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Abstract—The iris is the most accurate biometric to date and
its localization is a vital step in any iris recognition system. Iris
localization can be considered as the search for the demarcation
points, or step change in intensity at its boundaries. A failed
localization will lead to incorrect iris segmentation and eventually
to poor recognition. In the first stage, we proceed with the
elimination of reflection and the reduction of lighting variations
in eye images. In the second stage of our proposed system, radii
and locations of the pupil and iris are obtained by maximizing
the convolution of the image with a toroidal 2-D filtering shape
derived from the Petrou-Kittler 1-D filter. Such a novel approach
delivers robust localization of the inner and outer iris boundaries.
We tested our system on a large dataset of poor quality eye
images with substantial occlusions, illumination and defocus and
the proposed algorithm is found to be robust and accurate.

Index Terms—Biometrics, Iris localization, 2-D filters, Petrou-
Kittler filter

I. INTRODUCTION

Iris recognition has received much attention for the past
few years and a lot of research is actively being carried
out in this area. The iris is the most accurate biometric to
date and outperforms its many counterparts. Its rich texture
being quite stable for a long period of time makes it suitable
for identification and recognition purposes. In addition, no
physical contact is required as opposed to other biometrics
such as fingerprints. On the other hand, capturing a good
eye image can be challenging since it is a relatively small
moving target on a wet and reflective surface. So far, most
iris recognition systems developed have been carried out on
eye images captured in controlled environments and iris local-
ization has been relatively straightforward. Impressive results
have been reported using these types of images. However, eye
images captured in uncontrolled environments often contain
reflections and illumination variations. They are also often
deformed, out of focus and off-angle. This is still an open
problem. For iris recognition to be widely adopted, it needs
to be segmented in an accurate and reliable way in non-
cooperative environments. This makes the iris localization
stage even more critical.

The most significant contributions in the area of iris recog-
nition are those of Daugman [1] and Wildes [2]. Daugman’s
technique has been commercialized and implemented in sev-
eral iris recognition systems. It is basically a circular edge
detector which searches for the maximum of the contour
integral derivative in the blurred image. On the other hand,
Wildes’ technique searches for an ellipse in the edge image
using Hough transform to segment the iris. Recently, some

researchers have begun to focus their research on the segmen-
tation of non-ideal eye images i.e., images captured in chal-
lenging environments, for example images with poor contrast
between the iris boundaries, specular reflections, eyelashes,
etc.

Here, we briefly mention some of the recent work that has
been carried out to tackle the localization problem in iris
images. In [3], a push and pulling method is implemented
to locate the iris but an initial estimate of the pupil’s centre
is required for accurate and fast localization. In [4], geodesic
active contour is used for iris segmentation but the stopping
criterion does not take into consideration the amount of edge
information and might miss the iris boundaries. Moreover, this
approach will fail if the contour is not initialized close to the
iris boundaries.

Being able to correctly identify and recover iris boundaries
in occluded and poor quality eye images is the main objective
of our work. In this paper, we present a novel model-based
algorithm for fast and accurate iris localization. In our method,
the pupil and iris radii and locations are obtained by maximiz-
ing the convolution of the image with a toroidal 2-D filtering
shape derived from the Petrou-Kittler 1-D filter [5]. Such a
novel approach delivers robust localization of the inner and
outer iris boundaries. In our experiments, no prior assumptions
are made on the position of the pupil or the iris in the image,
the amount of occlusion or the type of illumination being used
as opposed to images captured in [1].

The rest of the paper is organized as follows: in Section
II we discuss the pre-processing of the close-up eye images
and in Section III, the implementation of our iris localization
model. In Section IV, we present our results and analysis.
Finally, in Section V, we present our conclusions and sugges-
tions for future work.

II. PREPROCESSING

Artifacts such as defocus, reflections and lighting varia-
tions are present in the real-life images images of the eye.
Elimination of those artifacts facilitates the localization of iris
borders. In this Section, we describe the process of eliminating
reflections followed by the implementation of an illumination
invariance based technique for image quality improvement as
discussed below.

