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Abstract—Proper maintenance of sewer pipes is vital for the
healthy functioning of a city. Due to the difficulty of reach for
sewage pipes, automating pipe inspection has high potential in
providing an efficient and objective identification of defects which
could lead to damaging the pipe system. A popular approach has
been to send remote controlled robots to photograph the pipes
and process the images to identify possible defects. However
majority of the images contain regular pipe features such as
the flow line, pipe joints and pipe connections. Regular features
pose a challenge for automated defect detection algorithms
which require high processing time. This paper proposes a self
organising map based approach to leverage the regularity of
image features to isolate regions of interest which could contain
defects. As a result, the search space is narrowed down for the
defect detection algorithms, decreasing the overall processing
time. Novelty of the work lies in the feature extraction and the
gradual isolation of the potential defective image features to a
manageable size. Therefore, this technique is suitable for large
scale real applications. We demonstrate the effectiveness of the
proposed approach for a real pipe image data set.

Index Terms—Sewer pipe defect identification, growing self-
organising maps, hierarchical clustering

I. INTRODUCTION

Disposal of waste is an integral component of modern civil-
isation. Sewer pipe systems enable the flow of waste matter to
the relevant processing or disposal centres. Therefore, healthy
functioning of sewer pipe systems is essential for the sanitation
of cities. Inspecting sewer pipes for defects pose an important
task in proper maintenance of sewer pipe systems. Timely
identification of defects is critical for fixing the system before
any serious damage occurs.

Since most of the sewer pipes are laid underground, pipe
inspection is mostly done using remote controlled robots.
Imaging devices on the robots capture pipe images as the
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robot travels along the pipe. Several robot platforms have been
proposed for automated sewer pipe inspection[1], [2]. Images
acquired by the robots are transferred for evaluation either in
real-time or periodically.

Different types of features could be identified in sewer
pipes. The most prominent features are the flow lines, pipe
joints and pipe connections. In addition, different types of
defects could be identified, the main types being corrosions
and pipe cracks. Fig. 1 shows an example of an image
acquired by an inspection device. Pipe images tend to contain
a wide variety of conditions and defects due to a number of
parameters. Pipe construction material and pipe surrounding
environment are two key factors determining the average
colour, contrast and defect types.

Traditionally, defect identification was performed by human
inspectors. However, use of human operators has several
disadvantages such as high cost, subjectivity and human errors.
Therefore much research has been done on automating the
defect identification process in sewer pipe inspection.

Fully automating defect identification in sewer pipe images
tends to be extremely challenging due to varying pipe condi-
tions and features. A number of techniques have been proposed
for defect identification in pipe images[3], [4], [2], [5], [6].
Although none of these techniques are fully automated, [3]
proposes an effective method for defect identification using
morphological operators and support vector machines (SVMs)
[7].

However, in order to improve the accuracy of defect detec-
tion, most of the current techniques rely on computationally
expensive operations. For example, [3] provides an effective
technique for defect detection. However, the time required is
high due to the use of SVMs. As a result, processing large
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Fig. 1. Features identified in pipe images

image collections tend to take significant amounts of time and
could be impractical.

By observing the features of sewer pipe image collections, it
is evident that most of the image has regular repetitive features
such as pipe segments with flow line, pipe joints and pipe
connections. In real data sets, the number of regions of interest
which could contain defects is a very low proportion of total
image content. Ideally, the defect detection should only be
performed on these regions of interest.

This paper proposes a semi-supervised approach to isolate
regions of interest in pipe images. Features are generated for
the images enabling the identification of repetitive features.
A hierarchical self-organising map [8] structure is used to
filter the regular, repetitive image features to identify regions
of interest. This significantly reduces the amount of image
content that needs to be processed for defect identification.
Once the search space is narrowed down, time consuming
processing techniques can then be used on regions of interest.
As a result, the overall time consumption of the process is
significantly decreased.

This paper is organised as follows: Section II describes the
background theories behind the proposed algorithm followed
by Section III, providing a comprehensive description of
the proposed algorithm. Section IV evaluates the proposed
technique with experiments and results presented. Section V
discusses the implications and future work.

II. BACKGROUND

The proposed technique has two phases, feature extraction
and clustering. Feature extraction is based on the Canny
edge detection [9] algorithm and clustering is performed by
self-organising maps. This section describes the Canny edge
detection algorithm and self-organising maps.

