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We report the results of a large-scale, multi-year experimental evaluation of the System of Rice
Intensification (SRI), an innovation that first emerged in Madagascar in the 1980s and has now dif-
fused to more than fifty countries. Using a randomized training saturation design with a pure con-
trol group, we find that greater cross-sectional or intertemporal intensity of direct or indirect
training exposure to SRI has a sizable, positive effect on Bangladeshi farmers’ propensity to adopt
(and not to disadopt) SRI. We find large, positive, and significant impacts of SRI training on rice
yields and profits, as well as multiple household well-being indicators, for both trained and
untrained farmers in training villages. We also find high rates of disadoption, and clear indications
of non-random selection into technology adoption conditional on randomized exposure to train-
ing, such that adopters and non-adopters within the same treatment arm experience similar out-
comes. Rice yields, profits, and household well-being outcomes do not, however, vary at the
intensive margin with intensity of training exposure, a finding consistent with multi-object learning
models.
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Rice is the most widely cultivated and con-
sumed crop in the world. So productivity
growth in rice is especially important to

promote food security, perhaps especially in
low- and middle-income communities where
many people depend on rice farming for their
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livelihoods. One prominent recent innovation,
the System of Rice Intensification (SRI), first
emerged in Madagascar in 1983, although
agricultural scientists did not begin to publish
studies of the agronomy or adoption patterns
of SRI until the late 1990s and early 2000s
(Stoop, Uphoff, and Kassam 2002). SRI has
spread widely, to more than fifty different
countries now, with strong backing frommajor
international agencies such as Africare,
OXFAM, WWF, and the World Bank. For
example, in a recent large-scale project across
multiple countries in West Africa, more than
50,000 farmers were induced to try SRI
(Styger and Traoré 2018).
SRI requires neither a new rice variety nor

purchased inputs such as chemical fertilizers.
Rather, SRI combines a suite of agronomic
principles designed to increase rice productiv-
ity by changing plant, soil, and water manage-
ment practices. Some observers therefore
consider SRI a “system” rather than a
“technology” because it involves no specific
inputs, not even a fixed set of specific practices
(e.g., transplant seedlings twelve days after
nursery germination). Instead, SRI advances
a core set of principles for farmers to test and
adapt to their specific circumstances, in partic-
ular, early transplanting of single seedlings
with wider spacing into fields that are not con-
tinuously flooded, as well as soil that has more
organic matter and is actively aerated, often
using simple mechanical weeders (Stoop,
Uphoff, and Kassam 2002; Glover 2011).1 Sev-
eral of these practices—for example, use of
organic fertilizers, alternate wetting and dry-
ing (AWD)water management, ormechanical
weeders—are familiar best management
practices often recommended by extension
agents and are certainly not unique to SRI
(McDonald, Hobbs, and Riha 2006). SRI
thus exemplifies knowledge-intensive technol-
ogies that are increasingly commonplace, com-
bining components from existing practices
(Weitzman 1998; Arthur 2009; Stevenson
et al. 2019).
A large literature—more than 1,200 journal

articles to date (http://sri.ciifad.cornell.edu/
research/)—reports widespread observational

findings of dramatic rice yield and profitability
gains of thirty or more percent, and even
reduced water use and greenhouse gas emis-
sions from SRI (e.g., Stoop, Uphoff, and Kas-
sam 2002; Uphoff 2003; Barrett et al. 2004;
Moser and Barrett 2006; Randriamiharisoa,
Barison, and Uphoff 2006; Sinha and
Talati 2007; Stygler et al. 2011; Noltze,
Schwarze, andQaim 2013; Takahashi andBar-
rett 2014; Gathorne-Hardy et al. 2016). The
mainstream rice breeding community has
nonetheless been vocally skeptical of such
claims (Doberman 2004; Sheehy et al. 2004;
Sinclair and Cassman 2004; McDonald,
Hobbs, and Riha 2006). Critics have fre-
quently decried the absence of experimental
evidence from a large sample of farmers culti-
vating their usual fields, as distinct from pur-
posively collected samples, trials on
experiment station plots, or observational data
of non-random diffusion processes. These
“rice wars” have induced calls for careful
empirical work to assess the uptake and per-
formance of SRI (Glover 2011).

This paper responds to that plea, reporting
the results of a large-scale, multi-year, ran-
domized controlled trial (RCT) evaluation of
SRI carried out in Bangladesh in conjunction
with BRAC, the world’s largest non-
governmental organization (NGO).2 In 2014–
15 and 2015–16 we randomized exposure to
SRI training among 5,486 farmers in 182 vil-
lages that had no prior SRI experience. As
explained in greater detail below, the experi-
mental design randomized villages into treat-
ment (i.e., SRI training) and control, and
then of farmers into treated (i.e., trainees)
and untreated (i.e., not trainees) cohorts
within treatment villages, coupled with ran-
domized saturation (i.e., number of trainees)
within treated villages, and randomized repeti-
tion of training for a second year in half of the
treatment villages.3 This design enables us to

1The distinction between broad principles and specific practices
implicitly acknowledges heterogeneous conditions that may
require customizing specific practices to particular farmers’ con-
text in order to adhere to the underlying principle(s) of the innova-
tion. Agricultural and natural resources management researchers
are therefore increasingly shifting from studying and promoting
specific practices to broader principles instead (Stevenson
et al. 2019).

2After fielding the experiment and analyzing our data, we
learned of a parallel RCT on SRI in Haiti by Michael Carter, Tra-
vis Lybbert, Abbie Turiansky, and collaborators at UC-Davis and
OXFAM. As of yet, no paper reports results from that field
research so we believe ours is the first report of experimental evi-
dence on farmers’ uptake and use of SRI.

3Given that agricultural production depends on many exoge-
nous and largely unobservable factors, such as weather, disease,
pathogen, pest pressure, and so on (Sherlund, Barrett, and Ade-
sina 2002), multiple observations over time enable us to average
out the noise in measuring yields, revenues, and costs of agricul-
tural production, generating estimates less vulnerable to bias that
might arise due to unusual conditions for all subjects during the
experimental period (McKenzie 2012; Rosenzweig and
Udry 2020).
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estimate the causal effects of randomized SRI
training on SRI uptake and disadoption
rates,4 as well as on rice yields and profits,
and on multiple measures of household well-
being, all as a function of the cross-sectional
and intertemporal intensity of treatment. This
design also permits us to estimate the spillover
effects of SRI training on untrained farmers
within treatment villages, again as a function
of cross-sectional and intertemporal intensity
of treatment. The size and structure of the
study also permits exploration of the endoge-
nous adoption behaviors of farmers within
treatment arms and of their productivity, prof-
itability, and well-being outcomes. It also pro-
vides important insights on smallholder
farmer technology adoption behaviors,
highlighting in particular the important role
of non-random selection into technology use
based on unobservables. Farmers who were
doing well prior to SRI training exposure, con-
ditional on observable inputs, were less likely
to adopt SRI after direct or indirect exposure
to training, whereas farmers who were doing
less well pre-exposure did adopt, raising their
productivity and well-being. Finally, insofar
as intensity of exposure to training relates to
learning, this design offers some insights on
how and what farmers learn about new
technologies.

We find that SRI training sharply increases
the likelihood of SRI adoption, decreases the
likelihood of disadoption, and has spillover
effects, promoting uptake by untreated
farmers in training villages. We find large, pos-
itive, statistically significant intent to treat
(ITT) and local average treatment effects
(LATE) of SRI training on rice yields and
profits, as well as multiple household well-
being indicators. The qualitative findings of
the large observational literature on SRI seem
largely correct in their claims that SRI boosts
farm-level rice productivity and profitability.
Given SRI’s global diffusion without large-
scale experimental evaluation, these impact
findings are the paper’s primary contribution.

