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Abstract. The scarcity of labeled data has limited the capacity of convolutional
neural networks (CNNs) until not long ago and still represents a serious prob-
lem in a number of image processing applications. Unsupervised methods have
been shown to perform well in feature extraction and clustering tasks, but fur-
ther investigation on unsupervised solutions for CNNs is needed. In this work,
we propose a bio-inspired methodology that applies a deep generative model to
help the CNN take advantage of unlabeled data and improve its classification
performance. Inspired by the human "sleep-wake cycles", the proposed method
divides the learning process into sleep and waking periods. During the waking
period, both the generative model and the CNN learn from real training data si-
multaneously. When sleep begins, none of the networks receive real data and the
generative model creates a synthetic dataset from which the CNN learns. The ex-
perimental results showed that the generative model was able to teach the CNN
and improve its classification performance.

Keywords: Semi-supervised learning, Sleep-wake cycles, Variational autoen-
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1 Introduction

Deep learning has revolutionized the field of machine learning in the last decade. Among
existing techniques, convolutional neural networks (CNNs)[8] have been shown to be
the best performing approach in image processing [4,7]. These networks are based on
bio-inspired architectures that capture important characteristics of the mammalian vi-
sual system, such as hierarchical organization and receptive fields. However, CNNs
requires vast amounts of training data due to the large number of model parameters that
need to be adjusted. Moreover, this drawback is even more accentuated by the scarcity
of labeled data. Although a number of unsupervised solutions have been proposed to
alleviate this problem [11,12,14], further research is needed to improve supervised clas-
sification performance using unlabeled data [12,14].
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In this work, we propose the synergy of deep generative models and CNNs to im-
prove supervised learning using unsupervised techniques. This combination has been
motivated by the so-called sleep-wake cycles and the interaction between the hippocam-
pus and the neocortex that takes place in the human memory consolidation process. It
is now well established that sleep plays a key role in human memory performance by
stabilizing memory traces and protecting them against interference [1,2,13]. According
to [2], one of the functions of dreams might also be to create a virtual environment in
which the human brain reinforces and tests certain behaviors. During the memory con-
solidation process, the hippocampus is responsible for the acquisition and integration of
new information that will then be transferred to widespread high-order neocortical areas
[3]. McClelland et al. suggest that after the initial acquisition, the hippocampal system
serves as a teacher to the neocortex, allowing for the reinstatement of representations
of past events in the neocortex [10]. In this manner, this information may be gradually
acquired by the cortical system via interleaved learning.

The synergy proposed in this work takes the aforementioned concepts and puts them
all together to train a variational autoencoder (VAE) [5] that allows supervised CNNs to
take advantage of unlabeled data. Therefore, our model comprises two different neural
networks: the VAE and the supervised CNN. The way in which the VAE helps the
CNN to deal with mostly unlabeled datasets is (vaguely) inspired by the human sleep-
wake cycles. During the waking period, both networks learn from real training data
simultaneously. When sleep begins, none of the networks receive real data and the VAE
creates a synthetic (virtual) dataset from which the CNN learns. During sleep, only
the CNN modifies the parameters of the model. In this manner, the VAE "acts" as a
hippocampal system that helps the CNN to reinforce the patterns received during the
waking period. Results obtained from experiments carried out on MNIST handwritten
digit recognition dataset show the effectiveness of this preliminary approach.

The paper is organized as follows. Section 2 briefly describes the generative model
used in this work, i.e., the variational autoencoder. The proposed synergy of variational
autoencoders and convolutional networks is presented in Section 3, while Section 4
shows the effectiveness of this method on MNIST dataset. Finally, we conclude the
paper in Section 5 and suggest a possible future line to extend this methodology to
deeper architectures and larger datasets.