A. Specular reflections

Specular reflections are sharp bright dots which often appear
on the Region of Interest (ROI) in the eye image i.e., on the
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pupil, pupil-limbus border and limbus. These reflections can
mislead the algorithm into considering these step changes in
intensity level as boundaries. This can, in turn, degrade perfor-
mance and needs to be taken into consideration. Reflections
can easily be identified since they lie close to the maximum
intensity values. Let I(x, y) be the intensity value at location
(x, y) in image I , then using a simple thresholding technique,
given by I(x, y) > T , where T is the threshold, these pixels
can be identified. It is important to point out that the optimum
threshold for detecting those pixels responsible for reflection
will vary depending on the environment and cameras used to
capture the images.

Once localized, a morphological operation, namely dilation,
is used to find the intensity values and locations of reflec-
tions and that of its neighbouring pixels in the image. The
neighbouring pixels are used to compensate for the missing
areas i.e., they contribute a small fraction of their intensity
and smoothly propagate the information to the missing areas.
In our experiments, this in-painting algorithm is implemented
using a sparse based partial differential equation similar to
that in [6], [7]. As shown in column 2 of Fig. 1, the effect
of reflections in the eye images from column 1 of Fig. 1 has
been significantly reduced. This is particularly noticeable in
the pupillary area where the algorithm has filled in those
regions containing reflections with information surrounding
them. Other regions successfully detected as containing reflec-
tions and in-painted include the tear ducts. The advantage of
this localized approach is that only affected regions are taken
into consideration and information in other regions remain
untouched as opposed to applying a median filter over the
whole image [8].

B. Illumination

Illumination due to light sources at arbitrary positions and
intensities are responsible for a significant amount of variabil-
ity in an image. It can drastically change the appearance of
the image and these lighting variations affect the accuracy of
iris recognition. To solve this problem, we implemented the
Retinex algorithm to handle the lighting effect. This technique
was originally proposed by Land and McCann in [9] and aims
to bridge the gap between captured images and the human
visual system and has been successfully applied in several
areas such as medical radiography, underwater photography,
and face recognition systems. The basic idea of the Retinex
algorithm is as follows: by breaking down an image I(x, y)
into its luminance and reflectance components as in (1):

I(x, y) = R(x, y)× L(x, y) (1)

it is possible to remove the effect of illumination and enhance
images with lighting variations. The Single Scale Retinex
(SSR) is given by:

R(x, y) = log I(x, y)− log[F (x, y) ◦ I(x, y)] (2)

where I(x, y) is the input image, ‘◦’ represents a convolution
operation, R(x, y) is the output image and F (x, y) is the

surround function which can be mathematically represented
by:

F (x, y) = Ke−
x2+y2

c2 (3)

where K and c are constants. One disadvantage of the SSR
is that it is limited by the range of the scale, i.e., it can
only achieve tonal rendition or dynamic range compression
at the expense of each other. The Multi-Scale Retinex (MSR)
algorithm is an extension of the SSR and overcomes this
limitation of the SSR. It is basically the multi-scale form, i.e.,
the weighted sum of SSRs is shown in (4):

R(x, y) =
N∑
k=1

wk {log I(x, y)− log [F (x, y) ◦ I(x, y)])}

(4)
In this work, we implemented the MSR algorithm after

the reflection elimination stage described in the previous
sub-section. The MSR algorithm can achieve both dynamic
range compression and tonal/lightness rendition and hence is
particularly suited for eye images captured in different lighting
conditions [10]. Column 3 of Fig. 1 illustrates the effect of
the Retinex algorithm on sample eye images. In Fig. 1(c),
the contrast between the pupil and the iris is much higher
and in Fig. 1(f), the dark areas in the image are enhanced
and more details are visible. Overall, the preprocessing step
significantly improves the image quality thereby facilitating
inner iris border localization in eye images.