Despite rates of SRI uptake and estimated
yield and profit gains that are both statistically
significant and of meaningful magnitudes,
most farmers adopt SRI on only part of their
rice plots andmany farmers disadopt SRI after
trying it for a year. This echoes prior

observational studies’ findings (Moser and
Barrett 2003, 2006). Partial adoption and disa-
doption could signal heterogeneous returns to
SRI. But we cannot identify any observable
source of heterogeneity. We do observe, how-
ever, that returns distributions are statistically
indistinguishable between SRI adopters and
non-adopters or disadopters within each treat-
ment arm of the experiment. This strongly sug-
gests that farmers engage in near-optimal
endogenous, non-random selection into SRI
adoption.
We further find strong evidence that SRI

adoption increases significantly — and disa-
doption decreases significantly—with greater
intensity of (direct or indirect) training
exposure to SRI. But the impacts of training
intensity appear limited to uptake decisions.
The ITT estimates of SRI training’s impacts
on rice yields, profits, and household well-
being are statistically indistinguishable among
treatment arms with varying exposure intensi-
ties. The finding that the intensity of SRI train-
ing exposure significantly affects only farmers’
propensity to adopt (and not to disadopt) SRI
but has no significant effect on farmers’ perfor-
mance with the new technology reinforces
recent work on learning in the process of tech-
nology adoption. In summarizing our results,
we explain why these results do not reconcile
easily with the target input model on which
most of the technology adoption literature of
the past twenty-five years rests. Rather, our
results reconcile most easily with multi-object
learning, including rational inattention models
that may be especially pertinent to combinato-
rial innovations such as SRI, most natural
resources management practices, or digital
platforms, as such technologies require learn-
ing about multiple objects or practices at once
(e.g., Hanna, Mullainathan, and Schwartz-
stein 2014; Nourani 2019; Maertens, Michel-
son, and Nourani 2021). We see this as an
especially fruitful new direction for empirical
research on agricultural technology adoption.

System of Rice Intensification

The System of Rice Intensification (SRI)5

offers an exceptionally good candidate

4We use the terms “adoption” and “uptake” interchangeably to
refer to use of SRI and “disadoption” for discontinuation of use
after initial uptake.

5For a brief introduction to SRI, see http://sri.ciifad.cornell.edu/
aboutsri/origin/. A large online library of studies on SRI is avail-
able at http://sri.ciifad.cornell.edu/research/.
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innovation for studying questions about tech-
nology diffusion, learning processes, and
impacts among smallholder farmers.6 SRI is a
combinatorial innovation based on a few core
principles: early, careful transplanting of sin-
gle seedlings with wider spacing into fields that
have careful water management but are not
continuously flooded, as well as soil that has
more organic matter and is actively aerated,
often using simple mechanical weeders. Prac-
tices that adhere to these principles seem to
improve the growth and functioning of rice
plants’ root systems and to enhance the num-
ber and diversity of the soil biota that contrib-
ute to plant health and productivity (Stoop,
Uphoff, and Kassam 2002; Uphoff 2003; Ran-
driamiharisoa, Barison, and Uphoff 2006),
although the exact bio-physio-chemical mech-
anisms behind the claimed performance
improvements remain poorly understood by
agricultural scientists. Some agronomists hold
that SRI merely represents good agronomy—
for example, full use of organic inputs, regular
plant geometry, judicious use of water, good
weed control—thus the label really just
reflects best management practices, not a
new technology (McDonald, Hobbs, and
Riha 2006). Indeed, the use of organic fertil-
izers, alternate wetting and drying (AWD)
water management, and mechanical weeders
are common recommendations, not unique to
SRI. Each of those practices existed already
(at varying prevalence levels) in our
Bangladesh survey villages. The most distin-
guishing features of SRI are three practices:
(a) early transplanting, of (b) a single seedling
per spot, with (c) much wider spacing. Those
were novel in our study sites and differentiate
SRI from other agronomic practices already
in use.
We adapt the approach taken by BRAC

through its own SRI experimentation over
the prior several years elsewhere in
Bangladesh.7 SRI is most appropriate during

the Boro season (January–June), when irriga-
tion management is easier. Heavy rainfall dur-
ing the Aus/Aman season (April–August)
makes careful AWD water management
harder. As Boro coincides with winter, when
plants grow more slowly, BRAC recommends
transplanting seedlings when they are much
younger than the local convention, at about
twenty days rather than forty to fifty days,
but a bit later than is typically recommended
in SRI systems elsewhere (ten to fifteen days).
The basic SRI principles and specific practices
advanced by BRAC in Boro season are: (a)
transplanting younger (twenty-day-old) seed-
lings; (b) transplanting one to two seedlings
per hill; (c) wide spacing of transplanted seed-
lings (25 � 20 cm); (d) providing organic mat-
ter amendments (e.g., compost, manure) to
the soil; (e) following theAWDmethod of irri-
gation; and (f ) mechanically weeding at regu-
lar intervals. The first three practices define
SRI uptake as implemented in this study, with
findings robust to different precise ways of
measuring uptake, as we explain below.

Experimental Design

The RCT was conducted in 182 villages across
seven upazillas in five districts8 in two succes-
sive years (2014/15 and 2015/2016) during the
Boro rice seasons.9 We used a multi-stage ran-
domization in year 1 (2014/15). First, 120 vil-
lages were selected randomly for training to
introduce farmers to SRI; the remaining sixty
villages served as controls and received no
SRI training. BRAC already operates in these
villages for other activities, so is a well-known
and respected organization in all of the survey
communities.10 SRI had not been practiced in

6See the excellent reviews by Feder, Just, and Zilberman (1985),
Sunding and Zilberman (2002), Foster and Rosenzweig (2010),
and Chavas and Nauges (2020) for detailed discussion of these
literatures.

7BRAC previously worked on SRI in two other subdistricts of
Bangladesh, including a pilot project in association with Cornell
University, on a small scale (among just eighty farmers). BRAC
provided interest free credit (and in some cases grants) to farmers
who agreed to adopt SRI. However, BRAC used a “block”
approach in which all farmers with neighboring plots of lands
within a village needed to agree to cultivate using the SRI
approach. These blocks were typically large, twenty to thirty acres
in size, and blocks often contained fifty or more farmers. Yield
gains were observed, but it proved difficult for BRAC to convince
such a large number of farmers to coordinate, especially around

water management, so as to practice SRI (Karmakar et al. 2004).
Further, other trials in Bangladesh concluded existing best man-
agement practices outperformed SRI (Latif et al. 2005). BRAC
therefore wanted to change this approach, as its prior efforts
seemed neither financially sustainable nor effective. The approach
we developed with BRAC, described in section 3, differs dramati-
cally from its prior design.We did follow, however, the SRI princi-
ples that BRAC validated during these prior several years of
experimentation elsewhere in Bangladesh. None of the control
or treatment villages in our study were previously involved with
BRAC efforts to promote SRI, nor with any other SRI promotion
activities of which we are aware.

8The five districts are Kishoreganj, Pabna, Lalmonirat, Gopal-
gonj, and Shirajgonj. See map in figure A1.

9As this study was undertaken before pre-analysis plans became
popular, it was not formally pre-registered.

10BRAC works across all of Bangladesh, offering a range of
education, health, microfinance, skills training, and legal support
services.
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any of these villages, nor in neighboring
villages.

Although the SRI intervention was coordi-
nated by BRAC’s Agriculture and Food Secu-
rity Program (AFSP), the research reported
here was implemented by BRAC Research
and Evaluation Division (RED), established
in 1975 as an independent research unit within
BRAC, expressly tasked with conducting a
credible, independent evaluation of BRAC
interventions free of conflicts of interest
(Chowdhury, Jenkins, and Nandita 2014).11

At the very beginning of the research pro-
gram, RED conducted a census before the
2014 Boro season to list all farmers in the sam-
ple villages who cultivated rice in the previous
Boro season, and owned at least 0.5 but not
more than ten acres of land.12 We then
selected thirty to forty farmers randomly from
each village, including from the control vil-
lages, for the baseline survey.13 In total, we
surveyed 5,486 farmers, 1,856 from the control
villages and 3,630 from the treatment villages
(appendix table A1). The second stage
randomization involved selecting farmers
randomly for SRI training within each of the
120 treatment villages. The SRI training took
place just before the season started each year
(during November-December of 2014 and
2015). In the first year, BRAC provided train-
ing and information on SRI following its stan-
dard farmer training curriculum model.