2 Preliminaries: variational autoencoders

Variational autoencoders (VAEs) [5] have become one of the most popular frameworks
for building generative models. The reason behind their success is a fast backpropagation-
based learning process that does not need strong assumptions. The word autoencoders
comes from the fact that the neural network built by this technique is composed of an
encoder and a decoder. An autoencoder is a neural network that tries to build an approx-
imate copy of its input that resembles the training data. To this end, the encoder learns
a low-dimensional code or internal representation z of the input x, while the decoder
is responsible for reconstructing the original data from the internal code. This model
allows one to extract useful properties from training data.
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In the case of VAEs, the hidden code z represents a probability distribution that
is learned during training, instead of single values. Therefore, the encoder becomes a
variational inference network that maps the data to the distribution of the hidden code
(qφ (z|x)), and the decoder becomes a generative network that maps the hidden code
back to the distribution of the data (pθ (x|z)). In this manner, the data generation process
starts by sampling z from its distribution. More specifically, VAEs assume that samples
of z can be drawn from a simple distribution, i.e., z ∼ N(0, I), where I is the identity
matrix. This is reasonable because any distribution in d dimensions can be generated by
taking d variables that are normally distributed and mapping them through a sufficiently
complicated function, such as a Multi-Layer Perceptron (MLP).

In this work, we use a semi-supervised VAE introduced by Kingma et al. [6] that
is able to learn from both unlabeled and labeled data. This method is a combination of
two different VAEs:

– M1 model: provides a low-dimensional latent representation z1 of the original data
using the following generative model:

p(z1) = N(z1|0, I); pθ (x|z1) = f (x;z1,θ) (1)

, where f (x;z1,θ) is a suitable likelihood function (e.g., a Gaussian or Bernoulli
distribution) whose probabilities are formed by a non-linear transformation, with
parameters θ , of a set of latent variables z1. This non-linear transformation is given
by a deep neural network.

– M2 model: describes the data as being generated by a latent class variable y plus a
continuous latent variable z2 as follows:

p(y) =Cat(y|π); p(z2) = N(z2|0, I); pθ (x|y,z2) = f (x;y,z2,θ) (2)

, where Cat(y|π) is the multinomial distribution, class labels y are treated as latent
variables if no class label is available, and the input data x is given by the latent
representation z1 provided by M1. When y is unobserved, the inferred posterior
distribution pθ (y|x) predicts the class label, performing classification as inference.

3 Proposal: semi-supervised learning based on the synergy of
variational autoencoders and convolutional neural networks

The semi-supervised methodology proposed in this work consists in the interaction of
two different deep learning models: variational autoencoders (VAEs) and supervised
convolutional neural networks (CNNs). More specifically, our proposal is based on a
sequence of "sleep-wake cycles" in which a VAE serves as a teacher to the CNN. This
scheme allows the supervised CNN to take advantage of the internal representation
created by the VAE from unlabeled data.

The learning process of our model applies the following procedure:

1. The VAE is first trained using the whole dataset (which typically contains a small
amount of labeled data) in order to obtain a robust internal representation of the
data.
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2. Both the VAE and the CNN evolve (learn) simultaneously throughout a sequence
of "sleep-wake cycles". Each of these cycles is composed of "sleep" and "waking"
periods:

– Wake: the supervised CNN is trained using only labeled data from the training
set. Simultaneously, the VAE learns from the training set using both labeled
and unlabeled data.

– Sleep: the CNN does not receive real data anymore (in this cycle). Instead, it is
trained using synthetic data generated and labeled by the VAE, which does not
carry out any learning process during sleep (only the CNN learns during this
period). We refer to these synthetic samples as "dreams". In order to generate
new data, the encoders of M1 and M2 are dropped from the computations, since
only the reconstruction path is needed for this process. Instead of having a real
image as the input of the network, the decoder of M2 receives a vector sampled
from a normal distribution directly and generates the input of the layer z1 of
M1. Finally, the decoder of M1 generates a new image from z1. In this work,
the values taken by the variable y during the generation process are not based on
any previously learned parameter. Instead, the VAE generates the same number
of samples for all labels in each cycle. It is worth noting that dreams vary from
one cycle to another to prevent the CNN from overfitting. This variation is
given by a Gaussian diffusion process defined by the following expression:

d f =
√
(1− γ)∗ ε1 +

√
γ ∗ ε2

input_z2 = ε1 + s∗ (d f − ε1),
(3)

where ε1 ∼ N(0,1) and ε2 ∼ N(0,1), γ ∈ R ranges from 0 to 1, s ∈ R sets the
smoothing factor, and input_z2 is the input of the layer z2 of M2. Both γ and
s control the trajectory variations of input_z2, which determines how dreams
vary from one cycle to another. In this work we set γ to 0.8 and s to 1.

