
Parameter-free Hierarchical Image Segmentation
S M Abdullah1, Peter Tischer1, Sudanthi Wijewickrema2, Andrew Paplinski1

1 Faculty of Information Technology, Monash University, Australia
2 Department of Surgery (Otolaryngology), The University of Melbourne, Australia

1 {sm.abdullah, peter.tischer, andrew.paplinski}@monash.edu
2 sudanthi.wijewickrema@unimelb.edu.au

Abstract—Images typically have many levels of detail and the
suitability of a segmentation depends on application require-
ments. Thus, it is imperative that the user/application be given
the option to select the ‘optimal’ segmentation that captures
the desired level of detail from a set of segmentations. This
paper presents a hierarchical image segmentation algorithm that
offers this option using the concept of minimum spanning trees.
It converts an input image into a tree structure from which
a hierarchy of segmentations is obtained through a process of
merging. No parameters are used in this process and thus the
proposed algorithm can be used on any segmentation dataset
as is. The levels are calculated in one pass of the minimum
spanning tree and as such, no iterative merging is required. This
provides the user with a quick way of segment visualisation.
Evaluation results on two popular segmentation datasets show
that the algorithm provides competitive results in comparison to
other segmentation algorithms.

Index Terms—segmentation, segment visualiser, hierarchical,
MST, parameter-free

I. INTRODUCTION

Image segmentation plays a vital role in many computer
vision applications (e.g., object detection, object recognition).
It attempts to capture important visual perceptual information
in an image by representing it using segments that have similar
visual properties. Depending on the number of resulting seg-
mentations, image segmentation algorithms can be categorised
into two groups: flat-structure algorithms that provide a single
segmentation for an image and hierarchical methods that
provide a set of segmentations at different levels of detail.

In flat-structure segmentations, typically, the ‘best’ seg-
mentation for an image is obtained by tuning one or more
parameters. For example, Felzenszwalb and Huttenlocher [1]
proposed a greedy graph-based algorithm that used an ‘ob-
servation scale’ to determine whether or not to merge two
segments. This parameter is dependent on the size and content
of an image. Li et al. [2] proposed a graph-based solution
based on affinity graph creation. Their approach considered
regional information when forming a graph node. To capture
this information, instead of considering pixels as nodes in
a graph, they used superpixels generated by the SLIC [3]
algorithm. To control segment formation, this algorithm used

978-1-5386-0462-5/17/$31.00 c⃝2017 Crown.

multiple parameters.
Image segmentation however, is an ill-posed problem as

there is no unique segmentation of an image. The ‘optimal’
level of segmentation depends on application requirements
and image properties. As such, we believe a single level of
segmentation is not adequate to capture perceptually important
information from an image. A better option would be allow the
user to select the best-suited segmentation according to their
requirements from a hierarchy of segmentations at different
levels of detail. Typically, in hierarchical algorithms, the first
level of segmentation considers each pixel to be a ‘segment’ in
its own right. Then, the segments are merged at different levels,
until at the final level, the image itself forms one segment.

Guimarães et al. [4] proposed a hierarchical segmentation
algorithm based on the work of Felzenszwalb and Hutten-
locher [1]. Instead of using one observation scale as used in
the base algorithm [1], they calculated the scale locally based
on the internal and external distances between two segments
to provide a set of segmentations.

Abdullah et al. [5] proposed a segmentation method based
on the concept of mutual nearest neighbours. It chained the
image pixels to form segments based on the choice of the
number of neighbours to consider. This algorithm is iterative
as the output of one level is used to generate segments for the
next level.

Shi and Malik [6] proposed a graph cut algorithm known as
Ncut for image segmentation. This method solved some known
issues of early graph cut algorithms, such as partitioning small
isolated nodes in the graph. To find the optimal partition of the
graph, it solved the Ncut property through a series of linear
algebraic equations. This method resembles eigenvalues-based
approaches [7] proposed earlier in the literature. One of the
drawbacks of the Ncut approach is that, in general, it requires
high computational complexity.

In addition to the above-discussed methods, there exist many
other well-known methods (Arbelaez et al. [8], [9], and
Cousty et al. [10] to name a few), the details of which will
not be discussed here due to space limitations.

