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Abstract. We present a recurrent learning system that can incremen-
tally integrate stimuli in two modalities, visual and auditory. The system
consists of five self-organizing modules, each mapping input stimuli into
respective latent spaces. Two sensory modules convert the input stim-
uli into an internal 3-D “neuronal code”. The central module integrates
the bimodal information, and through modulatory top-down feedback
influences the organization of data in two unimodal association units.
Two feedback gains control the strength of the feedback connection. As
an example we selected a set of Chinese characters and related spoken
words. It is shown that the learning system can build a stable neuronal
structure for incrementally applied visual and auditory stimuli.

Keywords: Multimodal Learning, Visual and Auditory stimuli, Recur-
rent networks, Self-organization, Chinese characters.

1 Introduction

It is well acknowledged that human languages are inherently cross-modal, re-
quiring both written and spoken components to realize their full potential. In-
teresting accounts of the origins of human written and spoken language can be
found in [7] and many others.

Due to the redundancy between the visual-signing (gestural, drawing or writ-
ing) and auditory-speech systems, spoken cross-modal references to symbolic
names, as well as written representations of spoken signals, allowed for an in-
creasingly rich repertoire of utterances, words and characters. These could be
combined to describe the physical and mental world in more abstract terms and
the argument goes that as languages became more sophisticated, they became
increasingly embedded in the complex culture within which they co-evolved [3].

Some important differences in the way the human brain processes pictographic
languages in general and Chinese in particular is described in [2]. As processing
of the radicals and oriented brush strokes comprising the 50,000 or so known Chi-
nese characters is very different from that of phonetically based languages such
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as English, a different set of phonological and orthographic skills are required in
Chinese language acquisition [16].

Language processing is fundamental to human cognitive ability and involves
multiple cortical networks and pathways across visual, auditory and other modal-
ities. Large brain networks used in reading are discussed in [5]. See also [14] and
[15] for some of our own efforts to develop simplified models of such networks.

While language comprehension and production requires the function of mul-
tiple cortical areas acting in concert, a region on the left hemisphere, the left
superior temporal sulcus (STS) has been advanced as the main site for integra-
tion of visual and auditory speech information [3]. Recent fMRI studies support
the key role of this region in the fusion of letters and speech sounds in the human
brain[1].

Previous results of applying our models to the problem of integration of
phonemes and letters in Chinese and Swedish are reported in [4] and [8] re-
spectively. A related modelling framework is used in this case, however later
enhancements for sequential feed-forward and recurrent learning [15] and incre-
mental learning [11] provides an opportunity to revisit the problem of learning
Chinese characters and associated sounds.

By incrementally building up sensory, unimodal associative and fused bimodal
representations within our simplified five module network, a consistent way in
which a human child or a computational agent may learn essential features of
Chinese or any other spoken and written language is suggested.

2 The Structure of the Learning System

The structure of our bimodal incremental learning system is presented in Fig. 1.
The function of the system is to receive sensory information across two modali-
ties, visual and auditory, and integrate these representations. As an example, we
use Chinese characters and their utterances as inputs to our system. We have
experimented previously with Chinese characters in [4] and more recently [13].

The main part of the learning systems consists of five interconnected self-
organizing modules. Two sensory level modules, Vis and Aud, process visual
and auditory stimuli, respectively, converting coded sensory information, xV and
xA into the standard internal representation of signals yV and yA. In the next
hierarchical level, two unimodal association modules, UV and UA, combine
the signals from the sensory level, yV and yA, with the modulating top-down
feedback signals, yV A, produced by the top level bimodal association mod-
ule, V+A. The strength of the top-down modulatory feedback is controlled by
two gain parameters, gUV and gUA, at the input to the respective unimodal
association modules.

The bimodal association module is presented here as a central part of the
learning system. We can hypothesize that this module may also be activated by
endogenous thoughts and can be used to drive modal effector systems, one for
writing and one for articulation.

Following our previous works [14,15,8], the building block of our system is a
self-organizing module (map) with the following characteristics (see Fig. 2):
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Fig. 1. The structure of the incremental learning system. The main part of the system
consists of five self-organizing modules: Vis, UV, Aud, UA and V+A.

