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Abstract: Multiplicative linear congruential
pseudorandom number generators are a popular
choice for many software routines. The paper
describes fast hardware implementation of the
Lehmer generator which belongs to the above
class. First, using the Sylvester resultant matrices
it is shown that the algorithm to generate the next
random number, which is based on multiplication
modM, can be reduced to the problem of
addition/subtraction of six appropriately rotated
copies of the current random number. Secondly,
addition/subtraction of six numbers modM can
be performed by means of three carry-save
adders, one carry-propagate subtracter, and one
carry-propagate adder.

1 Introduction

The Lehmer generator is a popular choice of software
implementation of random number generators [1]. Our
interest in this device stems from its application in a
popular scientific and engineering software package,
MATLAB [2].

Properties of the Lehmer generator, which belongs to
the class of the multiplicative linear congruential gener-
ators [3, 4], have been exhaustively studied [5]. Genera-
tion of a pseudorandom sequence of integer numbers:
20, z® 23 s in this case described by the following
iterative equn. [1]:

2t = f(x(M)
where the generating function f{-) is defined as
r=f{z)=a-zmodM forallzel,2,.... M -1 (1)

For the Lehmer generator the modulus M =23 ~lisa
Mersenne prime [6], and the multiplier a = 7° = 16807,
which can be represented by the 15-bit binary numeral:
240=[1000001101001 1 1]. Random numbers
z0) are integers represented by 31-bit numerals. As an
additional step, the integer sequence of pseudorandom
numbers is typically mapped into the fractional

forn=1,2,...
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sequence u® through division by the modulus M:

w™ = (M [N ~ (931 (2)

2 Parallelised form of the algorithm

In this Section we consider a parallelised version of the
algorithm for generation of the next random number r
from the previous one z using binary multiplication
modulo M as in eqn. 1.

When describing hardware implementation of numer-
ical algorithms, it is often convenient to make a distinc-
tion between numbers and their binary numerals. If a is
an integer number, its (n + 1)-bit binary numeral will
be denoted as a, . Using a matrix notation, a number
a can now be represented as an inner product of its
binary numeral a,, and a vector of powers of 2
(weights) w,,.; as follows:

n
= An;0 " Wnp = Z a; - 2" (3)
=0
where a, o = [a, a,_;... a; ap) is the numeral of a (¢; €
{0, 1}), w,o = [2# 271 ... 21 297 is the vector of binary
weights.

If we use the above notation, multiplication of num-
bers can be expressed as a matrix product of a multi-
plier numeral and the Sylvester resultant matrix of the
multiplicand [7, 8]. If the m-bit multiplicand numeral is
Zy1:0 = [Zmot Zm_s--- 21 Zg], the product of two numbers
a and z may be represented by the following matrix
equation for binary numerals:

a2z =apo - (Z)n Wnim—1:0 (4)

where (z),, is the (n + 1) X (n + m) Sylvester resultant
matrix (also known as the convolution matrix), which
is formed from shifted numeral z,, ;¢ in the following
way:

Zm—1 Am~2 't 20 T
Zm—1 #m-2 zo O
(Z)n= i i ) n+1
0 . . . l
Zm~1 fm—2 " 20
— nt+m —

(5)
The angle brackets have been used to denote the result-

ant matrix. The Os in the resultant of eqn. 5, represent
appropriate triangles of zeroes.
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In the case of the Lehmer generator, we have m = 31
and n = 14. Therefore, in eqn. 4 the numeral a4, is of
the size 1 x 15, the size of the resultant matrix (z)4 is
15 x 45, and the result, the product of @ and z, is repre-
sented by the 1 X 45 numeral.

In general, eqn. 4 can be thought of as a parallelised
description of multiplication of two numerals. Each
row of the resultant represents a shifted numeral z,,
which is multiplied by the respective digit of the multi-
plier and the columns of the resultant are summed up
to give the ‘pseudodigits’ of the result.

The next step in the specification of the algorithm is
to determine a remainder from division of ¢ - z by M =
231 _ 1, that is, to perform the operation modM. To
expand the product into the form:

a-z=¢q - M-+r
where g is the quotient and r is the remainder, the
resultant matrix is first partitioned into two submatri-

ces: the left one C of the size (n + 1) X n, and the right
one D of the size (n + 1) x m, as follows:

Zm—1 """ Zm—n t Zm—n—1 """ 20
0 |2,‘m_nA2"'21 Z0 0
(zZ)n =
Zm—1 ‘
4] 0 ‘ Zipe1 ottt 21 20
=[C | D]

Combining eqns. 4 and 6, we have:
@2 =an0 " (Z)n * Wnim—1:0
=ano-[C D] Wnim-10
= a,0 (C Wye1.0-2™+ D Wp_10)
=ang - (C Wy 102" —C -Wyp_1.0+D Wp_10
+C - Wp_10)
=80 (C - Wpo10- M+D-Wp_10+C - -Wp_1.0)

where we used the relationship Wy, 1.0 = W, 10 - 2™ +
w,._1.0- Taking into account that, for any integer ¢,