A. Canny edge detection algorithm

The Canny edge detector is a widely used technique for edge
identification in images. The motivation behind the Canny
edge detector was to identify the optimum edges by:

1) detection - the algorithm should identify as many true
edges as possible

2) localisation - the detected edges should be as close as
possible to the edges in the image

3) response - an edge should be identified only once and
image noise should not result in false positives

The algorithm operates in multiple stages and uses non-
maximum suppression to localise edges. Following is a brief
description about the stages in Canny edge detection algo-
rithm.

1) Smoothing: Image is smoothened in order to remove any
random noise. The most common smoothing technique used
is Gaussian smoothing.

2) Intensity gradient calculation: Gradient intensities of
the smoothed image are calculated in horizontal and vertical
directions. Different techniques could be used to calculate
intensity gradients such as Sobel operator, Roberts’ cross and
Prewitt operator. Using the horizontal and vertical components,
magnitude and orientation of edges are calculated. Orientation
values are rounded to the nearest 0°, 45°, 90°, 135° angles.

3) Non-maximum suppression: A pixel value is retained
if its two neighbouring pixels along the same orientation
have lesser values, otherwise the value is set to 0. This step
suppresses any residual edges detected along a main edge.

4) Thresholding: The final edge detected image is obtained
by thresholding the image with two thresholds, lower and
upper. If the magnitude of the edge strength is less than the
lower threshold, its value is set to 0. Similarly, if the magnitude
of the edge strength is greater than the upper threshold, the
value is set to 1. Depending on the application requirement,
the range between lower and upper threshold values could be
set to a value in the range of (0,1). Determining the threshold
values is application specific.

B. Self organising maps

The Self-Organising Map (SOM) [8] is an unsupervised
learning algorithm. While the primary feature of the SOM is
to visualise high dimensional data in low dimensional space,
SOMs are also used for clustering and pattern recognition. The
SOM starts with a lattice (mostly rectangular or hexagonal) of
neurons for which input vectors are presented randomly. For
each input vector, the best matching unit (BMU) is identified
and the BMU’s weight is adjusted towards the input vector
following the Hebbian learning rule. The input data set is
presented over a number of iterations at the end of which
the map of neurons are topologically arranged to form a
summarised view of the data set in low dimensional space.

While the SOM provides an effective framework for visual-
ising high dimensional data sets, deciding the size of the lattice
could pose a challenge especially for large data sets. Since
the running time of the SOM algorithm significantly increases
with the number of input vectors, finding the optimum lattice
size by trial and error could be impractical. A later extension to
SOM called the Growing Self-Organising Map (GSOM) [10]
overcomes this issue by having to specify only one parameter,
the spread factor. The GSOM algorithm has two phases,
the growing phase and the smoothing phase. The GSOM
algorithm operates by starting with only four neurons and by
growing neurons to match the data set. Neurons are grown if
the accumulated quantisation error is greater than a defined
threshold called the growth threshold (GT). G is determined



by the number of dimensions, d and the spread factor, SF
given by Equation (1).

GT = —d x In(SF) (1)

The smoothing phase is similar to that of SOM where the
weight vectors of the BMU and its neighbours are adapted
towards the input vectors over a number of iterations.

Recently, a scalable approach has been proposed for large
scale data clustering using the SOM algorithm[11]. The num-
ber of vectors for image data sets could be extremely high
for large image collections. The Parallel GSOM proposed in
[11] provides a framework for utilising parallel computing to
process large data sets.

III. METHODOLOGY

A reasonably well maintained sewer pipe system would
result in image collections containing a majority of undamaged
or “good” pipe segments. As a result, the majority of the
image content could be discarded due to absence of defects.
However, proper identification such content is critical since
labelling a defect as non defective (true negative) could lead
to pipe damage. As a result, labelling a non defective image
as defective (false positive) is considered far less severe than
false negatives.

Fig. 2 shows the overall architecture of the proposed ap-
proach. In summary, the proposed algorithm generates features
for the image collection and hierarchically clusters the image
features to separate regular and irregular features. Features
are generated from pixel gradient values by Canny like edge
detection mechanism due to its effectiveness and faster oper-
ation [12]. GSOMs are used to classify the generated features
as regular and irregular. Thus the algorithm consists of three
phases, pre-processing, feature extraction and clustering.