– The neuronal units (shown as yellow dots in Figures 2 and 4) are randomly
distributed inside a unit circle, rather than on a uniformed rectangular grid.

– A constant number (stochastically) of neuronal units per stimulus, ε, is main-
tained to simulate the redundancy observed in biological systems.

– All stimuli vectors are projected on a unity hypersphere. Therefore, a sim-
plified “dot-product” version of the Kohonen learning law [9] may be used.
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Central to our processing architecture are the outputs from self-organizing
modules, for example, yV in Fig. 1. Note that dimensionality of all output vectors
is 3. Such an output vector is a concatenation of the 2-D position vector of the
winning neuron and its postsynaptic activity, namely,

y = [vw dw] = K(d), d = W · x (1)

where W is an M × D matrix of parameters, the weight matrix, M being the
number of nodes (neurons), and K is the Winner-Takes-All function identifying
the position of the neuronal node vw for which the post-synaptic activity d =
W · x attains the maximum.

These output signals implement a ubiquitous “neuronal code”, providing a
unified way for information labels to be exchanged between modules of the net-
work. It should be emphasized that the positions of neurons are considered in a
latent space, not the physical one. This implies that during incremental learning
the physical position of participating neurons is not affected.

3 The Incremental Learning Process

Our incremental learning process for a single iSOM has been introduced in [11].
We refer to this paper for detailed comparisons with other structures that may
appear similar, in particular, a variety of growing SOMs. One fundamental dif-
ference is that during the learning process, we maintain a stochastically constant
ratio between the number of neuronal units and the number of current stimuli.

In our case this expected ratio is always greater than one, implying that more
than one neuron is used to represent a percept. This can be contrasted with other
applications of SOMs where the number of of neurons is typically less than the
number of data points. A study into the increased persistence and stability of
percepts provided by such neural representations is presented in [6].

The incremental learning process starts with a small number, say n = 3, of
initial stimuli and consists of two main steps:

Feedforward learning: We start with setting two feedback gains gUV and gUA to
zero, thus opening the feedback loops and

– generate the number of neuronal units proportional to the number of stimuli,
m = nε, say 3× 16 = 48

– generate initial weights to be located around the north pole of the unity
hypersphere

– perform the “dot-product” learning law for all maps, for all initial stimuli,
for a set number of epochs, say 100.

Recurrent learning: We set the feedback gains to required values, e.g., gUV =
gUA = 0.5 and repeat the learning process with one basic modification: after
completing learning for each stimulus, we re-evaluate outputs from all 3 inter-
connected modules, namely, yUV , yUA and yV A, until the values of the outputs
settle. This typically happens after just two steps (see [14,15] for more details)
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Adding more stimuli: Now we add new stimuli, one at a time, and repeat the
two learning steps above with the following modification:

– generate the additional number of neuronal units proportional to the incre-
ment in the number of stimuli, mi = niε, say 1× 16 = 16

– initialize weights of the new mi units to be equal to the weights of the closest
neighbours.

– continue learning in the open and closed loop as above.

Sensory Visual Map, adding: qing1

cou4 zhun3

liang2leng3

feng2

mo1

da2

qing1

Sensory Auditory Map, adding: qing1

ba1 mo2 da3 ti4 chong1 feng2 jue2 min3
ba2 mo3 da4 ke1 cou4 gan4 leng3 ning3
ba3 mo4 ti1 ke2 cui1 gu4 liang2 qi1
ba4 da1 ti2 ke3 diao1 jian3 lie4 qing1
mo1 da2 ti3 ke4 dong4 jing4 ling2 zhun3

Fig. 2. The sensory maps after 8 stimuli. The set of characters and their pinyin names
are included.

This incremental process elegantly solves the problem of initialization of weights.
Less effective random initialization is performed only for a small number of initial
neurons. The result of learning after application of 8 stimuli is shown in Fig. 2.