The number of farmers trained within each
treatment village varied randomly following a
randomized saturation design that generates
experimental variation in the (cross-sectional)
intensity of within-village-and-period expo-
sure to treatment among treated farmers and
villages. We randomly varied the number of
farmers trained between ten and thirty
(appendix figure A2), so that the fraction of
sampled farmers in training villages ranges
from 25% to 80%, averaging just over 60%
of the sample farmers in training villages. Ran-
domized saturation can help identify spillover
effects from the treated to the untreated

(Baird et al. 2018), although as we show, it
can also affect the treatment effect on the trea-
ted. In total, 2,226 sample farmers received the
standardized SRI training in 2014. Another
1,404 reside in treatment villages but did not
receive BRAC SRI training (appendix table
A2).14,15

Following the selection of farmers for train-
ing, local BRAC AFSP field workers and
RED enumerators visited the farmers’ homes
and presented them with a letter from BRAC
inviting them to a one-day SRI training. The
farmers were also briefly informed orally
about the purpose of the training. All farmers
received a small payment (BDT 300≈4 USD)
to participate in the training, worth slightly
more than the average daily wage.16 The train-
ing content was standardized across villages,
involving both oral and multimedia presenta-
tions, including a video demonstrating the
principles and practices of SRI used in other
areas of Bangladesh, and interactive
question-and-answer sessions to clarify the
practices and principles. The trainers were
existing AFSP agricultural officers trained by
agricultural scientists who had previously
worked on SRI elsewhere in Bangladesh.17

The trainers were supported by RED enumer-
ators and AFSP field workers in conducting
the training session and the pre- and post-
training interviews, whereas all other surveys
(census, baseline, midline and endline sur-
veys) were done by RED enumerators.
The third stage randomization occurred in

the second year, generating experimental var-
iation in the (intertemporal) intensity of expo-
sure among treated farmers and villages. In
2015/16 (year 2) AFSP repeated the training
only in half (sixty) of the treatment villages,
selected randomly from the 120 year 1 treat-
ment villages, inviting all (and only) the
farmers who were offered training in year
1. Year 2 training consisted of two one-day

11RED facilitated the evaluation of BRAC’s well-known ultra-
poor (Bandiera et al. 2017), and tenant farmers credit programs
(Hossain et al. 2019).

12Farmers with less than 0.5 acres of land were excluded as they
are usually seasonal farmers. Those with more than ten acres are
considered land rich in this context and not part of BRAC’s target
clientele.

13In a few very large villages, we divided the village into two or
more paras/neighborhoods for both the baseline survey and the
training. We surveyed only one neighborhood from each such vil-
lage such that the farmers are geographically close to each other,
mimicking more typical village settings.

14The random selection of villages and farmers was done by
computer using STATA to make sure the randomization was con-
ducted blindly without any influence of BRAC AFSP officials.

15The treatment villages were also divided equally into different
categories to incentivize (or not) farmers to refer future trainees.
For more details on the referrals experiment, see Fafchamps
et al. (2020, 2021), who focus on peer-to-peer dissemination in net-
works, not the agronomic or economic outcomes of the SRI
training RCT.

16In addition, the farmers were given lunch, refreshments, and
snacks for the day.All farmers who attended the training were also
given a certificate from the BRAC in recognition of their participa-
tion in the training.

17These scientists previously worked at the Bangladesh Rice
Research Institute (BRRI), whose experience with SRI is docu-
mented in Latif et al. (2005).
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sessions. In the first session, case studies on
successful adoption from first year of interven-
tion were discussed. The session also included
discussion with local farmers about the train-
ing in year 1 and rice cultivation practices as
well as constraints that affected their decision
to adopt (or not adopt) SRI in year 1. In the
second session, AFSP trainers provided the
exact same training as in year 1, and tried to
ensure farmers clearly understood the key
principles and practices of SRI. In the remain-
ing sixty villages treated in year 1, there were
no follow up training or information sessions.
No training or information about SRI was pro-
vided in the control villages in either year.
The experimental design involves randomiza-

tion of villages into treatment and control, and
then of farmers into treated and untreated
within treatment villages, coupled with random-
ized saturation within treated villages, and ran-
domized repetition of training for a second
year. This enables us to estimate the causal
effects of SRI training (the experimental treat-
ment) on SRI uptake and disadoption rates as
a function of the cross-sectional and intertem-
poral intensity of treatment. This design also
permits us to estimate the spillover effects of
SRI training on untreated (i.e., within-village
control) farmers within treatment villages, again
as a function of cross-sectional and intertem-
poral intensity of treatment. Because we find
that SRI training sharply increases the likeli-
hood of adoption and decreases the likelihood
of disadoption (as we discuss below), precisely
as one would expect, and that there are spillover
effects on uptake by untreated farmers in treat-
ment villages, we can then use the randomized
intensity of exposure (i.e., the vector T1, T2
and their continuous analogs) as an instrument
to estimate the LATE of SRI uptake on rice
productivity, costs of production, profitability,
and broader indicators of household well-being.
We label the farmers that received training

in both years 1 and 2 as T2 (for two rounds of
training) and their villages as V2. The farmers
that received training in the remaining sixty
treatment villages in year 1 only we label T1
(for one round of training) and their villages
V1. The surveyed farmers who were not
selected for SRI training but reside in the V2
villages we label U2 (for untreated in two
training rounds villages), with U1 the analo-
gous group of untreated farmers in the V1 vil-
lages where SRI training occurred only in year
one. The control village farmers are denoted
C. Comparisons among these five randomly
assigned groups enables causal inference.

This two-dimensional (cross-sectional and
intertemporal) randomization of intensity of
treatment appears uncommon. Randomiza-
tion in cross-sectional treatment intensity
(i.e., within the village) generates exogenous
variation in howmanymembers of one’s social
network get SRI training, which may enhance
learning from others, social acceptability,
awareness of SRI, and so on. In the time series
dimension, the randomized intensity of train-
ing manufactures exogenous variation over
time in sustained exposure that creates oppor-
tunities to learn through formal training and
discussion with experts, sustained exposure
to a message, a useful reminder, and so on.

Appendix Table A1 reports sample sizes in
the two years of intervention. Most of the
invited farmers who were present in the vil-
lages on the training day attended the training.
Only four farmers in year 1 refused to partici-
pate in the training, whereas three farmers in
year 2 did not attend the training. Thus, over-
all, we do not have a compliance issue with
take-up or participation in the training pro-
gram.18 There is some attrition in the sample
over time, which we discuss below.

Before beginning any SRI training, we con-
ducted a baseline survey among all control and
treatment households. Then, following each
year’s training, after each seedling transplant
period but still during the growing season, we
conducted a short survey to observe adher-
ence to SRI practices and principles. SRI
adoption was determined on the basis of plot
visits by RED enumerators whowere also sup-
ported by AFSP field workers, who verified
visually whether the farmer adopted SRI tech-
niques on any of his19 cultivable rice plots dur-
ing theBoro season. A farmer is considered an
SRI adopter if the BRAC field officer

18BRAC’s prior and ongoing presence in the study villages is
both an advantage and a prospective source of bias. Because
BRAC had previously worked extensively with these communi-
ties, albeit not on SRI, they were (and remain) a trusted partner.
This enabled implementation of this study with very high rates of
compliance, leading to the clean results reported in the appendix
balance and attrition checks. On the other hand, an implementing
organization’s prior relationships with study subjects can causally
increase the estimated impact of an intervention (Usmani, Jeu-
land, and Pattanayak 2018). Trust in BRAC might introduce an
upward bias in uptake rates, relative to diffusion from a random
source, if farmers place greater weight on information fromBRAC
than from other agencies. Likewise, upwardly biased ITT esti-
mates could arise if farmers (mistakenly) perceive any quid pro
quo, that if BRAC is promoting SRI, a farmer had better try it or
risk losing out on other services BRAC provides. Note, however,
that if anything, that would downwardly bias LATE estimates of
the causal impact of SRI on rice or household outcomes.

19We use male pronouns because all of our sample farmer
respondents were male.
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observed that the farmer practiced at least
three of the six key SRI practices on at
least one plot of land. Note that we use the
mid-season verified observations of SRI prac-
tice, not farmer self-reports, when studying
SRI adoption and disadoption. As a robust-
ness check, we also use several other defini-
tions of adoption but find no qualitative
differences among measures.20

Following each year’s harvest, RED con-
ducted a thorough survey to capture further
details on rice inputs and output, including var-
ious measures of well-being that we discuss
below. The outcomemeasures we study—other
than SRI adoption or disadoption—come from
the post-season surveys.21 Therefore, besides
the baseline survey data and the mid-season
checks on SRI uptake, we have household sur-
vey data for two more post-harvest rounds,
one at the end of year 1 harvest (midline) and
one at the end of year 2 harvest (endline).

The appendix provides evidence that the
randomization was successful in both years
(tables A2, A3, and A4). Indeed, as shown in
figure 1, not only was there nomean difference
between control and the four (i.e., T1, T2, U1,
U2) treatment groups in rice yields at baseline,
the distributions were effectively indistin-
guishable, with no stochastic dominance of
any order among the RCT arms. Appendix -
Tables A5 and A6 also indicate attrition is
not a significant concern.

Empirical Strategy

ITT and LATE Estimates

We use random selection into one of the four
non-control group categories as dummy vari-
ables (T1, T2, U1, U2) to estimate intent to
treat (ITT) effects of SRI training. The ran-
domized saturation design also enables us to
exploit the continuous variation in treatment
intensity to estimate treatment effects as a
function of intensity of exposure, in cross-sec-
tion, time series, or both.