As the VAE becomes more reliable, the amount of synthetic data used by the CNN
increases. In this manner, the model will become more confident in its own internal
representation as it evolves. We must remark that the amount of synthetic data can be
kept constant if the CNN varies the weight assigned to synthetic samples, obtaining a
similar scenario. A diagram of the proposed methodology is shown in Fig. 1.

From a bio-inspired point of view, we suggest the following scheme. As described,
the VAE is responsible for the construction of a robust internal representation of the
real data received during the waking period, while the CNN focuses on maximizing
discrimination capabilities. Therefore, there are two different neural circuits that are
specialized in different tasks. We speculate that the VAE can be vaguely serving as
a "hippocampal system" that might reinforce certain patterns in neocortical areas that
would be represented by the CNN, which would be acting as a dedicated visual sys-
tem. This reinforcement comes from a virtual environment created by the VAE during
sleep [2], where the CNN learns from data generated from the input representation of
past events [10]. In this manner, the VAE would be responsible for the acquisition of
new information coming from unlabeled data and the subsequent reinstatement of these
patterns in the visual system (CNN).
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Fig. 1: Proposed sleep-wake cycle.

In comparison with unified objective functions [14] and self-training techniques
[12], the advantage of training two separate neural networks (VAE and CNN) is that
each network is specialized in a different task. As a consequence, a wide variety of gen-
erative models and convolutional neural networks can be applied in this scheme. These
properties allow us to build bio-inspired models that might capture certain interactions
between human neural circuits.

4 Experimental results on MNIST Handwritten Digits dataset

We tested the effectiveness of our method using the MNIST database of handwritten
digits [9]. The architecture and hyperparameters used throughout the experiments are
the following:

– Variational autoencoder (VAE): we used the code published by Kingma at GitHub
(https://github.com/dpkingma/nips14-ssl), which is written in Python with
Theano library. Both M1 and M2 models were built considering the configuration
recommended by the authors. For M1 we used a 50-dimensional latent variable
z. The Multi-Layer Perceptrons (MLPs) of the generative and inference models
were composed of two hidden layers, each with 600 hidden units, using softplus
log(1+ ex) activation functions. M2 also used 50-dimensional z and softplus ac-
tivation functions, but in this case the MLPs had one hidden layer, each with 500
hidden units. The likelihood functions for pθ (x|z1) and pθ (x|y,z2) were given by
Bernoulli and Gaussian distributions, respectively.

https://github.com/dpkingma/nips14-ssl
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– Convolutional neural network (CNN): we used a simple CNN with two convo-
lutional layers and two fully-connected layers. The convolutional layers had 3x3
receptive fields, 2x2 max-pooling, and 20 and 50 filters, respectively. The fully-
connected layers were composed of 512 and 10 units. Dropout ratio was set to 20%
and 50% in convolutional and fully-connected layers, respectively. All layers ap-
plied ReLU activation functions, except for the output layer, which used a softmax
non-linearity.

Both models were trained with the Adam optimizer using the following default settings:
α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8.

For the experiment, a random subset of the original MNIST dataset is treated as
unlabeled data by discarding its labels. Regarding sleep-wake cycles, the VAE and the
CNN ran for 10 and 20 epochs in each cycle, respectively, for a total of 20 cycles. Note
that the VAE ran for less epochs than the CNN, since it does not perform any learning
process during sleep. The number of epochs for the initial training of the VAE was set
to 300. In each cycle, the number of synthetic images created by the VAE increases
according to the following equation:

ns(i) = ns(i−1)+
(nl ∗4−ns(0))

c
for all i ∈ N with i > 0, (4)

where ns(i) is the number of synthetic images in the cycle i, ns(0) is the number of
synthetic images in the initial cycle, nl is the number of labels, and c is the number of
cycles. Due to the small amount of labeled data, the batch size was set to 20 for the
CNN.