This paper introduces a hierarchical segmentation algorithm
that overcomes limitations of existing methods. The contribu-
tions of this paper are as follows. First, our algorithm does
not use any parameters and hence it can be applicable to
any segmentation dataset as is. Second, it generates all the
segmentation levels at once, resulting in speeds comparable

app
Typewritten Text
VCIP 2017

to that of flat-structure algorithms. Third, it considers the
difference in segment levels as well as the distance between
segments when merging, to achieve greater homogeneity in the
resulting segments. Fourth, it is independent of the distance
function used to measure the dissimilarity among image pixels
and hence it is convertible to a clustering algorithm. Last but
not least, it includes a segment visualiser which helps the user
in selecting the appropriate level of segmentation.

The rest of the paper is organised as follows. The proposed
method is described in Section II followed by Section III
which discusses the experimental setup, result analysis, and
comparisons. Section IV concludes the paper.

II. PROPOSED METHOD

The proposed method starts by converting the input image I
into an undirected graph G(V,E), where V represents vertices
(pixels) of I and E represents the cost to connect two vertices
from V . An eight-connected neighbourhood is considered
when constructing the graph. Pixel colours are converted to
the CIELAB colour space since the RGB colour space is
perceptually non-uniform and for natural images, RGB colour
components have high correlation [11]. Then, the perceptual
colour distance function CIEDE2000 [12] is used to determine
edge costs based on the pixel to pixel distance.

The graph is then used to construct a minimum spanning
tree (MST). From a graph with M vertices, an MST with
(M −1) edges is constructed. The edges of the MST are then
sorted in ascending order of the edge cost. The benefits of
using MST are twofold. First, it makes the number of edges
linear to the number of vertices. Second, it enables us to merge
each segment with its spatially-connected nearest neighbouring
segment.

The individual vertices are considered as singleton segments
(one-element segments) and stored in the vertex list (V list). In
addition to the elements of each segment, this list stores three
other important information (index, level, and merging cost)
for each segment to facilitate the segment merging process.
Each singleton segment is assigned an index to identify itself
in the merging process. The level of each segment is set to
zero at the start as all singleton segments are on the same level.
Merging cost is initially set to zero for all singleton segments.
When an edge merges two segments from this list, a new entry
is created in the V list to store the newly formed segment and
the indices of the two merging segments are updated to link
with the current segment. The merging cost of the new segment
is updated to reflect the current edge cost and the new level
is decided based on the following rules.

A. Segment merging at the same level

When an edge merges two segments which are on the same
level, the following rules are observed to determine the new
level of the resulting segment.

1) If both segments are on level zero or on the same level,
they are merged at the next level.

2) If both segments are in a region of low colour variation
they are merged with each other at the current level.

The first rule allows us to increase the level in the segmen-
tation hierarchy. The second rule helps to grow the nearest
neighbouring chain of each segment. The current edge cost is
compared with the stored merging cost to identify regions of
low colour variation.

B. Segment merging at different levels

If an edge connects two segments which are on different
levels, the maximum level of these two merging segments
is the new level at which they are merged and the lower
level segment does not participate in any intermediate level
mergings.

For instance, if a segment SA is on level 2 and another
segment SB is on level 5, SA merges with SB at level 5
and SA does not participate in any merging at levels 3 and
4. Instead, it copies itself in these two levels. Here, the level
difference is treated as a cost in the merging process along
with the edge cost. This merging technique may create many
singleton/small segments in the segmentation hierarchy. The
number of singleton segments at higher levels is a good
indicator of whether impulse noise is present in the image.

The union-find algorithm [13] was used on the V list to
efficiently find merging segments.

C. Post-processing: merging small segments

Some unmerged segments, mostly on the object boundary,
may remain until the final level. This occurs mostly on natural
images where object boundary pixels have higher variations
than other neighbouring pixels or pixels that belong to more
than one segment. To merge these unmerged segments, we
apply a heuristic post-processing approach. As the final level
(L) of the hierarchy merges all segments into one, this post-
processing approach is applied only on levels L − 1 to 1. It
searches for an edge which connects two segments that are on
the same level (li) with at least one of the segments having
a size less than 2li . Then, it merges these two segments at
this level (li). The motivation for this is that, at any level
(l), a segment should have at least 2l pixels in it to reduce
the number of segments by half at each consecutive level.
This post-processing significantly reduces unmerged segments
generated at the object boundary, especially at higher levels.