Our main rice-specific outcomes of interests
are SRI adoption, and yields, costs of produc-
tion, revenue, and profits, defined as the differ-
ence between revenue and costs. SRI is
arguably more labor intensive, and observa-
tional studies frequently suggest that SRI
farmers might engage more family labor in
rice cultivation (Moser and Barrett 2006).
Because labor valuation is problematic in set-
tings where most labor is not hired, we con-
sider costs with and without family labor so
as to ensure that findings are not distorted by
unobserved heterogeneity in shadow wages.
We first estimate the ITT effects of SRI

training exposure. Let Ti1=1 if a farmer i is
trained and lives in village j that was treated
only in year 1 (V1 village), Ti2=1 if the farmer
is trained and lives in a village treated in both
years (V2 village), Ui1 = 1 if the farmer lives
in a V1 village and was not trained, and Ui2
= 1 if he lives in a V2 village and was not trea-
ted; all variables take value zero otherwise.
These groups are mutually exclusive by
design. To estimate the ITT effect of offering
SRI training we run the following analysis of
covariance (ANCOVA) estimation22:

ð1Þ Yij,post ¼ α1þδ1Yij,baseþβ11Ui1þβ12Ti1

þβ13Ui2þβ14Ti2þΠ1Xijþ εij

Figure 1. Cumulative distribution function of
baseline rice output per decimal of land

Note: None of the five groups stochastically dominates another based on
Somers’ D statistic.

20In particular, we also use farmers’ self-assessed SRI adoption,
as reported in the post-harvest survey, enumerators’ evaluation of
the extent of SRI adoption on a scale of 0 to 100, and the percent-
age of cultivated rice land under SRI. None of these alternatemea-
sures meaningfully change any of our results.

21RED made multiple post-transplanting visits to check on dif-
ferent SRI principles that need verification at different times
within season. The adoption (disadoption) sample size therefore
differs from post-harvest survey.

22ANCOVAestimation hasmore power thanmore conventional
difference-in-differences estimation, especially for outcomes with
relatively low autocorrelation (McKenzie 2012). Autocorrelation
estimates vary from �0.08 to 0.22 for our outcome measures, with
the lone exception of midline-to-endline adoption (0.55), where
the baseline-to-midline autocorrelation is necessarily zero because
there was no SRI cultivation at baseline.

Barrett et al. Experimental Evidence on SRI Adoption and Impacts 7



Yij,post is the endline outcome of interest
(e.g., SRI adoption, rice yields, cost, profits,
etc.) for farmer i in village j at the end of year 2;
Yij,base is the pre-intervention (baseline) level
outcome; Xij includes control variables such
as age, education of farmer, land size, house-
hold composition, and income (an imperfect
proxy for liquidity constraints and risk prefer-
ences). In this and all subsequent regression
equations, we assume the error term, ε, has
the usual properties, cluster standard errors
at the village level at which we sampled, and
adjust for sampling weights. We also adjust
for multiple hypothesis testing using both ran-
domization inference (Young 2019) and
permutations-based family wise error rate
(Westfall and Young 1993).
For rice-focused outcome variables—SRI

adoption, yields, costs, profits—we use plot-
specific observations. We omit the plot
subscripts from equation (1) because for
household well-being indicators we use
household-specific observations. The parame-
ters β12 and β14 estimate the two year
(i.e., endline) ITT effects of directly receiving
SRI training once (T1) and twice (T2), respec-
tively, whereas the β11 and β13 parameters are
the ITT estimates of the spillover effects of liv-
ing in one-time and two-time training villages,
respectively.23 The omitted category is control
villages in which SRI training was not avail-
able in either round, for which Ui1 = Ui2 =
Ti1 =Ti2 =0.
Equation (1) also allows us to test if there is

any incremental effect of receiving an addi-
tional year of training by comparing the ITT
estimates between T1 and T2 farmers, that is,
testing the null hypothesis that β14 ¼ β12 versus
the alternate hypothesis. We can likewise
investigate whether repeated training induces
faster diffusion or improved spillover out-
comes than one-time training by comparing
U1 with U2 farmers, that is, testing the null
hypothesis that β13 ¼ β11 versus the alternate
hypothesis.
We also estimate equation (1) adding as an

additional explanatory variable the intensity
of treatment, represented by the fraction of
farmers treated in the village. FigureA2 shows
the number of farmers treated across treat-
ment villages. We define the village treatment

intensity (Tij) for a farmer i living in village j as
the share of the village sample treated:

ð2Þ Ttreated
i,j � Ntreated

i,j

Ntreated
i,j þNuntreated

i,j

where Ntreated
i,j refers to the number of treated

sample farmers, and Nuntreated
i,j refers to the

number of untreated sample farmers in village
j. Then the continuous treatment intensity
variables are simply the product of the
village-level treatment intensity and the indi-
vidual group assignment, for example,
T2Fij �Ttreated

i,j *Ti2, where we use the F suffix
to indicate the continuous fraction of sample
farmers trained in the village. Controlling for
treatment status, the coefficient estimate on
the continuous measure reflects the impact of
moving from no to complete within-village
saturation.24

The crucial questions in the ongoing SRI
debate concern its impacts on various farmer
productivity and well-being measures. For
both practical and ethical reasons, we cannot
randomize farmers into SRI use. The object
of randomization was a standardized training
intended to induce SRI uptake. In order to
determine the causal impacts of SRI from an
experiment that could not randomize SRI use
directly, we use the randomized treatment
intensity as an instrument for SRI use to esti-
mate the LATE of SRI on adopters via the fol-
lowing regression:

ð3Þ Yij,post ¼ α2þδ2Yij,baseþβ2 dAdoptionij
þΠ2Xijþϑij

where, Adoption¼ 1 if farmer i in village j
adopted SRI in year 2 (endline).

Note that a farmer could cultivate rice in
more than one plot of land. He might have
selected a particular plot suitable for SRI.
The SRI plot could well differ from non-SRI
plots along multiple unobservable dimen-
sions.25 We address this issue by including
pre-intervention level plot-specific yield, cost,

23Because more than 99% of those randomly selected for train-
ing attended the training, the effects of treatment on the treated
(TOT) are effectively the same as the ITT effects, so we ignore
the TOT effects here.

24If we instead use estimates of village population, which is less
precisely measured, thereby introducing measurement error into
the exogenous intensity variable, we get qualitatively identical
results.

25Barrett et al. (2004) found that farmer and plot characteristics
account for more than half of the observed yield difference
between SRI and traditional rice plots in Madagascar.
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and profit in the regression as, for example,
higher quality of land of a given size should
have a higher yield in the absence of SRI. In
the appendix we also examine the robustness
of our results using a difference-in-differences
(DiD) estimator to control for plot-level unob-
servables. Our results all hold as well in panel
regression estimates using the plot level DiD
specification.

Disadoption and Delayed Adoption

Our research design also allows us to study
disadoption – SRI uptake in year 1 that is dis-
continued in year 2—and persistent adop-
tion—that is, farmers who practiced SRI in
both years 1 and 2. We can also identify
farmers who adopted SRI only in year 2—
delayed adopters—and see how they differ
from disadopters and persistent adopters.
Foster and Rosenzweig (1995) point to the
strategic gains from delayed adoption if one
can observe neighbors’ experimentation with
a new technology. If learning from others is
cheaper than learning by doing, then farmers
with less capacity or willingness to experi-
ment (e.g., lower education, less financial
liquidity, smaller farm size, etc.) may be
more likely to delay adoption. Because adop-
tion is endogenous to various farmer-level
unobservables, we cannot make causal infer-
ences around disadoption, persistent adop-
tion, and delayed adoption, but we can
examine the correlates associated with each
cohort.

We study persistent adoption, disadoption,
and delayed adoption using the multinomial
logit regression model:

ð4Þ Yij ¼ α4þδ4Yieldij,baseþβ4Costij,base
þθ11Ui1þθ12Ti1þθ13Ui2þθ14Ti2

þΠ4Xijþμij

where Yij is a dummy variable indicating the
status of adoption of farmer i in village j at
the end of year 2: persistent adopter, delayed
adopter, or disadopter. The omitted base cate-
gory is never adopters. The polychotomous
options are mapped by the multinomial pre-
dictor function f(�) onto the explanatory vari-
ables. The Xij vector includes the household
head’s age, education, income, and farm size.
Yieldij,base reflects baseline productivity,
Costij,base is baseline cost, because a farmer’s
propensity to continue to practice SRI, or to

delay adoption, should depend on his initial
conditions.26,27 We also separately run a logit
regression model comparing only disadopters
with persistent adopters, that is, looking just
at the (non-random) subsample of midline
adopters. This helps identify the correlates of
those who abandon the practice while their
neighbors continue. These regressions all rely
on a strong independence of irrelevant alter-
natives assumption; thus, we emphasize the
parameter estimates concerning disadoption
and delayed adoption reflect only correlations
not causal estimates.

