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Directional Filtering in Edge Detection

Andrew P. Paplínski

Abstract—Two-dimensional (2-D) edge detection can be performed
by applying a suitably selected optimal edge half-filter inn directions.
Computationally, such a two-dimensional n-directional filter can be
represented by a pair of real masks, that is, by one complex-number
matrix, regardless of the number of filtering directions, n: Specific
calculations of the edge strength were conducted using a 2-D tridirectional
filter based on a Petrou–Kittler one-dimensional (1-D) detector optimized
for the ramp edges, which are characteristic of posterior eye capsule
images that were used here as a test set. In applications to image
segmentation, tridirectional filtering results in co-occurrence arrays of
low dimensionality.

Index Terms—Conjugate images, directional filtering, edge detection,
posterior capsule images.

I. INTRODUCTION

This correspondence is focused on the use of directional filters
for edge detection. The method considered in this work stems from
our work on the segmentation of a class of medical images, namely,
posterior eye capsule images taken after a cataract operation [1], [2].

If we ignore the noise present in images, edge detection can be
based primarily on the computation of the gradient of intensity with
subsequent thresholding of its magnitude. For this purpose the popular
filters, like the Sobel filter [4], are used. Hence, a typical simple
method of obtaining an edge strength map is based on the estimation
of two components of the intensity gradient vector using horizontal
and vertical Sobel masks.

Taking noise and edge imperfection into consideration, edge filters
are traditionally constructed so as to improve the suppression of
unwanted disturbances by appropriate lowpass filtering. The idea has
originated perhaps from the concept of stochastic gradient [5] and
from work of Marr and Hildreth [6], and in its current form was
introduced by Canny [7] and developed further in many works using
various criteria of optimality of the edge detection process. Following
a classification of the optimal one-dimensional (1-D) edge filters
presented by Heijden [8], the following operators are considered to
be the main contenders: Canny [7] and its version by Deriche [9],
Shen–Castan [10], [11], (see also [12]), Sarkar–Boyer [13], Boie–Cox
[14], Spacek [15], Petrou-Kittler [16], and the CVM detector of
Heijden [8]. The above filters were primarily constructed as 1-D filters
and then extended appropriately into two dimensions. Typically, a
two-dimensional (2-D) edge filter is formed by the following two-
step procedure. First, a 1-D optimal filter is expanded in the direction
perpendicular to the edge, and a windowed projection function is
applied in the direction parallel to the edge. This results in a 2-
D filtering component. In the second step, two such 2-D filtering
components are applied in orthogonal directions to estimate the
magnitude (and direction) of 2-D edges. A relevant example can be
found in [13].

These two basic aspects, namely, utilization of an optimal 2-D edge
filtering component, and its application in two orthogonal directions,
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Fig. 1. Directional neighborhood of a pixelxxx:

are also present in our approach with two notable modifications.
Firstly, the 2-D filtering component utilizes only the positive half
of the optimal 1-D edge filter, and secondly, the 2-D component
is applied in a selected number of directions, which, starting with
three, results in the tridirectional filtering. We may say that in our
approach we combine the concept of optimality with the concept of
directionality. Directionality in edge detection is not a new concept.
We would specifically like to mention the Kirsch and Robinson
compass masks discussed in [4] and [5], which were influential for
our formulation of the edge filtering problem.

Formal considerations will be demonstrated using the so-called
“posterior eye capsule images” discussed in [1] and [2]. Interpretation
of these images facilitated the crystallization of the idea of directional
filtering. Due to the nature of the underlying images, in which edges
seem to be best modeled by the ramp transition in intensity, we based
our directional filters on the 1-D Petrou–Kittler [16] edge filter, as the
one that directly addresses the problem of detection of the ramp edges.
Modification of our results for other types of edge detectors seems
to be straightforward. As a projection function, we use a Gaussian
window in a way similar to that presented in [12]. We show that,
eventually, a 2-Dn-directional edge filter can be represented by a
pair of matrix filters, or equivalently by one complex-number filter,
regardless of the number of filtering directions.