Figure 1 presents all the levels of segmentations generated
by our method except the final level for a representative image
from the Berkeley segmentation dataset and benchmark [14].
Each pixel has been replaced by the mean colour of the
pixels in that segment. Note that at each level, the number of
segments is reduced by more than half. The numbers inside
the brackets represent the peak-signal-to-noise ratio (PSNR)
values. At any level, the PSNR value is computed using
the colour values of generated segments and the actual pixel
values. The PSNR measures how well the mean pixel value in
the segment approximates the pixel values in the segment. This
figure also shows how our method provides a quick segment
visualiser from which a user can select the best segmentation
level depending on application requirements.

(a) (b) 42540 (40.46 dB) (c) 13571 (36.23 dB) (d) 4564 (33.00 dB)

(e) 1591 (29.75 dB) (f) 497 (25.63 dB) (g) 136 (23.53 dB) (h) 24 (20.01 dB)
Fig. 1. (a) an image from the Berkeley segmentation dataset. (b)-(h) represent each level of segmentation by the proposed method excluding the final level.
The number of segments is given below each image along with the PSNR value in brackets. Segments are shown using the mean colour of the pixels in that
segment. Best viewed in colour.

Fig. 2. Visual results of the proposed algorithm on images from the Berkeley BSDS500 segmentation dataset. The first and third columns represent original
images from the Berkeley dataset. The second and fourth columns present segmentations of the images in the first and third colums respectively. Each segment
is presented by its mean colour. Best viewed in colour.

III. EXPERIMENTAL RESULTS AND COMPARISONS

The proposed method was implemented using the MATLAB
software package [15] in a standard desktop environment.
Figure 2 presents some visual results from the Berkeley bench-
mark dataset [14]. The level of segmentation that is shown
provides the best visual result. This is a subjective trade-off
between the number of segments and generated picture quality.

A. Datasets

We used two different datasets to evaluate the performance
of the proposed method. The first dataset is the Berkeley
segmentation dataset and benchmark (BSDS500) [14], which
contains 200 natural images. This dataset provides various
performance metrics such as segmentation cover (Seg cover)
[16] and probabilistic random index (PRI) [17] for evaluating
the performance of a segmentation algorithm. The second
dataset is the one proposed by Alpert et al. in [18]. This
dataset is divided into two parts as a single-object dataset
and two-object dataset with each having 100 test images.

This dataset uses the average f-measure [19] to report the
performance of segmentation algorithms.

Fig. 3. Precision-recall curve for the BSDS500 dataset

Figure 3 presents the precision-recall curve of the proposed
algorithm on the Berkeley dataset. For each test image,
the precision and recall value was computed based on the
boundary matching between ground-truth segmentations and
machine generated segmentations. Then the f-measure, or the

the harmonic mean of the precision and recall values, was
calculated.

B. Comparisons

Table I presents the segment region accuracy of several seg-
mentation algorithms when tested on the Berkeley dataset. The
proposed method is the only algorithm which is parameter-
free and non-iterative (i.e., all levels are generated in a single
pass). All the other methods are iterative (i.e., use one level’s
output to generate the next level). Our method provides the
best overall results.

TABLE I
SEGMENT REGION ACCURACY COMPARISON RESULTS ON THE BSDS500

DATASET WITH EXISTING HIERARCHICAL ALGORITHMS

Method Seg cover PRI Parameter-free Iterative
Proposed method 0.48 0.80 yes no
Guimarães et al. [4] 0.42 0.75 no yes
Ncut [6] 0.45 0.78 no yes
Abdullah et al. [5] 0.50 0.79 no yes
α-tree [20] 0.44 0.78 no yes

Table II shows the comparison results as applied to Alpert’s
segmentation dataset [18]. For the single-object dataset, our
method provides a better score than the mean shift algorithm
[21], but not the other two compared methods. For the two-
object dataset, a significant improvement is observed where
our method provides the best score of all of the compared
methods.

TABLE II
SINGLE OBJECT TEST COMPARISON RESULTS ON ALPERT’S DATABASE

f-measure
Method Single-object Two-object
Proposed method 0.63 ± 0.06 0.82 ± 0.03
Alpert et al. [18] 0.86 ± 0.01 0.68 ± 0.05
Mean shift [21] 0.57 ± 0.02 0.61 ± 0.02
Ncut [6] 0.72 ± 0.02 0.58 ± 0.06

Although the parameters of all other methods need to be
tuned, as the proposed method is parameter-free, it can be
applied on any segmentation dataset as is. Therefore, it is
possible to use our algorithm to quickly explore the natural
connectivity among the image pixels at different levels.