Results

Summary Statistics

Table 1 presents midline and endline summary
statistics for each treatment arm. As seen in
panel A, SRI training caused statistically signif-
icant SRI adoption. Uptake rates at midline
were almost identical among T1 and T2
farmers, at 49.7% and 49.2%, respectively, as
compared to a true zero among the control vil-
lage farmers. But SRI adoption then fell among
T1 farmers by endline, to 38.1%due to disadop-
tion (on which, more below), whereas adoption
among T2 farmers increased further, to 53.0%.
The endline difference between the two groups
is statistically significant (p= 0.00), although the
midline adoption rates, when there was no dif-
ference between the two arms, are not signifi-
cantly different.
The same pattern holds between the U1 and

U2 treatment groups, the training village
farmers who were not themselves trained. Sta-
tistically significant spillover occurred among
untrained farmers, as compared to control vil-
lage farmers, with 7%–8% SRI uptake at mid-
line among U1 and U2 households. After a
second year of training in V2 villages, U2
households exhibited higher SRI adoption
(12.38%) as compared to U1 (8.80%)
(p = 0.000).
Overall, trained T2 farmers adopted SRI on

about 26% of the land in V2 villages in year
2 as compared to 21% for T1 farmers in V1 vil-
lages (panel B). Thus, even adopters experi-
ment with SRI, not fully adopting it on all

26Note that we omit control villages from this regression as there
was no SRI adoption in control villages.

27We repeated the same analysis using the continuous treatment
intensity measures in equation (4) with no qualitative change in
results, which are available by request.
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plots.28 A qualitatively identical story emerges
if we use the other adoption measures.

The extent to which farmers adhere to the
SRI principles as taught varies by treatment
exposure and intensity but is generally low.
Table 1 Panel B shows a larger percentage
of (T1 and T2) farmers exposed to the SRI
training followed each of the six rules of
SRI cultivation than untrained (UI and U2)
farmers. Perhaps most strikingly, there was
negligible increase in adherence to practices
from midline to endline by farmers in V1 vil-
lages, except for U1 farmers’ use of organic
fertilizer and T1 farmers’ space of seedlings
and mechanical weeding. This suggests lim-
ited adaptation through learning by doing
or learning from other farmers’ initial experi-
ences with SRI beyond the initial adoption
decision. In V2 villages, increase in compli-
ance frommidline to endline was consistently
stronger after a second year of training,
among both U2 and T2 farmers. A key take-
away is that the vast majority of farmers
who adopt SRI practice it on only part of
their rice land, they only partially adhere to
the principles as taught, and they scarcely
update their practices following their initial
experience unless further training occurs.
The robust response at the extensive margin
to SRI training—adoption and a significant
shift in rice cultivation practices—contrasts
with the modest response at the intensive
margin.

Table 1 Panel C reports summary statistics
on rice yields, revenues, cost, and profits, all
of which are significantly higher among both
trained and untrained farmers in the treat-
ment villages than in the control villages.
The simple descriptive statistics suggest sig-
nificant productivity and profitability impacts
of exposure to SRI training, although the dif-
ferences among treatment groups are rarely
statistically significant. This suggests that the
main impact of SRI training exposure occurs
at the extensive margin, by inducing adop-
tion, more than by impacting performance at
the intensive margin through the enhanced
learning opportunities that come from
greater exposure. We return to this issue,
and its implications for learning models, later
in the paper.

Estimated Effects

SRI Adoption. Table 2 (Panel A) column 129

reports the ITT estimates of SRI training at
endline. SRI training appears quite effective
at inducing adoption, as T1 and T2 farmers
are 39% and 53% points, respectively, more
likely to practice SRI two years after baseline
than were farmers in control villages. Under
the defensible assumption that participation
in SRI training represents more intense expo-
sure to the method than non-participation
does, exposure intensity clearly matters to
uptake. Training is the main mechanism for
diffusing the method as the differences
between the treated and untreated farmers
within villages (T1 vs. U1 and T2 vs. U2) are
quite large—thirty to forty percentage
points—and highly statistically significant.
Repetition of SRI training had a positive effect
on uptake as well, a statistically significant
fourteen percentage point difference in adop-
tion between T1 and T2 farmers.
There is also statistically significant spillover

of SRI training to untrained farmers in the
treatment villages, 9-12% among U1 and U2
farmers. The added year of training had no sig-
nificant impact on the diffusion of SRI beyond
the trained farmer cohort.
Recall that the training sessions were only

one day long, the method is relatively com-
plex, and farmers had no prior exposure to
SRI. Considering this, the estimated adoption
impacts of SRI training appear quite strong
and sharply increasing with intensity of train-
ing exposure, both from zero exposure to one
training session and from one annual training
to two years of training, as well as between
directly trained farmers and their neighbors
who may pick up the practice informally
through observation or discussion.
The same pattern holds when we supple-

ment the binary treatment variable with the
continuous measure of village-specific treat-
ment intensity, exploiting our randomized
saturation experimental design.30 Appendix -
Table A7 presents the ITT estimates adding
in the continuous treatment measure so as to

28At endline, only 6.8% of T2 farmers and 3.5% of T1 farmers
adopted SRI on all of their rice land.

29For reasons already explained, the post-harvest survey used
for outcomes other than adoption included fewer rice plots than
did the post-transplanting survey used to determine SRI adoption.
Column 1’ reports the analog to column 1 but restricted to just the
observations used for the other outcome variables. No significant
differences exist between the results. So, we focus our discussion
on the larger sample reported in column 1.

30Treatment intensity is necessarily zero for all farmers in con-
trol villages.
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test for saturation effects. The ITT estimates
of training treatments are now the sum of the
coefficient estimate on the dummy variable
for that treatment arm, as in table 2, plus the
coefficient estimate on the continuous mea-
sure multiplied by the treatment intensity
(in the [0,1] interval). The training saturation
rate has a positive but insignificant effect on
uptake in the V1 villages—and, if anything,
an insignificantly negative impact on perfor-
mance (yield, revenue, cost or profit) mea-
sures.31 The sample training saturation rate
has a very strongly positive impact on SRI
adoption in V2 villages, however, among both
the T2 and U2 households, although it again
has no significant effect on performance with
SRI. Training intensity in cross-section and
over time appear complements, reinforcing
each other in inducing uptake.

Figure 2 offers a nonparametric look at the
impact of treatment intensity on SRI adoption.
Adoption impacts appear invariant up to or
slightly beyond the sample mean/median of
0.60, after which point the slope of the rela-
tionship increases sharply and roughly line-
arly. We take account of this nonlinearity by
adding a dummy variable indicating if treat-
ment intensity is above 0.70, roughly the sixti-
eth percentile of the distribution. The results,
presented in table 3, indicate that high satura-
tion rates boost uptake effects dramatically

and significantly in the case of T1 farmers—
those trained only one year—and among the
U2 cohort, those farmers whowere not trained
directly but who live in villages where training
occurred in both years. T2 farmers’ adoption
propensity also increases sharply but is impre-
cisely estimated.32 This reinforces the evi-
dence of strong synergistic effect of cross-
sectional and intertemporal intensity of expo-
sure on uptake of innovations. Assuming
diminishing marginal returns to learning,
uptake would typically be a concave function
in training saturation if the effect worked
solely through social learning. The observed
convex relationship between training satura-
tion and SRI uptake appears more likely due
to social conformity effects, consistent with
prior findings from Madagascar (Moser and
Barrett 2006).

ITT Impacts on Rice Yields, Costs, and Profits.
The ITT estimates also show statistically sig-
nificant and agronomically and economically
meaningful impacts on rice yields (14%–

17%), revenues (15%–21%), and input costs
(per decimal of land, 13%–16%), resulting in
profits33 that are 22%–31% higher relative to
farmers in the control villages, noting that rice
was profitable at baseline (table 2). Remark-
ably, no statistically significant differences
exist between any of the four treatment arms,
despite variation in impact on SRI adoption.
This result holds when we control for exoge-
nous variation in training saturation rates,
even allowing for the nonlinear effect
observed with above-median, cross-sectional
training intensity (table 3). Although intensity
of SRI training exposure has a big, statistically
significant effect on the likelihood of SRI
adoption, it has no differential ITT impact at
the intensive margin on performance-related
outcomes—for example, yields, profits—

Figure 2. Village-level SRI adoption rate by
proportion of treated farmers

Note: The x axis shows the number of farmers who have adopted SRI, ranked
from highest (1) to lowest (N) profitability within the treatment arm. The
calculation of (endline) profits takes into account the imputed cost of family
labor.