We start with the formalization of the concept of directional
filtering and link it to the well-known Robert operator presented
as a 2-D four-directional basic edge filter. In the next section we
briefly review the Petrou–Kittler 1-D detector optimized for ramp
edges, which is utilized in the subsequent sections, and discuss the
2-D extension using a projection function appropriately modified
for directional filtering. Finally we present details of tridirectional
2-D filters and experimental results of their application for edge
detection in the posterior eye capsule images. Relevant calculations
were conducted using theMATLAB package [17].

II. DIRECTIONAL FILTERING—CONJUGATE IMAGES

Consider a neighborhoodR of a pixelxxx expanded in the direction
ddd as shown in Fig. 1. A general nonlinear filtering operation over the
regionR may now be defined by

f(xxx) �! g(xxx;R) =
R

h(f(xxx+ uuu); uuu) duuu (1)

wheref(xxx) andg(xxx;R) are the original and filtered images, respec-
tively, described as functions of a vector variable,xxx = (x1; x2):
Typically, such a region of interest is rotated in the directions
(ddd1; � � � ; dddn) to cover the whole2� angle. Applying the filtering
operation (1) over the regionR� ; we obtain a so-calledconjugate
image, gk(xxx): The edge strength may now be calculated by perform-
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Fig. 2. Simplest four-directional filtering.

ing a vector addition of conjugate images. Using the complex-number
notation, we have

e(xxx) =

n

k=1

gk(xxx)e
j� (2)

wheree(xxx) is a complex-number-valued edge strength and its mag-
nitude specifies a “standard” scalar edge strength.

If we use linear filters, then a conjugate image in thekth direction
is calculated as a convolution of the original image,f(xxx); with a kth
directional filter,hk(xxx), as follows:

gk(xxx) = f(xxx) � hk(xxx) (3)

where ‘�’ denotes the convolution operation. Now, the complex edge
strength can be obtained as a convolution of the original image,f(xxx);
with the complex edge filterh(xxx), as follows:

e(xxx) = f(xxx) � h(xxx); where h(xxx) =

n

k=1

hk(xxx)e
j� (4)

whereh(xxx) is a sum of appropriately rotated filter components. This
equation forms the basis of our further considerations.

As an introductory example, let us consider the conceptually
simplest directional filtering as presented in Fig. 2.

In this case, there are four directions,(2k�1)(�=4); k = 1; � � � ; 4;
thus four filtering regions, each of which containing precisely a single
pixel of the image. The edge pixel is selected to lie between the image
pixels. If the image isf(xxx); wherexxx = (x1; x2); then four conjugate
images are specified as

g1(xxx) = f(xxx+ [0; 1]); g2(xxx) = f(xxx)

g3(xxx) = f(xxx+ [1; 0]); g4(xxx) = f(xxx+ [1; 1])

where it is assumed that images are presented in the “matrix”
coordinates,x1 and x2 being the row and column coordinates,
respectively. In addition the origin of the edge strength image is
shifted diagonally up and left by the 0.5 unit. The filtering operations
which induce the “conjugate images,”gk are, in this case, simple
identity operations with appropriate shifts as shown in the equations
above. The complex edge map can be obtained using (2) as

e(xxx) =

n

k=1

gk(xxx)e
j(2k�1)�=4:

At this stage, it seems to be convenient to use a matrix notation, in
which a capital letter, sayF; will represent a matrix of samples of an
equivalent function,f(xxx): Using this notation, a matrix representing
the complex edge map,E; can now be determined using a discrete
convolution as

E = F � H: (5)

TABLE I
PARAMETERS OF THE PETROU–KITTLER 1-D FILTER

The complex “four-directional” filter,H; can be directly determined
using (4) by adding four uni-directional components, namely

H =
0 1
0 0

� e
j�=4 +

1 0
0 0

� e
j3�=4 +

0 0
1 0

� e
j5�=4 +

0 0
0 1

� e
j7�=4

: (6)

Therefore

H =
j 1
�1 �j

� e
j�=4

: (7)

The four-directional filter of (7) can be thought of as a complex
extension of the Roberts edge operators [4]. Note that the filter of
(7) is not symmetrical and care must be taken using the convolution
operation versus a “mask” operation. Finally, it is possible to rewrite
(6) and (7) in a direct form as

E = e
j(�=4)((G3 �G1) + j(G4 �G2)): (8)

From this equation, the result is predictable and intuitively obvious,
and can be restated that in order to calculate the edge strength,
we subtract the pixel values lying in the opposing directions of the
reference point. From (8) it can be noted that if any four neighboring
pixels are identical the corresponding edge pixel is zero.