IV. CONCLUSION

This paper presented a bottom-up aggregation procedure,
in which segments are merged at different levels to form
larger segments, exploiting the concept of minimum spanning
trees. The algorithm allowed the construction of a segment
hierarchy from a single pass of the tree. It is parameter-
free, simple, fast and easy to understand. Yet, it outperforms
existing segmentation algorithms when tested on two popular
segmentation datasets. The proposed method is independent of
the cost function and is convertible to a clustering algorithm.
It can be generalised to 3D or higher dimensional images.
Moreover, in the segment formation process, it is also capable
of working with superpixels and vector-valued pixels.

V. ACKNOWLEDGEMENT

This research was funded by an Australian Government
Research Training Program Scholarship.

REFERENCES

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, no. 2,
pp. 167–181, 2004.

[2] A. Li, X. Wang, K. Yan, C. Li, and D. Feng, “Multilevel affinity graph
for unsupervised image segmentation,” in Image Processing (ICIP), 2016
IEEE International Conference on. IEEE, 2016, pp. 1264–1268.

[3] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
“SLIC superpixels compared to state-of-the-art superpixel methods,”
IEEE transactions on pattern analysis and machine intelligence, vol. 34,
no. 11, pp. 2274–2282, 2012.

[4] S. J. F. Guimarães, J. Cousty, Y. Kenmochi, and L. Najman, “A hier-
archical image segmentation algorithm based on an observation scale,”
in Structural, Syntactic, and Statistical Pattern Recognition. Springer,
2012, pp. 116–125.

[5] S. Abdullah, P. Tischer, S. Wijewickrema, and A. Paplinski, “Hierar-
chical mutual nearest neighbour image segmentation,” in Digital Image
Computing: Techniques and Applications (DICTA), 2016 International
Conference on. IEEE, 2016, pp. 1–8.

[6] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern
Analysis and Machine Intelligence, IEEE Trans on, vol. 22, no. 8, pp.
888–905, 2000.

[7] R. Van Driessche and D. Roose, “An improved spectral bisection algo-
rithm and its application to dynamic load balancing,” Parallel computing,
vol. 21, no. 1, pp. 29–48, 1995.

[8] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE transactions on pattern analysis
and machine intelligence, vol. 33, no. 5, pp. 898–916, 2011.

[9] P. Arbeláez, J. Pont-Tuset, J. T. Barron, F. Marques, and J. Malik, “Mul-
tiscale combinatorial grouping,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2014, pp. 328–335.

[10] J. Cousty, L. Najman, and B. Perret, “Constructive links between some
morphological hierarchies on edge-weighted graphs,” in International
Symposium on Mathematical Morphology and Its Applications to Signal
and Image Processing. Springer, 2013, pp. 86–97.

[11] M. Tkalcic, J. F. Tasic et al., “Colour spaces: perceptual, historical and
applicational background,” in Eurocon, 2003.

[12] G. Sharma, W. Wu, and E. N. Dalal, “The CIEDE2000 color-difference
formula: Implementation notes, supplementary test data, and mathemat-
ical observations,” Color Research & Application, vol. 30, no. 1, pp.
21–30, 2005.

[13] H. N. Gabow and R. E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” in Proceedings of the fifteenth annual ACM
symposium on Theory of computing. ACM, 1983, pp. 246–251.

[14] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics,” in Proc. 8th Int’l Conf.
Computer Vision, vol. 2, July 2001, pp. 416–423.

[15] MATLAB, version 8.6 (R2015a). Natick, Massachusetts: The Math-
Works Inc., 2015.

[16] T. Malisiewicz and A. A. Efros, “Improving spatial support for objects
via multiple segmentations,” 2007.

[17] W. M. Rand, “Objective criteria for the evaluation of clustering meth-
ods,” Journal of the American Statistical association, vol. 66, no. 336,
pp. 846–850, 1971.

[18] S. Alpert, M. Galun, R. Basri, and A. Brandt, “Image segmentation by
probabilistic bottom-up aggregation and cue integration.” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
June 2007.

[19] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[20] P. Soille, “Constrained connectivity for hierarchical image partitioning
and simplification,” IEEE transactions on pattern analysis and machine
intelligence, vol. 30, no. 7, pp. 1132–1145, 2008.

[21] D. Comaniciu and P. Meer, “Mean shift: A robust approach toward
feature space analysis,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 24, no. 5, pp. 603–619, 2002.