Figure 2 shows a subset of synthetic samples generated by the VAE during sleep.
As we can observe, the model was able to construct new images from its internal rep-
resentation, modifying the trajectory of digits in each cycle to prevent the CNN from
overfitting.

In order to assess whether the sleep period was beneficial for the CNN, we ran our
method (VAE+CNN) along with a supervised CNN in isolation (baseline). According
to Fig. 3, the classification performance of the CNN when using 100 labels shows 10%
improvement after 20 sleep-wake cycles. When we used 200 and 300 labels, our ap-
proach yields 6% and %4 improvement, respectively, after 20 sleep-wake cycles. These
results suggest that the rate of improvement increased as the proportion of labeled data
decreased, and thus the CNN was able to take advantage of the data generated by the
VAE to improve its classification performance. Moreover, the plots in Fig. 3 show that
the CNN of our method kept learning throughout the sleep-wake cycles, while the base-
line CNN stopped improving its performance in a few epochs. This behavior suggests
that the proposed methodology could be an interesting solution to improve incremental
or online learning in CNNs, since the VAE and the CNN are trained simultaneously and
the interaction between both neural networks takes place gradually.

5 Discussion

In this work, we have proposed a bio-inspired methodology to improve semi-supervised
learning in convolutional neural networks (CNNs) using variational autoencoders (VAEs).
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(a) Dream 1 (b) Dream 2

(c) Dream 3 (d) Dream 4

Fig. 2: Synthetic data generated by the VAE during sleep.

In order to improve the classification performance of the CNN with the knowledge ex-
tracted by the VAE from unlabeled data, our model runs a sequence of "sleep-wake cy-
cles" composed of sleep and waking periods. These cycles define the way in which both
networks interact with each other and allow the CNN to learn from the VAE. During the
waking period, both networks are simultaneously trained using real training data. When
sleep begins, none of the networks receive real data and the VAE creates a number of
synthetic noisy images from which the CNN learns. Based on this procedure, we specu-
late that the function of the VAE would be twofold: 1) during the waking period, it acts
as a "hippocampal system" that is responsible for acquiring unlabeled data and building
an internal representation that integrates new information; 2) during sleep, it serves as
a teacher to the CNN (that would represent high-level neocortical areas) by creating a
virtual environment in which the CNN reinforces the patterns received in the waking
period and reinstates the representations of past stimuli. The experiments carried out on
MNIST dataset show that the CNN was able to learn from images created by the VAE.
More specifically, the classification performance was improved by up to 10% over the
purely supervised CNN. The advantage of our approach over simpler semi-supervised
solutions is that one could apply any type of generative model or convolutional neural
network. Consequently, the usage of deeper models should allow our method to tackle
more complex problems, since each network would specialize in either "hippocampal"
or "visual" tasks.
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Fig. 3: Accuracy of the supervised CNN and the proposed synergy of VAE and CNN on
MNIST dataset.



Semi-supervised learning in CNNs applying "sleep-wake" cycles 9

However, this work is a preliminary approach to the proposed methodology and
further experiments are needed to assess its performance on large-scale datasets. Future
work involves adding mechanisms that allow the VAE to learn how to create "useful
dreams" for the CNN. This could be done by adding an extra branch to the decoder of
M2, which would specialize in learning the distribution from which "useful dreams"
are drawn. In this context, "useful dreams" might be the set of synthetic images that are
generated with a high confidence level and force the CNN to make doubtful predictions.
The learning process would consist in maximizing the norm of pθ (y|x′) (which implies
confident labeling), x′ being the synthetic image, while minimizing the norm of the
CNN’s output vector (which implies a doubtful prediction). This branch would be active
only during sleep (replacing the original branch of the decoder) and would not affect
the learning process of the VAE in the waking period.
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