At the conclusion of this section, one comment on “conjugate
images,” g1; g2; g3; g4; can be made. In the application to edge
extracting the need for creating four images, which are primarily
identical to the original image, may not be obvious. However, two
points can be made to emphasize the method. First, it seems that
by creating conjugate images, we parallelize, at least conceptually,
calculations from the pixel-by-pixel fashion to operations with whole
images. Second, and most important, the conjugate images can be
conveniently used to form multidimensional (four-dimensional, in
this case) histograms of intensity, that is co-occurrence arrays used
in image segmentation.

III. OPTIMAL DIRECTIONAL FILTERS

Dealing with imperfect edges, characterized either by a gradual
transition in intensity, or blurred by noise, the calculation of the
intensity gradient is combined with appropriate lowpass filtering.
From a collection of available optimal filters listed in the introduction,
we have based our specific calculations on a Petrou–Kittler 1-D edge
filter [16], because it specifically targets the ramp edges which seem
to be prevalent in our images.

In the Petrou–Kittler model the 1-D edge filter, from which we
will use only the “positive” half, is optimized for the unified ramp
edges and is specified by the following expression:

s(r) = 1 + be
�r

� r1e
ar cos(ar + �1) + r2e

�ar cos(ar + �2)

(9)

where0 � r � l; l is the span of the filter, that is,s(0) = 0 and
s(l) = 0: For l = 2; � � � ; 7; the filter parameters are given in Table I.
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Fig. 3. One-dimensional Petrou–Kittler edge half-filters for various spans,
l; as specified by (9).

The 1-D edge half-filters as specified by (9), are plotted for various
span parameters and shown in Fig. 3.

Extension of a 1-D filter to two dimensions is typically performed
by applying the edge filter in the direction perpendicular to the edge,
and a projection function along the edges. A projection function
should be a windowed lowpass filter, and two choices are most
appealing, namely, the use of either the integral of the optimal edge
filter as in [13], or the Gaussian function as in [12]. For simplicity,
we opted for the latter only expressed in the polar coordinates which
seem to be more natural for directional filtering. Therefore, the
2-D edge half-filterh(uuu); which will be a building block of the
2-D directional edge filters, is composed from the Petrou–Kittler edge
detector applied in the radial direction, and the Gaussian function
applied in the angular direction. Using the complex-number notation,
we have

h(uuu) = � � s(r) � p(�); uuu = re
j� (10)

where � is the normalization constant, and the pixel vectoruuu is
specified by its radial and angular components,r and �: The radial
component of a 2-D filter,s(r); is specified in (9), whereas the
angular component is

p(�) = e
�c �

: (11)

The angular spread of the of the filter is controlled byc�: For
n-dimensional filtering,c� is chosen so that the factorp(�) = �

if the angular deviation from the central direction of the filter is
� = �(�=n): Therefore

c� =
n

�

2

ln
1

�
(12)

Such a choice of the Gaussian window with the angular spread
constant,c�; gives rise to intended overlapping of directional filters.
The degree of overlapping is controlled by�: The value of the
angular component,p(�); at the centre of the adjacent region is
p(2�=n) = e4 ln � = �4: For a typical value,� = 0:5; we have
p(2�=n) = 1=16:

IV. TRIDIRECTIONAL FILTERS

At first glance, it seems that in order to estimate two compo-
nents of the intensity gradient, that is, to determine the edge map,
four filtering directions, e.g.,(0; 90; 180; 270�) might be required.
However, at the close examination it appears that three directions,

Fig. 4. Two variants of tridirectional filtering forl = 2: The left variant
implies a 4� 4 filter, whereas the right one involves a 5� 5 filter.

Fig. 5. Tridirectional filter forl = 2 and � = 0:5:

e.g., (0; 120;240�); constitute the sufficient basis for the gradient
calculation. Conceptually, in order to estimate gradient, we usually
use an antisymmetric mask in two orthogonal directions. Our method
of tridirectional filtering involves a vector sum of three halves of such
a mask in order to estimate the edge strength vector.

