalise

some of these treatments.

A. Elastic Net

The Elastic Net (EN) was first developed as an analogue

approach to the Travelling Salesman Problem [2].

In the EN, nodes (corresponding to neurons or neuronal

populations) are evenly spaced on a latent space (usually 2D)

lattice. Each node m has a position vector vm ∈ R
2 and a

weight vector wm ∈ R
D. A set of observation xn ∈ R

D X =
{x1, x2, ..., xN} is then introduced for which, the weights are

updated according to the following rule:

Δwm =
∑
n

ρnm(wm − xn) + αk
∑
j

|wm − wj∈Λm
|2 (1)

Here wj∈Λm
represents the weights of a node j, and Λm con-

tains all the nodes in the ‘lattice neighbourhood’ of node m,

and α and k are constants. Typically, only nearest neighbour

interaction (directly South, North, East and West) is assumed.

The terms ρnm are the ‘responsibilities’ given by

ρnm =
Θ(xn|wm, k)∑
s Θ(xn|ws, k)

(2)

with Θ(xn|wm, k) = exp(−|xn−wm|2
2k2 ).
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An EM type algorithm [22] is employed where at each

iteration the responsibilities (2) are calculated, followed by

the update equation (1) and consequent recalculation of the

responsibilities. Throughout this process the constant k is

gradually reduced so that the weight of the ‘continuity’ term

(second term in (1)) compared to the ‘coverage’ term (first

term in (1)) is reduced.
One advantage of the EN over the SOM is that it can be

seen to preform a gradient decent on the following energy

function:

log p(X|W,k) =

−k
∑
n

log
∑
m

N(xn|wm, k) +
1

2
α
∑
m

∑
j

|wm − wj∈Λi |2 (3)

where N(xn|wm, k) is the normal distribution with mean wm

and variance k, X is a D×N matrix with columns given by

{x1, x2, ..., xN} and W is a D×M matrix with columns given

by {w1, w2, ..., wM}. In a probabilistic formulation this energy

function can be interpreted as maximum a posteriori estimate

for a Gaussian Mixture Model (GMM) with a Gaussian

Process prior over the weights:

p(xn|W,k) =
1

M

∑
m

N(xn|wm, k) exp(− 1

αk

∑
m

∑
j

|wm − wj∈Λi
|2) (4)

Detailed analysis of the Elastic Net and the properties of this

specific prior can be found in [23], [24].

B. The Generative Topographic Mapping
Consider a latent space consisting of a square lattice with

M nodes evenly spaced on it. As in the EN, each node m has

a position vm ∈ R
2 and a weight vector wm ∈ R

D. In the

GTM the energy function that is being minimised corresponds

to Maximum Likelihood on a constrained GMM:

log p(X|W ) =
∑
n

log
1

M

∑
m

N(xn|wm, β−1) (5)

where β are the precisions. In the original GTM [1] the

constraint takes the form of a Radial Basis Function (RBF)

network φ(v) = {φ1(v), φ2(v), . . . , φK(v)}T , with the RBF

centres evenly spaced throughout the latent space. That is,

wm = g(Ω, vm) = Ωφm

φm = {φ1(vm), φ2(vm), ..., φK(vm)}T
The update equations are obtained by differentiating (5) w.r.t

the weight matrix Ω and the precisions β:

ΦTGΦΩT
new = ΦTRX (6)

1

βnew
=

1

ND

N∑
n

M∑
m

ρnm|Ωnewφm − xn|2 (7)

where Φ is a K × M matrix with columns given by

φ1, φ2, . . . , φm, R is a K ×N matrix with elements given

by the nodes’ responsibilities:

Rnm = ρnm =
N(xn|wm, β−1)∑
m N(xn|wm, β−1)

(8)

and G is a K × K diagonal matrix with elements Gkk =∑
n ρnk. Here too an EM type strategy is employed where

the responsibilities are evaluated in (8) followed by the update

equations (6) and (7). Further technical details can be found

in [1], [25].

In the GTM the mapping wm = g(Ω, vm) = Ωφm

determines the relationship between the weights in W , that

is, the way in which topography is preserved. When the

RBF functions are chosen as isotropic Gaussians φk(vm) =
exp(−λ|vm − ck|2) (with ck denoting the position of the kth

RBF centre on the lattice) the parameters that control the

mapping are the number of RBF centres K and the spread

parameter λ.

This mapping can be interpreted as a transformation be-

tween two neuronal lattices where the efficacy of connections

decreases as connection length increases, as demonstrated in

Fig. 1.

Fig. 1. Interpreting the mapping in the GTM as a mapping between neuronal
lattices when the efficacy of connection decreases with connection length. The
bottom lattice represents the underlying weight matrix Ω that is mapped to
the top lattice, corresponding to W . Subset of connections shown.