A. Pre-processing

In order to ensure smooth clustering, feature extraction
process should have a low signal to noise ratio. Noise could
be caused by the texture and markings in the pipe as well as
by the imaging sensor on the image acquisition device. Noise
is reduced in two steps using scaling down and smoothing.

1) Image scaling: Any noise caused by irrelevant pipe fea-
tures such as deposits, markings and pipe texture is reduced by
scaling the image to 10% of its original height. The objective
of the scaling step is to ensure that any irrelevant image
features are suppressed and relevant features are preserved.
Since edge detection is used as the primary feature generation
technique, any defects that remain should consist of detectable
edges. By visual inspection of the image collection, it was
determined that at 10% of the original height, the images still
preserve any defects that should be identified.

The image collection used for this paper consisted of a mean
height of 500 pixels, thus the images were scaled to a height
of 50 pixels. In order to minimise visual distortion and for
efficient performance, bilinear interpolation was used as the
scaling technique.
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Fig. 2. Overview of the proposed approach



2) Smoothing: Due to defects in imaging sensors and post
processing techniques, random noise could be added to the
images. Since features are extracted by examining the edge
strength, such noise could lead to false positives. In order
to suppress random noise, image could be smoothened by
comparing pixel values to that of it’s neighbours. Gaussian
smoothing is a widely used technique for image smoothing.
Therefore, pipe images are smoothened by convolving with a
Gaussian kernel. Since the smoothing operation is performed
on the scaled down image, performance tend to be significantly
faster compared with smoothing the full size image.

B. Feature extraction

A Canny edge detector based process is used to calculate
the features for each image by partitioning the image into parts
with equal length. Each partition is then convolved with Sobel
operators in horizontal and vertical directions to calculate the
edge strength for each pixel which is followed by double
thresholding. The image is divided into blocks and the root
mean square (RMS) edge strength and the standard deviation
for each block is calculated as the feature vector.

1) Image partitioning: Images acquired from pipe inspec-
tion devices tend to be of varying lengths ranging from
approximately 6,000 pixels to 50,000 pixels. As a result,
images are partitioned into even length blocks spanning the
entire height for feature extraction, which provides a uniform
basis for image feature representation. The block length was
determined as five pixels (which scales to 50 pixels in the
full size image) which is sufficiently large to contain a single
defect. In order to compensate for boundary effects such as
pipe features separating at the boundary, a one pixel overlap
was introduced. Partitioning of the images was performed at
a logical level such that convolution operators could process
the partitions beyond the boundary.

Fig. 3 shows a sample of the image partitions generated in
the partitioning process.

2) Edge detection: Sobel operators are used for edge
strength calculation using pixel gradient values. Horizontal
operator (G ) and vertical operator (G,) are given by equation
(2) for completeness. Each image partition is convolved with
Sobel operators in the horizontal and vertical directions.

~1 0 +1 -1 -2 -1
G.=1[-2 0 +2|,G,=] 0 0 0 (@
-1 0 +1 +1 42 41

The main limitation of applying the Sobel operators to five
pixel wide partitions is the effect of distortion due to applying
the convolution operator at the borders. In order to prevent the
distortion from border effects Sobel operators are applied to
the unpartitioned image and edge strengths relevant to each
image partition is obtained.

At the end of the edge detection process, two matrices are
created for each image partition containing the edge strengths
in horizontal and vertical directions.
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Fig. 3. Example image partitions containing different image features. (A)
- A segment with noise (B) - pipe joint, (C) - pipe connection, (D) - pipe
segment with a smooth flow line, (E) - clear flow line, (F) - pipe segment
with cracks, (G) - pipe joint with defect at the top
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3) Thresholding: Similar to Canny edge detection, double
thresholding is performed on the edge detected image in order
to suppress weak edges and to normalise strong edges. The
thresholds were selected by trial and error so that relevant
image features are retained. Any value less than the lower
threshold is set to 0, values between lower and upper threshold
are set to 0.5 and values greater than the upper threshold are
set to 1. Due to the thresholding process, pixels that could
lead to false positives are reduced.