As an example of tridirectional edge filtering consider the pixel
arrangements as shown in Fig. 4.

The three components of the tridirectional filter can be determined
from (10) for a given radial span,l; and the angular spread controlled
by the overlapping factor,�: Let the three sampled filter components
be H0; H120; H240; respectively. Then the complex edge filter can
be calculated as

H = H0 +H120 � e
j2�=3 +H240 � e

�j2�=3
: (13)

The complex matrix mask,H; includes all three filtering directions
and is of a size, either (2l+ 1)� (2l+ 1) if the center of the mask is
located at the reference pixel (the right part of Fig. 4), or 2l � 2l if
the interpixel position of the mask is selected (the left part of Fig. 4).

As a specific example consider a tridirectional filter calculated
using (10) and (13) forl = 2 and � = 0:5: Its magnitude is plotted
in Fig. 5.

If we position such a filter as in the left part of Fig. 4, the resulting
2-D tridirectional edge filter can be described by the 4� 4 complex
matrix of the form

H =

0 �52 7 0
�65 �179 178 110
�65 �179 178 110
0 �52 7 0

+ j

0 104 70 0
46 255 101 12
�46 �255 �101 �12
0 �104 �70 0

: (14)
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Fig. 6. Top row: test images. Middle row: magnitude of the edge strength obtained using a tridirectional filter of (14) with spanl = 2. Bottom row:
edge maps after thinning and thresholding operations.

The filter of (14) has been truncated to the 8-b representation and
expressed in integer numbers. From (14), it is possible to note the
three tear-drop regions characterized by the groups of four top-left,
bottom-left and middle-right matrix entries.

The above filter(n = 3; l = 2; � = 0:5) has been tested with the
posterior eye capsule images and some results are presented in Fig. 6.

The first row of Fig. 6 depicts two posterior eye capsule images.
These images describe the degree of opacification of the membrane
behind an artificial lens inserted during the cataract operation. The
membrane may become opaque, which results in blurred vision.

The second row illustrates the edge strength maps generated using
convolution of images with the tridirectional filter of (14). In the third
row, the above maps are presented after operations of thinning the
edges and their thresholding have been performed. The thinning is
achieved by applying a simple operation of edge erosion in which
all pixels that are, together with their neighbors, located on a slope
of the edge map, are set to zero. This leaves only one-pixel wide
edges, which are subsequently unified by thresholding. In general, the
edge map does not describe very well the complex structure of the
posterior capsule images, which typically lack any prominent features.
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Fig. 7. Magnitude of the edge map of the Gatlin image obtained using a
tridirectional filter of (14).

In reality, the edge operators are used to perform segmentation of such
images [2], rather than to obtain the structure of edges.

Finally, the tridirectional edge filter of (14) has been applied to
an image called “Gatlin” fromMATLAB , representing a photo of a
group of people. The resulting edge map for this image, thresholded
at the level of 10% of the maximum value, is presented in Fig. 7. In
this case, edges are naturally better defined and are prominent enough
without additional thinning operation.

V. CONCLUSION

We have discussed how, starting from a selected model of a 1-
D optimal edge detector, to build a 2-D edge filter that collects
information fromn directions around a central pixel. The 2-D filter
is specified by three parameters, the number of filtering directions,n;

the radial span,l; and the angular overlap factor,�: Computationally,
such a 2-Dn-directional optimal filter can be represented by a 2l �

2l complex matrix, which is equivalent to two real filters, regardless
of the number of filtering directions.

As an underlying 1-D edge detector, we selected a Petrou–Kittler
model [16] that directly addresses the ramp edges characteristic to
the class of medical images of interest.

Specific calculations were conducted for a tridirectional 2-D edge
filter that offers the smallest possible number of filtering directions.
The tridirectional filtering is specifically attractive in the context
of segmentation of images because it delivers the smallest possible
dimensionality (three) of a co-occurrence array that is able to describe

completely the distribution of information around a given pixel. This
aspect is discussed in greater detail in [18]. See also [2].
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