A quadratic regularisation term of the form

(
α

2π
)(D·M)/2 exp(−α

2

∑
m

|wm|2)

can be added to the objective function (5) to control the

smoothness of the mapping. In a probabilistic setting, this

regularisation term can also be viewed as a prior over the

weights. However, with the inclusion of this term the simple

feed-forward interoperability is complicated and so we do not

consider this extension.

In fact, it is possible to abandon the ’hard mapping’

altogether and achieve topography preservation through the

consideration of an appropriate prior over the weights alone.

This is known as the Gaussian Process GTM [25]. Indeed, for
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an identical choice of prior the Gaussian Process GTM and

EN have identical objective functions.

We are unaware of any definitive studies preferring either

the original or Gaussian Process GTM. Also, since its original

conception, improvements to both the original and the Gaus-

sian Process GTMs have been proposed. Some earlier ones can

be found in [25], while more recent ones include optimising

through Deterministic Annealing [26], employing a Variational

treatment [27] and using the ‘kernel trick’ [28] .

II. COMPARING OBJECTIVE FUNCTIONS AND MECHANISM

FOR TOPOGRAPHY PRESERVATION

A. Objective functions

By equating the EN and GTM objective functions (4), (5)

it is possible to obtain a mapping g(Ω, vm) for which the

GTM and EN are identical, that is:

objective function GTM = objective function Elastic Net

∑
n

∑
m

anm

{
log(

β

2π
)D/2 + |xn − g(Ω, vm)|2

}

=
∑
n

∑
m

bnm

{
log(

k

2π
)D/2 + |xn − wm|2

}

+ αk
∑
m

∑
j

|wm − wj∈Λm |2 (9)

where anm and bnm correspond to the responsibilities for the

GTM (8) and EN (2) respectively. To obtain (9) we have made

use of the Hidden Variable derivation of the EM (e.g. Chapter

9, [29]). The expression can be further simplified if only the

update equation for the weights are considered.

∑
n

∑
m

anm|xn − g(Ω, vm)|2

=
∑
n

∑
m

bnm|xn − wm|2 + αk
∑
j

|wm − wj∈Λm
|2;

∑
n

∑
m

anm(xn · xn − 2xn · g(Ω, vm)

+ g(Ω, vm) · g(Ω, vm)

=
∑
n

∑
m

bnm(xn · xn − 2xn · wm + wm · wm)

+ αk
∑
j

(wm · wm − 2wm.wj + wj · wj);

∑
n

∑
m

anm(−2xn · g(Ω, vm) + g(Ω, vm) · g(Ω, vm))

=
∑
n

∑
m

bnm(−2xn · wm + wm · wm)

+ αk
∑
j

(wm · wm − 2wm · wj + wj · wj)

To further simplify this expression we make the assumption

that the weights form unity vectors (wj ·wj = 1 ), which can

be enforced by projecting the weights to the unity hypersphere.

∑
n

∑
m

anm(2xn · g(Ω, vm))

=
∑
n

∑
m

bnm(2xn · wm) + αk
∑
j

(2wm · wj) + C

where the constants have been grouped into C. One solution

to this can be obtained by equating the summed expressions

which then form a system of linear equations

anm(2xn · g(Ω, vm))

= bnm(2xn · wm) + αk
∑
j

(2wm · wj) + C, ∀m,n

The above treatment demonstrates that there exist a mapping

for which the two are equal, although the mapping will not

directly depend on the lattice positions and unlikely have a

simple form such as that typically used in the GTM. Further,

the dependency on the data cannot be removed.

B. Mechanism for Topography Preservation

The difference in the ways with which the EN and GTM

achieve topography can clearly be demonstrated by consider-

ing a node’s ‘state space trajectory’ throughout the learning

process. In this context the ‘state’ of a node is the set of its

attributes. For the EN, the attributes are the node’s position and

weight. For the GTM the precision may also be considered

an attribute though this would have limited impact as it is

common across all nodes.

Fig. 2 depicts the ‘state space’ trajectory of a node through

the learning process, marked by iterations for the EN and

GTM.

(a)

(b)

Fig. 2. Weight space trajectories for the EN (a) and for the GTM (b). In the
EN neighbouring nodes converge towards the same weight. In the GTM the
mapping ensures that two nearby nodes have similar weights, throughout

At each iteration the node’s ‘state’ evolves according to a

predefined (deterministic) ‘transition function’ fm. For both

the EN and the GTM this function is complex due to the

responsibilities. In the EN the function also considers nearby

nodes resulting in nearby nodes converging to similar states.
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Fig. 3. Using the GTM and EN to fit a 2D latent space to a 2D grid: (a) using the GTM with 100 nodes, (b) using 225; (c) using the EN with 100 nodes,
(d) 225 nodes.