31Multicollinearity exists between the dummy and continuous
intensity variables. All dummy-intensity pairs are jointly highly
significant. We get qualitatively identical results using midline
data (tables A8 and A9).

32When we repeat this analysis with a 0.60 cut-off in treatment
intensity, we find broadly similar but weaker results, which is con-
sistent with figure 2 as the kink occurs between treatment intensity
of 0.65–0.70 (table A10).

33We value unpaid household labor at village mode wage rates,
but the results are qualitatively identical when valued at mean or
median wage rates. At midline, wage data were collected for each
individual worker in a sample household, by different types of
work, including nursery bed preparation/seeding/seed treatment;
land preparation; transplanting/sowing; irrigation/watering; weed-
ing; applying fertilizer/pesticide; harvesting; and post-harvest
threshing. Because the differences by task were minimal, at end-
line, wage data were collected only for two categories: the pre-
and harvest/post-harvest periods. Imputed wages for unpaid fam-
ily labor during were calculated based on the modal hired wage
in the district for each type of work. The average imputed wage
for midline was 301.48BDT/day and for endline was
313.27BDT/day.
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across treatment arms, only at the extensive
margin of any (direct or indirect) exposure
versus pure control households. We come
back to this important finding below.

Because SRI training exposure increases
the costs of rice cultivation, we next explore
precisely which costs increase. Recall that
SRI principles call for increased use of organic
soil amendments and mechanical weeders,
and more frequent wetting and drying of plots,
which requires increased operation of pumps
to flood or drain fields, and that earlier seed-
ling transplanting, more regular and careful
water management, the possibility of more
robust weed growth on unflooded fields, and
increased harvests may increase labor
demands, especially for the household man-
agers of the SRI plot(s). We would therefore
expect increased costs to be concentrated in
those domains. Conversely, we might expect
reduced herbicide and pesticide expenses due
to mechanical weeding and better water man-
agement practices.

The data exhibit precisely those patterns.
As shown in table 4, the ITT estimates (panel
A) of the impact of SRI training exposure
and the LATE estimates (panel B) clearly sig-
nal sizable and significant increases in family
labor, irrigation, and organic fertilizer costs,
and sharply reduced pesticide costs, especially
among the T2 farmers most intensively trained
on SRI. Other than for pesticide costs, how-
ever, these effects are not statistically signifi-
cantly different among the distinct treatment
cohorts.

Cumulatively, the findings reported in
tables 2–4 tell a clear story that SRI adoption
increases significantly with the intensity of
training exposure, whether measured as
trained versus untrained, trained twice versus
trained once, by village treatment intensity,
or even indirect exposure in a training village
versus no exposure in a control village, and
that SRI training has a large, positive impact
on productivity and profitability indicators,
even while driving up costs of production.

SRI Impacts on Household Well-Being.
Previous observational studies found that rice
productivity or profitability gains associated
with SRI adoption do not translate into
improved household well-being. This seems
to result from reallocation of farm household
labor from nonfarm activities to SRI rice
cultivation, such that the loss of non-farm
income largely offsets the gains from increased
rice productivity (Noltze, Schwarze, and

Qaim 2013; Takahashi and Barrett 2014).34

Our findings differ.
Table 5 reports the ITT (Panel A) and

LATE (Panel B) estimates of SRI training
exposure on self-reported measures of sav-
ings, social status (relative to others in the vil-
lage), food security and life satisfaction.35

Because the latter three variables are scored
on five to ten point Likert scales, we report
ordered probit marginal effects estimates. All
the ITT point estimates are positive and
mostly (but not all) statistically significant for
treated households, as compared to control
village households. But the expected gains
are again not significantly different among
the T1, T2, U1, and U2 farmers. So the well-
being gains from SRI occur at the extensive
margin of training exposure and do not signif-
icantly vary at the intensive margin based on
exposure intensity.

LATE Estimates. Because we randomized
SRI training, not SRI adoption, and less than
half of trained farmers adopted SRI, the ITT
estimates of the impacts of training necessarily
underestimate the impacts of SRI adoption on
the various outcome measures. Panel B of
tables 2, 4, and 5 present the LATE estimates
of SRI training exposure. The first-stage uses
treatment dummies as instruments for SRI
adoption. We observe large and highly statisti-
cally significant estimated gains in rice yields
(25%), revenues, costs, and especially profits
(44%), as well as on household welfare indica-
tors (Panel B, table 5). Those point estimates,
which apply to compliers with the training
encouragement design, that is, to trained
farmers who indeed adopt SRI, fall well within
the range reported in the observational SRI
literature summarized earlier. These are con-
siderable yield and profit gains, especially
from training on an innovation that requires
no purchased inputs.36 Although SRI induces
increased demand for family labor (table 4),
the gains from SRI are not offset through real-
location of family labor into rice production.
One might be concerned about general

equilibrium effects on local factor and product
market prices contaminating the estimates,

34In another observational and simulation study, Gathorne-
Hardy et al. (2016) find that the gains that accrue to SRI farming
households come at the expense of landless workers.

35See the notes at the bottom of table 5 for details on the con-
struction of these variables.

36We get statistically significant positive results on all outcomes
when we perform the same analysis using midline data but using
endline treatment status (tables A8 and A9).
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especially given the high ITT estimates on
untrained farmers in training villages. We
show in the appendix, however, that no dis-
cernible, significant wage or rice price effects
arose from the experiment, an intuitive results
given considerable labor mobility and rice
market integration in densely populated rural
Bangladesh.

Insights from Non-Random Selection into SRI
Uptake

The lack of statistically significant ITT differ-
ences among treatment groups in productivity,
profitability, or well-being outcomes despite
statistically significant differences in SRI
adoption nicely illustrates non-random selec-
tion into SRI adoption conditional on training
exposure. If the information conveyed by
training exposure induces selection both into
and out of SRI uptake, then we should see
farmers within the same treatment arm opti-
mally select into (or out of) SRI uptake, based
on outcome realizations.

Simply dividing the table 2 ITT estimates of
yield impacts by the corresponding treatment-
arm-specific ITT estimate of uptake—that is,
the group-specific indirect least squares (ILS)
LATE estimate of impacts—generates a clear
ordering, from 155% expected yield gains for
U1 farmers who adopt, down to 33% for T2
farmers. The treatment cohort-specific ILS
LATE estimates correlate inversely with
exposure to the method through training. This
occurs because ILS LATE estimates reflect
performance impacts conditional on training
treatment intensity. We would expect positive
assortative matching in which those farmers
likely to benefit most are most likely to adopt
SRI for any given level of training exposure.
Differences in training exposure afford us cru-
cial insights into the differences among the
farmers most likely to adopt a new technology
quickly, based on limited, indirect learning
through social connections, versus those likely
to take up an innovation following more
substantial, direct training exposure from
extension agents. Given the experiment’s suc-
cessful balance on observables (tables A2–
A4), the patterns we observe suggest that
farmer propensity to adopt SRI conditional
on treatment intensity is strongly associated
with unobservables (e.g., ambition, skill, social
connectivity) that complement the new tech-
nology, even controlling for baseline out-
comes. We find no significant heterogeneity

in returns to SRI conditional on observables
such as land and labor endowments, as shown
below.37 That suggests the differences must
arise from farmer (or plot) unobservables.
Given strong selection on unobservables,

greater exposure induces more farmers to
adopt SRI, and to thereby benefit from the
method, but with diminishing marginal gains
from adoption. We can understand this is
as follows. Imagine farmer productivity-
enhancing unobservables as summarized by a
scalar variable, call it SRI-relevant ability,
with a standard, unimodal distribution.
Farmers at the upper end of the SRI-relevant
ability distribution enjoy greater gains from
any new technology than do those further
down that distribution. At the same time,
higher SRI-relevant ability farmers are more
likely to learn and adopt the new technology
at any level of training exposure. Their SRI-
relevant ability makes them quicker to identify
and adopt promising technologies based on
limited information. It takes fewer new
observations—that is, less intense exposure
to the new technology—to induce adoption
by farmers who expect to benefit more.
The implication is that a light training inter-

vention is more likely to induce uptake by high
SRI-relevant ability farmers who enjoy
greater expected gains conditional on adop-
tion, whereas a heavier training intervention
will induce greater uptake by all farmer types,
in particular inducing more farmers of moder-
ate or lesser ability to adopt, resulting in lower
expected gains conditional on adoption in the
higher training intensity state. Randomization
into training treatment arms means the distri-
bution of high ability farmers should be bal-
anced across training arms. But treatment
intensity should induce proportionately
greater uptake among farmers as their ability
level falls. Increased training exposure
thereby has a scaling effect, inducing greater
adoption, but not necessarily an impact
effect—no higher performance conditional
on treatment intensity.
Of course, the information conveyed by SRI

training exposure may also be relevant to non-
SRI-relevant unobservables and thereby

