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ABSTRACT

3D visualisation is being used increasingly to improve the
accuracy of biopsies and seed placement for prostate cancer
brachytherapy (the implantation of small radioactive ‘seeds’
for radiotherapy). The construction of a 3D model requires
the segmentation of 2D Magnetic Resonance (MR) images,
which remains a challenging problem. The current practice
of manual segmentation requires a very high level of exper-
tise and is time-consuming. In this paper, we propose a new
method for creating a 3D model of the prostate from MR im-
ages obtained pre-operatively. To do this, an Active Appear-
ance Model (AAM) is created from the image data by group-
ing the MR images based on the region of the prostate each
is taken from. A fast optimisation algorithm is then used to
segment a new prostate using the AAM. Our results show that
this method is fast and accurate compared with manual seg-
mentation enabling this method to be used intra-operatively.

Index Terms— Medical Image Analysis, Visualisation,
Segmentation, Prostate Modelling

1. INTRODUCTION

Prostate cancer is one of the most commonly occurring can-
cers amongst males in many developed countries. The Aus-
tralian Institute of Health and Welfare (2015) estimates the
annual age-standardised incidence of prostate cancer at 126
cases per 100,000 males [1]. Visualisation of the prostate is
being used increasingly to improve the accuracy of medical
procedures such as biopsies, and to guide seed placement dur-
ing brachytherapy - which is a form of radiotherapy achieved
by the temporary or permanent implantation of small radioac-
tive ‘seeds’.

Ultrasound can be used for intra-operative guidance, how-
ever, it does not contain the necessary anatomical detail or
resolution for accurate biopsy or seed placement. To provide
this anatomical detail our research goal is to co-register the ul-
trasound with MRI. The method described here provides for
rapid and accurate segmentation in 3D space, which is neces-
sary for the intra-operative co-registration with ultrasound.

3D models of the prostate are typically constructed from
a set of (two dimensional) image slices made at intervals, and

then stacked to create the volumetric form. These images may
be created by Magnetic Resonance (MR), as in this research,
or ultrasound. An important stage in the creation of the 3D
model is the segmentation of the prostate gland in the pre-
operative images. However, automatic segmentation is a non-
trivial task due to the prostate gland being a soft organ, sub-
ject to shape deformations caused by factors such as bladder
volume or rectal wall motion. As a consequence manual seg-
mentation is still used extensively, which is too slow for the
creation of 3D models intra-operatively, and automatic seg-
mentation of the prostate remains an active research area.

To segment images using region-based level sets, statisti-
cal information about the prostate and surrounding region is
extracted to maximise the margin between background and
prostate regions. A deformable model is implicitly defined
and propagated until the two regions converge, at which point
the model energy is minimum [2].

Atlas based approaches specify the prostate model by a set
of manually labeled images of the organ, which are aligned
and registered to reference coordinates [3, 4].

Edge-based methods mainly use gradient filters and mul-
tilevel derivatives to detect the prostate boundary [5, 6, 7].
However, these approaches often result in broken and false
edges due to the heterogeneous intensity distribution within
the prostate gland boundary.

Deformable model methods attempt to represent the shape
of an object by reconciling external and internal energies [8].
External energies deform an initial model towards edge points
of the object, whereas smoothness of the contour is preserved
by internal energy. These energies are combined, and seg-
mentation is achieved by minimising the combined energy
function. In recent research, deformable model methods have
shown a high potential for application to prostate segmenta-
tion since they can address the many possible variations of
the prostate shape during the training phase to rebuild and im-
prove the model [9, 10, 11]. Consequently, we are adapting
and extending this approach in the current research.

In this work, a 3D Active Appearance Model (AAM)
is created from a set of 2D slices. The collection of slices
contains information about the prostate surface (the shape
component of the AAM) and the volumetric contents of the
prostate (the texture component of the AAM). A computa-
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Fig. 1: Prostate appearance warping using a piecewise affine
function

tionally efficient procedure is used to form the 3D model of
the prostate by grouping slices in the training data (that is,
each MR image) by their corresponding axial position. An
improved Inverse Compositional Model Alignment (ICMA)
method is used as an optimization algorithm to efficiently
segment the prostate.

2. PROSTATE SEGMENTATION METHODOLOGY

To segment the prostate from MR images, a typical model of
the gland is created using an AAM [12, 13]. The two phases
of this process are: creating the AAM, and fitting to a new
unsighted image.