In the GTM, nearby nodes always have similar states due to

the mapping g. Note that since the data is processed in batch

mode it can be incorporated into the transition function and

does not need to be represented explicitly.

Positing topography preservation in this way makes clear

some of the differences between the GTM and EN. For

example, consider three neighbouring nodes with positions

va, vb and vc such that vb is between va and vc. In the EN,

it is possible for wa = wb = wc. This can readily be verified

by noting that for (4) with α → 0, one obtains an ordinary

mixture model, for which any node has no notion of its latent

space position. In the GTM, g(Ω, va) = wa = wc = g(Ω, vc)
will typically mean that wc,wa, �= wb, as the mapping will vary

smoothly from wa to wc. This ’squeezing’ property may be

overcome by increasing the number of weights in Ω, increasing

the precision β and or by some non-arbitrary initialisation of

the parameters, which is usually employed when using the

GTM [1].

III. EXPERIMENTS

The simulations in this section were preformed using MAT-

LAB [30]. An implementation of the EN can be found in [31].

An implementation of the GTM can be found in [32], though

for flexibility considerations we use a custom implementation.

A. Regular Grid and Clustering

We first evaluate the EN and GTM by fitting a 2D latent

space to a regular 10×10 grid as displayed in Fig. 3. For both

methods we initialise the weights randomly around zero. It

can been seen that both the GTM and EN approximate the

grid, however, in the GTM the nodes do not settle on the

data points as closely as they do with the EN. Further, the

’squeezing’ property typically prevents nodes from collapsing

on to each other, which is readily demonstrated by increasing

the number of nodes (Fig. 3 a, b). In the EN it is possible for

two (or more) nodes to coincide, which we demonstrate by

increasing the number of nodes (Fig. 3 c, d)).

Applying the EN on the Oil Phase data (Fig. 4, means

shown) we were unable to get results comparable to that of

the GTM (shown in [1]). However, the results reported in [1]

were obtained using the regularised GTM with PCA based

initialisation. Using the non-regularised GTM with random

initialisation we were unable to reproduce the reported results.

On other simulations with artificially generated clustered data

(not shown) the two methods were comparable.
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Fig. 4. Using the EN to visualise the Oil Phase data. The different flows
are marked by different colours

B. Ocular Dominance Column Formation using the GTM

In this section we apply the GTM to the formation of Ocular

Dominance stripes. Throughout, we will compare with the

EN as in [33], where it was first applied to this problem.

We begin by considering a simplified 1D case where each

retina is composed of an array of N points (cells). Each cell is

associated with a marker [l,−l] which indicates to which of the

two retinas it belongs to. The distance between neighbouring

cells in each retina is denoted by d. The simplified ’cortex’

consists of a ’string’ with M latent space points arranged along

it. This arrangement for {N,M, d, l} = {20, 40, 0.05, 0.1} is

depicted in Fig. 5.

Fig. 5. Fitting a simplified 1D ‘cortex’ (red) to two 1D retinas (blue)

To allow for flexibility we will use the same number of

RBF centres as nodes. The weights are initialised with a

small horizontal bias (as in [33]) to correspond to the initial

retinotopic arrangement observed and the precision is initially

set to some small value. The nodes ocular preference is

initialised randomly around zero.

1) Fixed spread: Fig. 6 depicts the resulting patterns for

four different values of λ. As expected, if the spread is

too great (λ ≤ 20) then the string is too rigid and cannot

approximate the data well. Conversely, if the spread is too

small (large λ ≥ 50) then the string is too flexible and the

retinotopic (horizontal) order is compromised.

We have observed that there is a critical value λc at which

the string is flexible enough to form a stripe like pattern. For

this arrangement it is around λc ∼ 24.3 but does exhibit

some susceptibility to the initialisation of the weights and

precisions. This is typical of the EM and likely amplified by

the complex relationship between the spread parameter (λ)

and the precisions (β). This value is also proportional to N
and d (which effectively control the length of the retina) and

inversely proportional to the value l. This is to be expected

considering the respective ’forces’ a given node experiences

(horizontal and vertical pulls) as these values are changed.

The formation process begins with the string first stretching

horizontally to lie equidistant between the two arrays. Small

fluctuations due to the random initialisation of the ocular

preference result in the string adopting a sinusoid like pattern.

If the string is sufficiently flexible (λ ≥ λc) the string

undergoes a rapid vertical expansion (formation of stripes),

beginning at the ends of the rope (due to boundary effects). If

the string is too rigid stripes do not form. This process bears

some similarity to that reported in [33].