(a) (b) (c)

(d) (e) (f)

Fig. 1: Preprocessing of an eye image: (a) and (d) are the
original eye images, (b) and (e) show the result of in-painting
on the original images in column 1, (c) and (f) show the effect
of Multi-Scale Retinex applied to the in-painted eye images
in column 2

III. THE LOCALIZATION MODEL

In this section, we briefly describe the limitations and
specifics of some of the common iris localization techniques
followed by a detailed description of our algorithm, its imple-
mentation and how it overcomes the shortcomings of previous
methods. The majority of iris segmentation techniques use
hard thresholding to locate the pupil in eye images. Edge
detection techniques such as Canny and Sobel are then used to
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obtain an edge image to search for the outer iris boundary as
in [6], [11]. These edge detection methods are also threshold
dependent and need to be adjusted depending on the quality
of the image. Therefore, they often lead to incorrect detection
of iris borders in images with thick eyelashes, strong specular
reflections and poor contrast between the pupil and the iris.
In addition, circular Hough transform, a computationally in-
tensive technique is often used to fit a circle or an ellipse to
the binary edge image. In [8], around 30 control points are
drawn perpendicular to the circumference of an ellipse. The
intensity profile at each control point is then convolved with
two Petrou-Kittler 1-D ramp filters [5] of different width, and
the maxima for different radii are computed using simulated
annealing (SA) as an optimization technique.

A. The proposed 2-D toroidal filter

Similarly to [8], we have also based our model on the 1-D
Petrou-Kittler filter since it is particularly well-suited for ramp
edges prevalent in our eye images characterized by a gradual
change in intensity. According to the Petrou-Kittler model,
the positive half of the 1-D edge filter can be represented by
following expression:

s(r) = 1 + be−r − r1ear cos(ar + α1)

+ r2e
−ar cos(ar + α2), for 0 ≤ r ≤ w, (5)

and 0 otherwise

where w is the span of the half-filter. More information on
the practical implementation of the 1-D Petrou-Kittler filter
and its parameters a, b, r1, r2, α1, and α2 used in expression
(5) can be found in [5], [12]. As an illustration, the 1-D edge
half-filter of width w = 4 is shown in Fig. 2.

Fig. 2: 1-D Petrou-Kittler edge half-filter of span w = 4

The next step deals with the extension of the 1-D Petrou-
Kittler edge filter to a 2-D toroidal filtering shape for iris
localization. The main idea behind our model is to find the
best location (xc, yc) of a circle of a radius R that localizes
the pupil and the iris in an eye image. Such a circle should go

through the edges of the pupil or iris. To create a 2-D filter
that can localize the circle, we place a 1-D filter specified in
(5) at a distance R from the centre and rotate it to form a
2-D toroidal filtering shape as shown in Fig. 3. Formally, the
filtering surface can be described in polar coordinates (r, θ) in
the following way:

h(r, θ;R,w) =

 s(r −R) for R ≤ r ≤ R+ w
−s(R− r) for R ≤ r − w ≤ R

0 otherwise
(6)

where R is the expected radius of the iris or pupil and w is
the width of the underlying 1-D filter. The square section of
the function h(r, θ;R,w) of size 2(R + w) × 2(R + w) is
then converted into a square matrix H(x, y) of an equivalent
dimension for given values of the parameters R and w. A
colour coded implementation of our 2-D filter H(x, y) from
Fig. 3 is shown in Fig. 4.

Fig. 3: 2-D toroidal shape based on the Petrou-Kittler 1-D
filter where s(r), w and R are described in expressions (5)
and (6)

B. The proposed localization method

After the 2-D filter H(x, y) has been created for a given
radius R, the next step is to calculate the convolution of the
image I(x, y) with the filter as in the following expression:

Q(x, y) = I(x, y) ◦H(x, y) (7)

where ◦ is the convolution operator. The convolution Q(x, y)
can be thought of as a performance function to be maximised.
The maximum of the convolution matrix entry gives the
centre of the circle, (xc, yc) of the radius R that optimally
fits a potential iris or pupil. The process is iterated over a
required range of the radii R. Practical implementation of the
convolution can be performed by an equivalent linear neural
network operation.