2.1. Creating the Active Appearance Model

An AAM of the prostate is created by modelling both shape
and gray-scale (texture) information. These are now dis-
cussed in turn.

2.1.1. Shape Model

To create a shape model of the prostate the following steps
are performed. Landmarks are annotated in each training im-
age, shape vectors are aligned, and PCA applied to extract
significant dimensions [14]. The shape model is

x = x̄ + Φb, (1)

where x̄ is mean (reference) shape of the prostate. The vec-
tor of shape parameters b specifies possible variations of the
prostate along with its principal components φ.

2.1.2. Texture Model

A texture model of the prostate is constructed by sampling
voxels from the prostate in each training image and map-
ping them to the mean shape using a piecewise affine warping
W (x; b). This results a set of shape-free textures patches as
shown in Figure 1. Delaunay triangulation is used to warp an
image I(x,y) and sample voxels (using bilinear interpolation)
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Fig. 2: Prostate shape triangulation with piecewise affine
warping

in the image coordinates I(W (x; b)), and map the sampled
intensity values to the corresponding locations (pixels) in the
mean shape coordinates. Each pixel v in the mean shape is
located inside a triangle, for example, (xi, xj , xk), as shown
in Figure 2.

Once computed, the warp function is applied to each train-
ing image and voxel samples to create a gray-scale vector
gim containing intensity values of the prostrate. This is usu-
ally normalised to remove effects of illumination and lighting
variation. The resulting texture model is

g = ḡ +Ωc, (2)

where ḡ is the average of all gray-scale vectors, Ω is the sig-
nificant modes of texture variation and c denotes the texture
parameters. As with the shape model, Ω is calculated by ap-
plying PCA to a matrix of gray-scale vectors to reduce dimen-
sionality. Having created the texture model, the appearance of
any prostate image in training dataset can be reconstructed by
Equation (2) and corresponding texture parameters.

2.1.3. Creating a 3D model of the Prostate

The previous subsections (2.1.1 and 2.1.2) showed how a 2D
AAM could be created for single slice of the 3D prostate vol-
ume. To create the 3D AAM (of the whole prostate) these
steps can be performed for each level in the image stack cor-
responding to sections at different depths in the prostate. To
train the AAM in this way, training data sets are created at
each depth. Each AAM can then be trained independently
in parallel. A a surface model of the prostate can then be
formed from the stack of 2D AAMs, each explaining a par-
ticular part of the prostate. A prostate surface along with its
possible shape variations created in this way is shown in Fig-
ure 3.

2.2. Fitting the Active Appearance Model

Fitting a 3D AAM of the the prostate to a new, unsighted, im-
age requires non-linear optimisation [15]. The difference be-



Fig. 3: A 3D model of the prostate showing shape variations

tween a synthesised prostate image (obtained from the AAM)
and the test image is measured using non-linear least squares,
giving the objective function

E(q) = arg min
[
T (x)− I(W (x; b))

]2
q =

[
b c

]T
,

(3)

where T (x) is a synthesised prostate image (obtained from
ḡ) and I(W (x; b)) is the warped test image with respect to
shape parameters b. The fitting goal is then to minimise E(q)
with respect to shape parameters b and the texture parame-
ters c. Although gradient descent is a well-known optimi-
sation method for this type of NLS problem, it is computa-
tionally slow and inefficient because the image gradient, Ja-
cobian, and Hessian matrices need to be calculated at each
iteration. To overcome this issue, the fitting problem is re-
defined as an image alignment problem, where a modified
version of Lucas-Kanade method known as Inverse Composi-
tional Model Alignment (ICMA) gives a more efficient fitting
process [16, 17].

The ICMA algorithm performs Gauss-Newton gradient
descent simultaneously on the warp function W (x; b) with
respect to shape parameters b and texture parameters c. The
main difference between the ICMA algorithm and conven-
tional gradient descent is that, instead of updating the shape
parameters incrementally (b←− b+δb), it updates the warp-
ing function in an inverse compositional manner. This leads
to pre-computing the Jacobian and image gradient matrices,
reducing the computation required. Updating at each itera-
tion (t) is

Wt+1(x; b)←Wt(W (x;δb)−1; b)←Wt(x; b) ◦W (x;δb)−1,

(4)

where ◦ denotes the compositional operation. W (x;δb)−1

is the inverted incremental warp, which is computed with re-
spect to the synthesised image T (x) rather than the test image

I(W (x; b)). Reversing the role of the synthesised image and
the test image in Equation (3), and taking a first order Tay-
lor expansion establishes the ICMA algorithm. The objective
function is now

E(δq) = argmin
δb,δc

∣∣∣∣∣∣T (x) +Ωc− I(W (x; b)) + Jδb+Ωδc
∣∣∣∣∣∣2

δq =
[
δb δc

]T
.