4) Feature calculation: After the thresholding process, each
image partition is divided into five equal blocks along the
vertical axis. For example, if the height of the image is 50
pixels, each block would have a height of 10 pixels. The
feature vectors are calculated using the root mean square
(RMS) and standard deviation (o) statistical measures. The
RMS value is an indication of how strong the edges are in
a particular orientation. o is an indication of the degree of
fluctuation of the edge strengths. For example, a high o value
could indicate a pipe connection where a circular pattern is
shown on the image. Table. I summarises some of the possible
features that could be identified using this feature set. When
these feature values are associated with the block location,
provides a more powerful basis for defect identification.

TABLE I
POSSIBLE PIPE FEATURES RECOGNISED BY FEATURE VECTOR VALUES

Feature type Horizontal Vertical
RMS o RMS o

Flow line High Medium Low Low
Flow line with defect High High Low Medium
Pipe joint Low Low High Medium
Defective pipe joint Low Medium High High
Pipe connection Medium High Medium High
Defective connection High High High High




Once the calculations are completed, each image block is
represented using four features. RMS and o of edge strengths
in both horizontal and vertical directions. Since five blocks
are created for each image partition, each image partition is
represented as a vector with 20 feature values.

At the end of the feature calculation process, vectors are
created for each image partition. The feature vectors are
normalised since SOM based techniques require input vectors
with values in [0,1].

C. Hierarchical clustering

The objective of the hierarchical clustering phase is to filter
out the regular image features in each level so that irregular
features could be identified. The GSOM is used as the learning
technique due to its suitability for exploratory data analysis.

Due to multiple characteristics such as flow lines, pipe
connections, variations in lighting, pipe joints, defects etc,
a gradual filtering approach was found to be more effective
rather than a single pass clustering. A cluster hierarchy was
chosen as opposed to identifying multiple clusters on a single
level due to the following reasons.

1) The number of input vectors containing defects is ex-
tremely low. As a result, the defect cluster would be
under represented.

2) The cluster distribution is uneven with approximately
50% of the image partitions containing only flow lines,
approximately 25% containing pipe joints, approxi-
mately 10% containing pipe connections and the re-
mainder containing defects and other features. Cluster
accuracy of SOMs tends to decrease in the presence of
uneven cluster distributions.

3) It is easier to backtrack and search in the previous level
for defects if required as opposed to searching the entire
input space.

Therefore, a three level hierarchy was created having two
clusters at each level. The two clusters could be loosely named
regular and irregular pipe image partitions. The input vectors
mapped to the irregular cluster are used as input to create the
next level GSOM which is again separated into two clusters.
Similar to the first level, the clusters are labelled as regular
and irregular and the input vectors mapped to the irregular
cluster is used as input to the third and final level. The third
level GSOM is also clustered into regular and irregular image
partitions and the irregular cluster is considered as likely to
contain image partitions that contain defects.

1) Cluster separation: Neurons in the GSOM at each
level of the hierarchy were clustered using the k-means
algorithm[13]. K-means algorithm was used to form two
clusters from the neurons in the GSOM. The DB-Index was
calculated for each cluster to find the optimum clustering[14].
The cluster configuration with the lowest DB-Index value was
considered as the optimum for the map. The two clusters were
then visually inspected and labelled as regular and irregular.

IV. EXPERIMENTS AND RESULTS

The effectiveness of the proposed technique was evaluated
using a real pipe image data set.

A. Data set

The image data set consisted of 66 unwrapped images of
real sewer pipes using the Panoramo® system. The image
lengths vary from 3840 pixels to 50400 pixels which resulted
in different number of partitions for each image. The image
data set was divided into 30 training images and 36 test
images. The training set was selected at random such that a
reasonable mix of image features was distributed across both
sets.

Features were extracted for both sets using the proposed
approach. The training set consisted of 18649 feature vectors
whereas the test set contained 28059 feature vectors. Each vec-
tor consisted of 20 feature values. The test set was manually
inspected and the defects were labelled.

B. Results

The cluster hierarchy was generated using the features
extracted from the training image set and the clusters were
manually annotated as regular and irregular. The test image
feature set was then fed as input to the cluster hierarchy and
the vectors that were mapped to the irregular cluster at the top
level were examined. It was observed that 100% of the defects
labelled in the training set were contained in the irregular
cluster. The results of the test image classification are shown
in Fig. 4.