The transition at the pupillary and outer iris boundary is
modelled using Petrou-Kittler 1-D filter at different scales.

1429



Fig. 4: Colour-coded 2-D toroidal model derived from 1-D
Petrou-Kittler edge filter

A filter of smaller width, w, is used to model the inner iris
boundary (the pupil) since the contrast from pupil to iris is
higher compared to the transition at the outer iris border which
can be extremely smooth, hence, a wider filter with a higher
value of w is employed.

In our experiments, an initial search of the pupil as a result
of its higher contrast followed by localization of the outer
limbus proved to be very effective. When searching for the
outer iris border, the following considerations are taken into
account. Firstly, the transition between the iris and the sclera
is very smooth. Secondly, the iris region is often occluded
by eyelids and eyelashes. It contains reflections and lighting
variations which can severely impact quality of the image.

In general, the pupil and the iris do not share the same
centres, as indicated in Fig. 5. They are relatively close to
each other, taking into consideration factors such as pupillary
dilation and constriction in different environments. In Fig. 5,
cp = (xcp, ycp) and ci = (xci, yci) are the centre coordinates
of the pupil and the iris respectively. Similarly, rp and ri are
the radii of the pupil and the iris and d is the displacement
between cp and ci.

Once the pupil is localized, instead of searching the entire
image I(x, y) again for the outer iris boundary, we restrict
our search for the centre coordinates of the iris based on the
following heuristics. Extensive testing was carried out on a
subset of the dataset and the average distance between the
pupil and iris centres, davg, was found to be 3 pixels and
the maximum value, dmax, 6 pixels. dmax usually occurs in
images with severe dilation or strong illumination. It follows
that the optimum spatial location of potential iris centres can
thus be defined an area with radius dmax from the pupil’s
centre, cp. This is shown by the dotted line in Fig. 5 and
this region indicates the the maximum likelihood of finding
an accurate iris centre, ci. We need to keep in mind that the
dmax and davg will change based on the resolution of the

Fig. 5: Spatial location of the pupil and iris parameters where
cp and ci are the centres of the pupil and the iris, rp and ri
are the radii of the pupil and the iris and d is the distance
between them

images captured by the iris sensors.
This approach has two main advantages. In addition to

improving the speed of the process by avoiding the need for
a second exhaustive search to find the parameters of the outer
iris boundary, the accuracy and robustness of the localization
process is also preserved.

Finally, we would like to highlight some of the differences
of our model with other implementations which may bear
some resemblance at the top level. In [8], at each control point,
the summation over the length of the 1-D Petrou-Kittler filter
of the product of the intensity profile and that of the filter
mask is computed and accumulated. The energy functional
is subsequently minimized using simulated annealing (SA)
to find the optimum parameters of the iris. Filtering only at
control points can lead to incorrect localization, important
edges can be missed. Furthermore, this model requires an
implementation of a complex, time-consuming optimization
technique to find the minimum of the cost function in the
image. This is replaced, in our case, by finding a maximum
in the convolution matrix. Daugman presents in [1] another
model-based technique. Although from a very brief description
it is difficult to compare the two methods precisely, the central
to the explanation of the Daugman’s method is the following
equation that we adopted from [1]:

max
(r,x0,y0)

∣∣∣∣Gσ ◦ ∂

∂r

∮
r,x0,y0

I(x, y)

2πr
ds

∣∣∣∣ (8)

Equation (8) suggests that his technique implies three oper-
ations: a circular filter, calculation of the gradient, and low-
pass filtering. In our case, not only the order of the operations
is reversed, the low-pass filtering being the first operation as
suggested by a very successful Canny filter [13], but also the
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three operations are carried out in one convolution operation
with our 2-D toroidal filter.

IV. EXPERIMENTAL RESULTS

In this section, we present our results and discuss the
performance of our algorithm in terms of its localization
accuracy and running time. We compare and discuss our
findings followed by the contributions of our iris localization
model.