The number of peaks can be thought of as a measure of

stripe width which increases (number of peaks decreases) as

the ratio l/d is increased. This can only be reliably reproduced

as long as λ ∼ λc. For λ 	 λc, the string twists and the

number of peaks cannot be trivially determined. Further, the

pattern is no longer homogeneous in this case (see Fig.6) and

so the relationship to stripe width is effected. Fig.7 depicts the

effect of increasing this ratio. Note that this also changes the

value λc.

2) Adapting the spread: Solutions akin to that of the

EN can be obtained if the mapping is adapted by setting

λnew = kλold after each iteration, as seen in Fig. 8. Unfor-

tunately, by doing so the GTM’s log-likelihood can no longer

be guaranteed to increase after each iteration. In principle,

the more flexible the mapping the more independently the

nodes can move and the more likely it is that the system will

converge to a high likelihood state. In practice, we can report

that as long as the rate of increase is small enough the log-

likelihood predominantly increases, though periods of small

decreases do occur. Increasing the value too quickly may result

in nonsensical solutions.

We were unable to determine a value for k that ensures

ordered solutions consistently, and for all values of l, d and

m. Unlike the EN, solutions obtained by a adapting the spread

often featured incomplete mappings and areas where twisting

has occurred, as shown in Fig. 8.

We also experimented with other cooling schemes such as
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Fig. 6. 1D Stripe formation for a fixed value of λ = 20, 24, 25, 40. Other parameter values are fixed at d = 0.1, l = 0.1,M = 80, N = 40. For small
values of λ the manifold is too rigid and for high values the manifold twists and loses the continuous retinotopic property
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Fig. 7. The ratio l/d effects the stripe width. d = 0.1, l = 0.2,M =
80, N = 40, λ = 5

Fig. 8. Adapting the spread value during learning results in solution akin
to those obtainable by the EN. The area circled in black shows one region
where twisting has occurred. The area circled in yellow shows a data point
with no node assigned to it (incomplete mapping)
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increasing both the precision and spread iteratively (βnew =
αλnew) and tying the spread to the precisions (λnew = 1

αβnew

where βnew is determined according to (7)). Both methods

were able to produce ordered results but not consistently or

robustly.
3) 2D simulation: The 2D case is a straightforward gen-

eralisation of the 1D case where the retinas and cortex are

modelled as 2D sheets. We have observed no outstanding

features for this case. Simulations showing the effect of

changing the ratio l/d are shown in Fig. 9

Fig. 9. 2D simulations of OD stripe formation using the GTM. Each retina
was modelled as a (20× 20) grid. The cortex was modelled as a (35× 35)
grid. Parameter values from left to right are {λ = 1, l = 0.1, d = 0.1},
{λ = 0.9, l = 0.15, d = 0.1}, {λ = 0.8, l = 0.2, d = 0.1}

IV. CONCLUSION

We have compared the GTM and EN and demonstrated that

the GTM can be interpreted in terms of mappings in between

neuronal layers. Comparison of their respective objective func-

tions demonstrated that the two algorithms differ for the usual

choice of mapping in the GTM. We examined the different

methods the algorithms employ to preserve topography and

identified some properties that are unique to each. The simu-

lations preformed confirmed the preceding analysis in that the

GTM favours more gradually changing solutions and is less

likely to have nodes settling on data points. This is due to

the hard mapping in the GTM which does not offer the same

flexibility as that obtainable with the EN.

Application of the GTM to model the formation of OD

stripes demonstrated that the algorithm produces striped pat-

terns related to those observed. The patterns produced by

the GTM and EN have some key differences. Firstly, in the

GTM the ocular preferences shifts more gradually than in the

EN. This can be seen by observing the gray areas in Fig.

9 which depicts areas of neurons with intermediate ocular

preference. Another difference is the stripe width which is

typically broader for the GTM.

There are several directions which can be explored further.

One straightforward observation is that the EN may be an un-

dervalued tool for clustering and visualisation. The prior used

in the EN is also simpler (and sparser) than the one typically

used in the Gaussian Process GTM [25], [27]. The use of the

EN can be further motivated by noting that effective solutions

using Cholesky factorisation instead of gradient decent are

possible [24]. A comparison of the Gaussian Process GTM

and the EN may help further understand the characteristics of

this interesting prior.

For biologically inspired modelling, one may want to main-

tain the interoperability of the original GTM. In this case, it

seems like a principled way of adapting the spread is required

to produce results comparable to the EN. This undertaking

should also include an evaluation of different mappings (as

well as the use of different mappings for different dimensions),

a notable exclusion in GTM research. Other directions can

include incorporating more complex covariance forms [5], [34]

or using one of the recently suggested improvements [27],

[28], [26].
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