It could be observed that the level 1 GSOM acts as a
filter for image partitions with clear flow lines. When the
map was separated into two clusters, reasonable regular and
irregular feature separation could be observed. Since the goal
was to minimise false negatives, the irregular feature cluster
contained more vectors. The cluster distribution was 11100
(40%) vectors in the regular feature cluster and 16959 (60%)
vectors in the irregular feature cluster. The primary feature in
the regular feature cluster was high RMS and low ¢ values for
horizontal edges and low RMS and low o values for vertical
edges. In terms of image features, the regular feature cluster
contained clearly detectable flow lines which contribute to
approximately 50% of the total image features. In addition, the
regular feature cluster also contained blank image partitions
which could be found at the left and right boundaries of
the images. The irregular cluster consisted of varying flow
lines, pipe connections, pipe joints and partitions with distorted
content. In summary, the level 1 of the cluster hierarchy
separated clear flow lines and input vectors that do not get
classified as flow lines were presented as input to the next
level.

The reason for some flow line features being classified
as irregular in level 1 is due to the nature of feature value
distribution. For example, a wider flow line could span several
image blocks whereas a narrow flow line could span only the
centre block. If the number of vectors representing narrow flow
lines is considerably higher compared to features representing
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Fig. 4. Image distribution at different levels of the hierarchy. (A) - a neuron containing thick flow line features (B) - a neuron containing pipe connection
features, (C) - a neuron containing thin flow line features, (D) - a neuron containing pipe joint features, (E) - A neuron containing flow line features, (F) - a
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(I) - a neuron containing regular features, (J) a neuron containing irregular features



Fig. 5.
horizontal crack, (F) - Defects at pipe connection, (F)

wider flow lines, wider flow lines tend to be marked as
irregular. However, after most of the narrow flow lines are
filtered out from the data set which is input to next level,
wider flow lines tend to get classified as regular due to the
relatively higher presence. This effect was observed in level
2.

Level 2 of the cluster hierarchy acted as a filter for
further flow lines and other regular features such as pipe
connections without distortions. The regular feature cluster
contained 10261 (61%) of the vectors. The irregular feature
cluster contained image partitions with higher distortions and
contained 6698 (39%) of the vectors. The vectors mapped to
the irregular feature cluster were input to the GSOM trained
at level 3.

The final level of the cluster hierarchy further filtered the
input space. It could be observed that the image partitions
mapped to the regular feature cluster contained jagged flow
lines and markings. The irregular feature cluster also contained
more distorted image partitions than the previous level. The
regular feature cluster contained 2973 (44%) of the vectors
whereas the irregular feature cluster contained the remaining
3725 (56%).

Inspecting the image partitions mapped to regular and
irregular feature clusters in the three levels, it could be
seen that the level or distortion in the images increases as
the number of levels increases. Thus it demonstrates the
algorithm’s effectiveness in progressively filtering out regular
image features to isolate image partitions that could contain
defects.

Accuracy of clustering was evaluated using manually la-
belled defects in the test set. It was observed that all the defects
were present in the irregular cluster at level 3. Fig. 5 shows
some of the identified defects.

Defects captured in the level 3 irregular feature cluster. (A, D, H) - Defects at pipe joints (B) - vertical cracks, (C) - cracked pipe segment, (E) -

In summary, the proposed approach narrowed down the
search space from an initial 28059 vectors to 3725 vectors
which is a reduction of 86.7%. This significant reduction of
the search space could lead to faster detection of defects.
Efficiency of the algorithm is high since the features are
extracted from scaled down images. In addition, the time
requirement for classifying vectors on an already trained
neural network is very low. The training of the networks could
be improved by using the scalable approach suggested in [11]

V. DISCUSSION

It is evident that the proposed technique has significantly
narrowed down the search space for defect detection. In
addition all the identified defects in the test data set were
included in the irregular feature cluster at level 3 indicating
high accuracy of the proposed approach. As a result, defect
identification algorithms which possess high time complexities
could benefit from having to process a small subset of the total
image collection.

The proposed technique could be further improved by
incorporating current flow line detection techniques (e.g.: [15]
to filter out flow line image partitions. Since image partitions
containing flow lines form majority of the image partitions,
flow line detection could yield to faster performance and more
accurate results. In addition, the number of levels in the cluster
hierarchy could also be reduced.

For processing very large image collections, the proposed
approach could be scaled to be executed on distributed
computing platforms. Pre-processing and feature generation
could easily be parallelised since each image is considered
independent from others. A scalable approach could be utilised
for training of GSOMs and generation of the cluster hierarchy
using work proposed in [11].
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