A. Performance

The WVU Multi-modal Biometric Dataset was used to
evaluate the performance of our algorithm [14]. In all, 3806
images were used. WVU Release 1 contains 3043 images of
231 subjects and WVU Release 2 contains 763 images of 72
subjects. The images were captured using an OKI IRISPASS-
h hand-held device and have a resolution of 640×480 pixels.
This dataset has been confirmed to contain non-ideal images
that are significantly inferior compared to other available
datasets, i.e., they were captured without any quality control
[15]. We compare our localization method with three well
known methods, namely those of Zuo and Schmid [6], Masek
[16] and Wildes [2].

A correct segmentation is one where there is no distinct
offset between the boundary of the iris and that of the circle.
For consistency, the same metric used by Zuo and Schmid
in [6] is used in this paper to identify correct localization
and evaluate the performance of our segmentation algorithm.
The amount of occlusion is not considered in our experiments.
Experimental results are tabulated in Table I, from which we

TABLE I: Performance of Iris Localization Techniques [6]

Dataset Masek [16] Wildes [2] Zuo & Schmid [6] Proposed
WVU 64.8 85.2 97.9 94.3

can see that our localization success rate is significantly higher
than those of Wildes or Masek and comparable to that of Zuo
and Schmid. It is also noteworthy in this respect to mention
that the results reported by Zuo and Schmid in [6] were carried
out on only 2453 images from the WVU dataset while in this
paper, the success rate being reported includes 3806 images,
i.e., all images from both Release 1 and Release 2 of WVU
dataset are used in our experiments.

Fig. 6 shows some examples of iris localization using our 2-
D toroidal filter and its performance on images from the WVU
Dataset. The first row shows the localization result in images
with reflections close to or on the pupillary border. In the
second row examples of recovered pupil and iris boundaries
in images with substantial lighting variations and poor contrast
between the pupillary area and iris region are shown and
finally, the third row demonstrates the performance of our
proposed methodology on images with eyelashes and various
levels of occlusion. It is interesting to note that our algorithm
which approximates the inner and outer boundaries of an iris
works well even in really difficult cases.

Fig. 6: Examples of pupil and iris localization in images with
substantial occlusions, reflections and illumination variations

Fig.7 shows some examples where our algorithm failed
to detect the iris boundaries. Overall, the types of error we
encountered in the WVU dataset can be grouped in 3 broad
categories. The first type of error can be referred to as the
near-optimal category, i.e., images in which the iris boundary
detected by the model-based filter is close to the actual iris
boundary but does not fall exactly on it. This occurs when
there are shadows, blur or poor contrast near the iris boundary.
Occlusion or non-circular shape of the iris also account for
this type of failed localization. This type of error was most
common, 152 such incorrect localizations were identified in
the WVU dataset. Two examples of incorrect iris detection
which fall in the first category are shown in Fig. 7(a) and Fig.
7(b).

(a) (b) (c)

Fig. 7: Examples of eye images on which the proposed
algorithm failed to perform: (a) and (b) are examples of
images where the boundary detected is close to the actual iris
boundary but does not fall exactly on it and (c) is an example
where the pupil was successfully localized but the iris was
incorrectly detected.

The second category consists of eye images in which the
pupil was successfully localized but the iris was incorrectly
detected. We refer to this type of errors as poor localization.
In this case, the cost function incorrectly detected the outer
iris boundary. There were 58 eye images in this category. An
example of this type of incorrect localization is shown in the
Fig. 7(c).

Finally, the third type of error was found in images in
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which localization failed completely, i.e., images captured by
the sensors were of very poor quality and both pupil and iris
localization failed. There were only 6 images in this category.

Before concluding this section, we would also like to add
that our 2-D toroidal filter performed unexpectedly well in
some images with a significant degree of difficulty such as
blur, occlusion or poor distinction between the inner and
outer iris boundaries. Some examples of such localizations
are shown in Fig. 8.