(5)
The error between the given image and the model instance in
Equation (5) is simultaneously minimised using an `2 norm
with respect to model parameters. This requires the steepest
descent image (Jδb + Ωδc) to be calculated at every itera-
tion because it depends on the texture parameters δc. A faster
optimization method is introduced using the iterative scheme
described in [18], where Equation (5) is minimised with re-
spect to each parameter δc and δb in turn, that is,

arg min
δb,δc

E(δb, δc) = min
δb

[
min
δc

E(δb, δc)
]
. (6)

Thus Equation (5) is first optimised with respect to δc as

δc = ΩT
(
I(W (x; b))− T (x)−Ωc−∇T ∂W

∂b
δb
)
. (7)

The solution to Equation (7) (a function of δb) is fed back
into Equation (5), which is then optimised with respect to δb
giving

δb = H−1ΨT
(
I(W (x; b))− T (x)

)
, (8)

where H and Ψ are Hessian and steepest descent matrices,
respectively, calculated as follows:

Ψ =
(
∇T ∂W

∂b

)
−ΩΩT

(
∇T ∂W

∂b

)
; H = ΨTΨ. (9)

These steps are repeated at each iteration and model param-
eters are updated accordingly until the stopping criteria is
met. The texture parameters are updated in a common ad-
ditive manner (c ← c + δc), while the shape parameters are
indirectly updated using Equation (4).



Table 1: Accuracy of segmentation using leave-one-out cross
validation on 10 cases during the model training phase

Metrics Mean Median
DSC 0.82 0.83
95% HD 19.48 20.91

Table 2: Accuracy of the proposed method tested on un-
sighted images adjacent to mid-gland

Name 95% HD DSC
Case 26 12.94 0.91
Case 27 20.51 0.80
Case 28 9.8 0.94
Case 29 15.5 0.92
Case 30 19.31 0.84
Case 31 23 0.82
Case 32 11.77 0.90
Case 33 13.07 0.85
Case 34 21.56 0.80
Case 36 28.17 0.90
Average 17.56 0.87

3. SETUP AND RESULTS

A subset of the MICCAI1 data set was used to construct an
AAM of the prostate gland. The model was created from 10
cases, having an average voxel size of 0.3905× 0.3905× 3.3
mm. Leave-One-Out Cross Validation (LOOCV) was used
to evaluate the performance of the proposed algorithm during
training. This meant that each image was removed in turn
from the training set and a model created. The image that
had been removed was then automatically segmented using
the model. Two common measures of: Dice Similarity Coef-
ficient (DSC) and 95th% Hausdorff Distance (95% HD) were
used to measure accuracy of the segmentation results against a
manually segmented reference. Segmentation using LOOCV
results in a mean DSC of 0.82 and a median DSC of 0.83
during the training phase, as shown in Table 1.

Accuracy of the model was then evaluated by automati-
cally segmenting 10 cases adjacent to the mid-gland, which
had not been included in the data set for model building. The
results in Table 2 shows an average accuracy of 87% for the
segmentation of unsighted images using the proposed algo-
rithm. Figure 4 shows the qualitative results of prostate
segmentation using the ICMA algorithm for each of the 10
cases in the test data set. It can be seen that a wide variety of
MR images was used to evaluate the proposed method under
a variety of difficult conditions, including poor contrast and
deformations of the prostate.

1http://promise12.grand-challenge.org/

Fig. 4: Qualitative segmentation results of 10 cases (from up-
per left) using ICMA algorithm.The segmented prostates with
ICMA method and reference are shown with red and yellow
respectively.

4. CONCLUSION

We have presented a new method for creating a 3D model of
the prostate from MR images obtained pre-operatively. This
was achieved by fitting an Active Appearance Model to im-
age data that had been grouped by the location in the prostate
it was taken from. This meant that the training data was
comprised of subsets that were more homogeneous, better
describing the region each represented compared with other
methods. A fast, inverse compositional alignment algorithm
was then applied to segment a new prostate. Our method was
tested on a small subset of the MICCAI database, segmenting
mid-gland slices. Results show that the automatically seg-
mented images are accurate, compared with manual segmen-
tation.

http://promise12.grand-challenge.org/
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