37The only dimension in which we observe heterogeneity of
returns is with respect to pre-treatment rice yield, with the cost
of production impacts appreciably lower for those with higher
baseline yields, albeit again with no significant difference among
treatment groups (table A16). This seems likely to reflect farmer
skill and other unobservables that confer higher expected gains
from using the new technology conditional on exposure level.
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induce rational nonadoption of SRI, yet still
boost the farmer’s productivity. For example,
SRI training emphasizes good water manage-
ment practices. Exposure to SRI training
likely induces farmers to reflect on their ability
to manage water effectively in their rice field.
Some may then adopt SRI. Others may then
realize that SRI would not work for them,
given the physical geography of water access
(e.g., soil depth, slope, peculiarities of local
irrigation systems) for their plot(s), but they
nonetheless modify rice cultivation practices
in some other way that boosts performance,
despite not adopting SRI. The implication is
that information conveyed by randomized
training induces endogenous selection into
technology adoption, as intended, but can also
directly impact performance independently of
uptake. This is a variant of the “heterogeneous
treatments” problem intrinsic to information-
based RCTs, wherein the experimenter can-
not actually know what the subject learns from
the treatment and learning is likely heteroge-
neous among subjects within the same treat-
ment arm (Barrett and Carter 2010, 2020;
Barrett 2021).

The data strongly suggest exactly such
endogenous selection with independent
effects of training on non-adopters’ perfor-
mance. Figures 3 and 4 plot the ordered distri-
bution of endline rice profits and yield,
respectively, for SRI adopters within each
treatment arm. The dotted horizontal line
shows the control group mean. The leftmost
observation—that is, the most profitable (fig-
ure 3) or highest yield (figure 4) farmer—of
each group-specific schedule, and all the sub-
sequent observations within that cohort, fol-
low a clear ordering that corresponds to the
extent of SRI training exposure.38 For any
rank n in the outcome ordering (reflected on
the horizontal axis), the nth farmer in a treat-
ment arm exhibits higher rice profitability
or yield as shown by the vertical ordering of
the treatment-arm-specific outcome curves:
the U1 locus lies everywhere beneath the U2
locus, which is itself everywhere beneath the
T1 schedule, that is in turn strictly dominated
by T2. The most productive SRI adopters
who had only indirect training exposure
(U1 and U2) are slightly less productive than
those adopters who received direct training

(i.e., at the leftmost edge of the figures). But
the productivity difference between, for exam-
ple U1 and T2 adopters, as reflected in the ver-
tical gap between the treatment-specific
curves, grows quickly as one moves down the
ordering. We loosely interpret that ordering
as an SRI-relevant ability ranking, although it
could equally reflect other unobservables such
as social connections, land quality, and so
on. Greater training exposure boosts the like-
lihood of farmer adoption, but the magnitude
of induced uptake increases as farmer
technology-relevant ability level falls.
The vast majority of SRI adopters outper-

form the control group mean. This merely
reflects the gains attributable to SRI training
that we established earlier. The endline differ-
ences between T2 and U2, and between T1
and U1, are large, consistent with the infer-
ence that most of the gains come from direct
learning from the BRAC extension agents.
The difference between the U1 and U2
farmers is negligible. Increased intensity of
SRI training exposure boosts adoption by
farmers who realize a given yield or profit level
(i.e., treatment arm schedules move rightward
in training intensity). But it does not change
the average expected outcome (yield or profit
or well-being) because expected impacts
decrease in unobservable ability, whereas
greater training exposure probabilistically
propagates diffusion further down the ability
distribution.
This can also be seen in the treatment arm-

specific conditional outcome distributions. As
shown in figure 1, no stochastic dominance
existed at baseline among the rice yield distri-
butions among the control group, the directly
trained, and the untrained within training vil-
lages. After training, the yield distributions
for all four treatment arms first order stochas-
tically dominate the control group, at both
midline and endline (figures A3 and A4). But
no (first, second, or third order) stochastic
dominance exists among any of the treatment
arms (figures A5 and A6). The distribution of
outcomes is effectively identical, as reflected
by the ITT estimates. But increased training
exposure sharply expands the scale of SRI
uptake, as reflected in figures 3 and 4.
The non-random nature of selection into

SRI adoption is also apparent in comparison
of the yield distributions of adopters and
non-adopters within each treatment arm. As
depicted in figure 5, the endline yield distribu-
tion of SRI adopters does not statistically sig-
nificantly stochastically dominate (at first,

38Keep in mind that at baseline, each treatment arm and the
control group had statistically indistinguishable distributions (fig-
ure 1), and thus would exhibit near-identical orderings if depicted
as in figures 3 and 4.
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second or third order) that of non-adopters
within any of the treatment arms.39 The p-
values for the tests of first order dominance
decrease in intensity of exposure to SRI train-
ing, consistent with the prior findings that
greater exposure leads to slightly greater
adherence to recommended practices and thus
better performance. But the fact that within
each treatment arm these differences are not
statistically significant indicates that farmers
make reasonably rational uptake decisions
based on unobservables that affect perfor-
mance outcomes. Conditional on their
unobservable-to-the-experimenter ability and
the intensity of their exposure to the new
method, farmers make reasonable adoption

decisions such that as a treatment arm cohort,
they endogenously sort into equally perform-
ing subgroups.

Disadoption, Delayed Adoption, and Farmer
Heterogeneity

The multi-year design of our experiment also
permits us to study different adoption behav-
iors by farmers. More specifically, we distin-
guish among farmers who never practiced
SRI (non-adopters), those who adopted SRI
in both post-training periods (persistent
adopters), those who adopted in the first year
but then disadopted (disadopters), and those
who only adopted in the second year (delayed
adopters). Among the 2,648 treatment village
farmers for whom we have both year 1 and
year 2 observations, 36% (313) of farmers
who adopted SRI in year 1 disadopted in year
2 (disadopters) (table 6).40 On its surface, this
high rate of disadoption—similar to prior
observations (Moser and Barrett 2006)—is
puzzling given the substantial estimated gains
from SRI adoption.41Might this reflect hetero-
geneous marginal returns to SRI adoption?

First, we consider the impact of intensity of
exposure on disadoption. As shown in table 6,
not only is adoption higher in V2 villages, as
established above, but persistent adoption is
higher and disadoption lower in the villages
that randomly received two years of training
rather than just one. Disadoption conditional
on year 1 SRI uptake was 64%, 53%, and
47% among U2, U1, and T1 farmers, respec-
tively, two to three times the 22% disadoption
rate among T2 farmers. Clearly, added expo-
sure to SRI training induced farmers to con-
tinue with the practice after initial uptake.
Social spillover effects resulting in delayed
adoption were modest, with just 6% and 10%
of U1 and U2 farmers, respectively, adopting
SRI only in year 2. Having been directly
trained substantially increased the likelihood
of delayed adoption, as 25% of T1 farmers

Figure 3. Ordered endline profits (adjusted for
family labor) by treatment status

Note: The x axis shows the number of farmers who have adopted SRI, ranked
from highest (1) to lowest (N) rice yield within the treatment arm.

Figure 4. Ordered endline yield by treatment
status

Notes: p-value associated with Somers’ D test for first order stochastic
dominance for U1 (adopted-did not adopt) = 0.46, T1 (adopted-did not
adopt) = 0.46, U2 (adopted-did not adopt) = 0.35 and T2 (adopted-did not
adopt) = 0.23. Tests for second and third order dominance likewise find no
statistically significant ordering.

39Figure A7 shows the same for midline yield.
40Nine hundred and seventy five farmers from 120 villages

adopted SRI in year 1. At the end of year 2, we collected or verified
the SRI adoption status on only 869 of those farmers; 106 year
1 adopters attritted from the sample. As reported previously
(tables A5–A6), attrition appears random, so these should not
impact our analysis.

41Duflo, Kremer, andRobinson (2011) also show that in western
Kenya, adoption of fertilizers among farmers receiving a one-time
subsidy dropped back to the same rate as among the comparison
group as soon as the subsidy stopped, suggesting that such a one-
time subsidy does not lead to persistent technology adoption but
only has a temporary effect.
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only adopted in year 2. Additional training did
not affect the likelihood of delayed uptake; a
statistically similar 30% of T2 farmers who
did not adopt in the initial year tried it in year
2. Not only did the intertemporal intensity of
SRI training exposure affect SRI adoption at
the end of both year 1 (tables A8 and A9)
and year 2 (table 3), but it matters to the like-
lihood that initial non-adopters eventually
take up the method and that initial adopters
persist in the practice of SRI.