Topological ordering of the stimuli needs to be considered in the context of
the feature vectors used. For the visual channel we used an angular integral of
Radon Transform (aniRT) discussed in [13] for the 20,000 Chinese characters
and in [12,10] for other types of visual objects.

In the table of Fig. 2, the first 20 characters are grouped according to simi-
larities in pronunciation, while the second set of 20 have a similar structure in
terms of the aniRT coefficients. Each rendered character, is converted into a 91
component vector (91 being the size of the diagonal of the image). As described
in [13] very few components are required to differentiate between characters,
although some more are needed to capture details of the visual object.

For the auditory channel, we follow our previous work [14,8,4] where melcep-
stral coefficients are used to represent frequency of the speech sounds. We use
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12 coefficients per frame, with 3 frames overlapping by 50%. We also add the
duration of the utterance, so that we have 38-D feature vectors after projecting
up on the unity hypersphere. An example of such coding is given in Fig. 3.

0 2000 4000 6000 8000
−1

0

1

8996

5 10 15 20 25 30 35
−5

0

5 ba1

ba1 p. 1

1

Fig. 3. Representing the ‘ba1’ sound in the melcepstral domain: 8996 speech samples
are coded by 36 melcepstral coefficients. Normalized number of samples is also included
as the first coefficient in the right-hand side plot.

If we continue the process of learning adding incrementally more and more
stimuli, after 40 stimuli we obtain five maps as presented in Fig. 4. Again, at
the sensory level it is easy to spot the topological ordering in both modalities.
At the unimodal association level the topological arrangement of the stimuli
is influenced by the top down feedback. Finally, the bimodal map presents the
fusion of information from two modalities. In this paper we concentrate on the
issue of the incremental learning which is performed for the congruent stimuli
presented on the visual and auditory channels. The reader is referred to our
previous works for considerations related to noisy and incongruent stimuli.

4 Discussion

While the sensory maps develop independently in a feedforward learning mode,
the influence of top-down feedback during the recurrent learning phase ensures
that cross-modal relationships are encoded in the unimodal and bimodal maps.
Significantly, even though crossmodal information is not explicitly contained in
either the visual or auditory information presented alone, the BiSON model en-
sures that the inherently bimodal structure of the words or characters comprising
the natural language (in this case Chinese) is effectively encoded and learned.

A further enhancement would be to explore interactive learning and com-
munication through the addition of character articulation and writing effector
modules. This could introduce a third sensori-motor modality to our multimodal
language framework. Finally, by extending this architecture to include simpli-
fied modules for central perceptual, evaluative and task-orientation functions,
we hope to develop a sophisticated multilayered learning model where the sym-
bolic elements or tokens of a spoken and written language represent meaningful
mental objects and concepts within an interactive setting.

5 Conclusion

We present a recurrent learning system vaguely mimicking some basic cortical
areas related to integration of visual and auditory information. In the example,
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Sensory Visual Map, adding: cui1
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Fig. 4. The five interconnected maps developed after incremental application of 40
stimuli

the system ’reads’ Chinese characters and simultaneously ’listens’ to their pro-
nunciation. At each stage, we add one more visual-auditory stimulus and the
learning system incorporates it into its 5-map structure. Despite the recurrent
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nature of the system, it converges to a fixed point after a only small number of
recurrent iterations. The bimodal module plays the central part of the system for
fusion of the bimodal percepts and from which effectors for writing and speaking
can be driven.

The software used in this paper is written in MATLAB and is available upon
request.
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4. Chou, S., Papliński, A.P., Gustafsson, L.: Speaker-dependent bimodal integration of
Chinese phonemes and letters using multimodal self-organizing networks. In: Proc.
Int. Joint Conf. Neural Networks, Orlando, Florida, pp. 248–253 (August 2007)

5. Dehaene, S.: Reading in the Brain. Viking (2009),
http://pagesperso-orange.fr/readinginthebrain/figures.htm

6. Druckmann, S., Chklovskii, D.B.: Over-complete representations on recurrent neu-
ral networks can support persistent percepts. Advances in Neural Information Pro-
cessing Systems (2010)

7. Fitch, W.T.: The Evolution of Language. Cambridge University Press (2010)
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