{(¢- M +r) modM =r modM
eqn. 1 can now be written as:
r=(a-z) modM
=ano(D wWp_1.0+C  Wp-1:0) modM
=ano(D - Wn-1.0+[0 C] Wp—1.0) modM
Finally, we have:

r= (an:O -E- Wm—l:O) mod M (7)
where
E = D + [0 C] | y
| n .
FZm—n—1 *'* 20 Zm—1 Zm—2 ° Zm—mn ]
Am—n—2 " 21 20 Zm-1 © Fmeontl
Zm—2 " Zn-1 Zp-2 Zpn-3 "' Zm-—1
L Zm—1 e Zn Zn—1 &n—2 °°° 20 -
m
(8)

is a (n + 1) x m cyclic convolution matrix formed from
the numeral z,,_;.o. If we now take into account that the
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multiplier a is represented by the binary numeral in
which only bits a4, as, a7, as, ay, ay, gy are 1, then
eqn. 7 may be written as:

r = (140 - E - W3p:0) modM
= (B4 + Bg. + Eq. + By, (9)
+ B, + By + Ep.)wso,0 mod M

The sequence of three ones in the multiplier a can be
replaced by +1 and -1 on the appropriate positions,
because (1 1 1), = (1 0 0 1),. Therefore, finally, the
implementation equation takes on the following form:
r= (E14: +E8: +E7: +E5: + EB: - EO:)WBO:O mod M (10)

where

E14:
ES:
E7:
Es.
FEs.
Ey.
216 %15 214 ' 20 230 v %24 223 222 221 220 Z19 218 217
Z22 221 220 Z30 %29 228 227 226 %25 Z24 Z23
| %23 z22 221 0 o Z0 230 229 228 227 Z26 225 224
a Zo5 Z24 223 vt ¢ Z2 21 ZQ 230 Z20 ®28 %27 226
Z27 226 225 Z4 Z3 2z Z1 20 Z30 229 228
z30 z29 Z28 vttt Z7 26 25 Z4 23 22 21

Z0
(11)
Thus, the Lehmer’s algorithm for generation of pseu-
dorandom numbers has been reduced to the problem of
adding/subtracting six 31-bit numbers modAf, as in
eqn. 10. Each of the numbers is the appropriately
rotated current random number z.

3 Hardware implementation

In this Section we discuss details of the hardware
implementation of eqn. 10, which describes addition
and subtraction of six 31-bit numbers modM.

First, let us consider the way in which operation of
modM is performed in conjunction with the operation
of summation or subtraction of two m-bit numbers.
Let a,,_;.0 and b,,_;.o represent two numbers to be added
modM. Let s, ;o and d,, represent the sum output
from an adder and the output carry so that we can
write:

am—1:0 + brm—1:.0 = dm2™ + Spm_10
The output carry d,, € {1, 0, +1}, in order to account
for both addition and subtraction. If the output carry
is nonzero, we subtract M from the result (mod M
operation), which gives:

(dmZm + Sm——l:O) modM = Sm—1:0 + dmzm - dm(Qm — 1)
and finally, we have
(am~—1:0 + bm—l:O) mOdM = Sm—1:0 + dm (12>

Secondly, we can observe that operations described in
eqn. 10 are equivalent to the problem of counting
number of ones in each column of the matrix of
eqn. 11. Having six elements in each column, one of
which is to be subtracted, the number of ones in each
column can vary from -1 to +5. Hence, the problem is
to build a circuit which represents this number of ones
in a form of the output carry bits propagated to the
next position and the sum bit. If we take also into
account the input carry bits which are required to
make operation complete, the equation which describes
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operation performed at the ith position of the genera-
tor is of the following form (the 7 subscript omitted for
brevity):

(2a+zb+zc+zd+ze—2f+cl +Cz—03)
:2(d1 +do — ds +d4)+84

where z,, are relevant bits from the ith column of the
matrix 11, ¢; and d; are input and output carry bits,
respectlvely, and s, 1s the sum bit. The circuit wh1ch
implements eqn. 13 performs compression of informa-
tion with the ratio 9:5. Both 9 input bits, and 5 output
bits represent numbers from -2 to +7. Eqn. 13 can
now be converted into a set of elementary 3-input, 2-
output summation. If we also include the final carry-
propagate adder, the implementation equations take
the following form:

X1 zo+ 25+ 2. = 2d1 + 81

¥2: 81424+ 2. = 2dy + 59

E3: 89— 25 —c3 = —2d3 + 53 (14)

¥4: s3+c1+ ey = 2d4 + 84

¥5: sg+catey =2d5+r
The ith bit-slice of the generator, which is the imple-
mentation of eqn. 14 is presented in Fig. 1. In Fig. 1,
input signals z,,...,z, have been replaced with equivalent
entries from the ith column of the matrix of eqn. 11.

Input and output carry signals c;, d; have been replaced
with the equivalent ¢;;, ¢;;11 51gnals

Ziag Z_ -7, Zig

(13)
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Fig.1 ith bir-slice of generator
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The complete generator consists of 31 such 1-bit
slices. To perform operation modM as explained in
eqn. 12, the output carry bits from the most significant
position, are connected to the least significant outputs,
that is:

(€1,0,€2,0,€3,0,€4,0,¢5,0) < (€1,31,€2,31,C3,31,Ca,31,C5 31)
(15)

Finally, we can note that the complete circuit consists
effectively of three 31-bit carry-save adders (TI, X2,
X4), one carry-propagate subtracter (£3), and one
carry-propagate adder (X5). The above algorithm has
been described in VHDL and implemented using an
FPGA.

4 Conclusion

Using the concept of the Sylvester resultants, we have
formally demonstrated that the Lehmar algorithm,
which requires multiplication modulo a Mersenne
prime, can be implemented using only three 31-bit CS
adders, one CP subtracter and one CP adder.

A similar method can be applied to perform number-
theoretical transforms [9] which involve the Fermat or
the Mersenne primes of the form 2 — &.
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