(a) (b)

Fig. 8: Examples of iris localization using the proposed
technique on some difficult images in the WVU dataset

B. Computation time

In this section we compare the running time of our algorithm
with that of other iris localization techniques bearing in mind
that image resolution, computing power and datasets used
will vary from one implementation to another. Table II shows
the speed of some well known techniques implemented in
MATLAB [17] and C++ [6], [18].

TABLE II: Comparison of Image Resolution, Algorithm, Plat-
form and Running Time [6], [18]

Resolution Algorithm Platform Time [s]
400 × 300 Proença and Alexandre C++ 2.3
400 × 300 Daugman C++ 2.7
400 × 300 Wildes C++ 2.0
350 × 270 Trucco and Razeto Matlab 5.0
320 × 240 Zuo and Schmid Matlab 30.0
320 × 240 Proposed Matlab 2.6

The time reported in Table II is the mean time of the
localization process on 100 distinct images. In the proposed
localization method, the search for the maximum of the
convolution operation for different radii is independent of
each other. This makes it possible to make efficient use of
Matlab optimization techniques and achieve noteworthy speed.
Also, considering the fact that variations in image resolution
are small, the proposed 2-D toroidal model achieves far
superior speed compared to other MATLAB implementations.
Moreover, the execution speed of our MATLAB technique is
even comparable to C++ based implementations.

C. Analysis

Finally, in this section we discuss the contributions of this
paper. The in-painting and MSR algorithm are particularly

effective in enhancing the image quality and reducing the
effect of illumination in our images. This eases localization
of the pupillary boundary. The key contribution in this paper
is the extension of the 1-D Petrou-Kittler filter to a 2-D
toroidal filtering shape, which achieves high localization rate
and robustness in close-up degraded images. As opposed to
popular iris localization techniques such as those developed by
Wildes [2] or Masek [11], [16], our technique is not threshold
dependent. There is only one adjustable parameter, namely the
width of an underlying 1-D filter. We use w = 3 for the sharper
inner iris edges, and w = 6 for the softer outer ones. We
also avoid the need of computationally intensive circle fitting
techniques such as Hough transform to fit a circle to the edge
image to recover the iris shape or optimization techniques such
as SA which can be time consuming.

We would like to have our comment regarding whether the
model that we use to approximate the iris boundaries should
be a circular or an elliptical one. In our experiments, a circular
model was found to be adequate for the purpose of accurately
localizing the inner and outer iris boundaries in eye images.
The elliptic model just adds two more parameters to the picture
without an obvious benefit, but slowing the algorithm down.
Moreover, it needs to be emphasized that the shape of filter can
be easily extended to an ellipsoidal based shape if required,
rotating the 1-D filter along an ellipse rather than a circle. That
will be an interesting extension if required.

Another interesting point is that although localization was
successful as shown in Fig. 6, the quality of the iris also
needs to be taken into consideration prior to the encoding stage
especially when it comes to images captured in uncontrolled
environments. Finally, the performance of Daugman’s method
is proportional to the quality of eye images and small intensity
change between the iris and the sclera and eyelid occlusion
lead to incorrect segmentation [3], [15]. The same trend is
observed in Wildes technique, i.e., a significant deterioration
in localization with noisy images is observed [18]. With
the implementation of a 2-D toroidal filter based on the 1-
D Petrou-Kittler ramp filter, we overcome those limitations
and our proposed technique achieves high localization rate
in images which suffer poor contrast, strong variations in
illumination and occlusion.

V. CONCLUSIONS

In this paper, a new iris localization methodology for robust
iris localization designed specifically for non-ideal eye images
is proposed. In the first stage, the effect of specular reflections
and illumination variations in eye images is reduced using
in-painting and the Retinex algorithm respectively. This is
followed by the application of a 2-D toroidal filter based on
the 1-D Petrou-Kittler edge filter for pupil and iris localization.
Our model is further fine tuned by taking into account the
properties and characteristics of the pupil and the iris and how
they are related to each other. High performance is achieved
on a large dataset non-ideal images from WVU. In our future
work, we will focus on off-angle eye images and eye image
quality assessment.
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