Appendix Table A14 presents the charac-
teristics of these different groups of farmers
by adoption/disadoption status.42 The descrip-
tive statistics are revealing, if only indicative.
Those who adopted SRI in year 1 (persistent
adopters and disadopters) had larger land
holdings, did better on simple memory
tests,43 and were slightly more risk averse44

before the intervention began as compared to
those who did not adopt SRI in year 1 (delayed
adopters and never adopters). The midline
non-adopters—delayed adopters and never
adopters—had lower baseline cost of produc-
tion and higher baseline profits (including
family labor) compared to persistent adopters.
Although their yields and profits increased
from baseline to year 1 (a good growing year),
both yields and profits were now inferior
among the midline non-adopters as compared
to those who adopted SRI in year 1.

Figure 5. Cumulative distribution function of endline production per decimal of land by
treatment and adoption status

42When we conduct the analysis for the trained and T1 and T2
villages separately, we find similar patterns.

43We test short term memory using memory span exercise. The
farmers heard ten words in a row, which they were asked to repeat
immediately, and the number of words that they could repeat cor-
rectly was recorded. We then, after ten minutes, asked them to
repeat the words for the second time, and again recorded the total

number of correct words, using it as a measure of their short-term
memory. The farmers had average memory spans of 5.4 words and
4.6 words in the immediate and ten-minute afterward tests,
respectively.

44The baseline survey included a standard lottery game
(Binswanger 1980) in order to elicit individual risk preferences.
In this lottery game, famers were asked to choose an option from
among six options that are basically various combinations of
amounts of BDT as payoffs. Option 1 ensures a payment of BDT
100, whereas options 2 to 6 each involve a coin toss that gives an
outcome of heads or tails with a 50–50 chance. The degree of risk-
iness of the lottery options increases in ascending order, with
option 6 being the riskiest. A farmer is considered as a risk taker
if he chooses option 6, otherwise he is risk averse. Overall, 69%
of the farmers in our sample are risk averse.
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Delayed adopters had lower baseline and
midline yields, costs, and profits per decimal
than never adopters, and they were less profit-
able than never adopters at midline. Delayed
adopters’ yields, costs, and profits surpassed
those of never adopters at endline, implying
that the decision to switch paid off.
The never adopters did not significantly dif-

fer from persistent adopters in terms of base-
line cost of production, but they had higher
profits compared to the persistent adopters
and delayed adopters. They were also at least
as well off (in baseline income terms) as the
other three groups of farmers, relatively older,
less educated, but with stronger memory, and
greater appetite for risk. They also had the
smallest land holdings among the four groups.
The cost of production was relatively low

and profits high for all groups in year 1 (mid-
line) compared to the baseline for all groups,
reflecting a good growing year. However, at
the end of year 1, the persistent adopters had
the same cost of production as at baseline.
The disadopters had significantly higher costs
of production in year 1 than delayed adopters.
Themidline rice profits per decimal from culti-
vating Boro rice were, if anything, slightly
higher for disadopters than for persistent
adopters. But the change in profits from base-
line to midline was almost the same for persis-
tent adopters and disadopters. It does not
appear that cross-sectional heterogeneity in
returns to SRI explains disadoption so much
as heterogeneity in the observed changes in
returns.
Disadoption (or delayed adoption) could

arise from unobserved shocks to farmers’ con-
ditions (e.g., to family labor availability or
external employment options). Our qualita-
tive observation, however, is that this reflects

how farmers respond to their lived experi-
ences. Building on our prior observation that
training conveys information that induces
endogenous selection on farmer unobserv-
ables, these findings similarly suggest that
experience—that is, learning by doing—does
the same, that farmer learn about the hetero-
geneity of returns conditional on unobserv-
ables through experience, leading to non-
trivial disadoption even of a technology that
yields significant average gains.

We further explore the possibility of hetero-
geneous returns based on exposure intensity
by interacting the treatment dummies in equa-
tion (1) with baseline (i.e., pre-treatment) (a)
production, (b) cultivable land, (c) household
size, (d) number of working adults in the
household, and (e) household income. SRI
might have differential effects based on farmer
skill manifest in baseline productivity (Barrett
et al. 2004), on land or labor availability or
income (per the pro-smallholder claims of
some SRI advocates), and labor as often been
cited as a bottleneck to (persistent) adoption
(Moser and Barrett 2006). As reported in
appendix tables A14 and A15, no consistent,
statistically significant heterogeneity exists in
SRI adoption or profitability along any base-
line observable dimension. We do find that
SRI exposure significantly reduces production
costs and revenues in proportion to baseline
rice output, consistent with the earlier hypoth-
esis that unobserved farmer skill affects per-
formance. As shown in appendix figures A8–
A11 and table A16, quantile regressions pro-
vide only a slight suggestion of heterogeneity
of impact according to baseline profitability.
No broad, general pattern of heterogeneous
treatment effects based on observables
appears in the data.

Table 6. SRI Adoption and Disadoption Transition Matrix

SRI Adoption end of
year 1

SRI adoption end of year 2

TotalDid not adopt Adopted

Did not adopt (Never adopters)
1465 (55.32%)

(U1=444, T1=308, U2=383,
T2=330)

(Delayed adopters)
314 (11.86%)

(U1=28, T1=101, U2=41,
T2=144)

1779
67.18%

Adopted (Disadopters)
313 (11.82%)

(U1=16, T1=186, U2=21,
T2=90)

(Persistent adopters)
556 (21.00%)

(U1=14, T1=208, U2=12,
T2=322)

869
32.82%

N
%

1778
67.15%

870
32.85%

2648
100%

Note: Estimates are based on sample households who were surveyed in both year 1 and year 2.
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Table 7 (columns 1–3) reports the multino-
mial logit regression estimates (per equation
4) associating the (delayed or persistent)
adoption or disadoption decision—relative to
the never adopter comparison group in V1
and V2 villages—to both the experimental
treatments and to baseline farmer characteris-
tics. The U1 treatment arm serves as the com-
parison group. Column 4 reports the logit
regression of disadoption conditional on year
1 uptake of SRI. Direct SRI training exposure
sharply increases the likelihood of ever trying
SRI. For T2 farmers, the effect is significantly
larger on the likelihood of persistent adoption
than of delayed adoption or disadoption. T1
farmers are far more likely to be persistent
adopters than delayed adopters but more
likely to adopt with a delay than are untrained
(U1 or U2) farmers. The higher a farmer’s
baseline production, the less likely he was to
adopt SRI with a delay and the greater the
likelihood that he disadopted. Conversely,
the higher a farmer’s baseline costs, the more
likely he was to adopt at midline. Older
farmers and those with higher baseline income
were much less likely to become persistent
adopters and more likely to disadopt condi-
tional on midline use of SRI. By contrast,
farmers with more land, younger and lower
income were more likely to become persistent
adopters. Overall, these estimates are consis-
tent with the simple descriptive patterns found
in table 6.45 Farmers are far more likely to
experiment with SRI and are more likely
to continue trying it the more exposed they
have been to the method through training.
But although SRI appears to generate real
productivity gains on average, farmers make
adoption and disadoption decisions consistent
with their personal experience of gains
(or not) from their own experimentation.
They do not appear, however, to treat experi-
mentation as a means of learning how best to
use the technology, so that they improve per-
formance via learning by doing.

Implications for Learning Models in the
Technology Adoption Literature

A striking contrast exists between the strong
impact of SRI training we observe at the
extensive margin on adoption—as farmers go
from complete unfamiliarity with the method
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45We estimate the same models using only the subsample of
farmers who received training and find similar results.
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to some exposure—and the modest-to-
negligible effects we observe at the intensive
margin, in the performance differences among
treatment arms based on exposure intensity.
Increased SRI training exposure has a big
impact on adoption rates but beyond the low-
est level of indirect exposure, more training
does not consistently and significantly boost
performance with the innovation. Given non-
random selection into uptake based on unob-
servables, we find training intensity exposure
mainly generates a diffusion scaling effect.
Meanwhile, non-adopters likewise seem to
have learned something from training expo-
sure as their performance improves as well.
Farmers appear to learn from their own expe-
rience, as manifest in relatively high disadop-
tion rates. Farmers seem to sort between
adoption or non-adoption, and between con-
tinued or discontinued use after initial uptake,
in a highly rational way, as manifest, for exam-
ple, in the absence of any stochastic domi-
nance ordering between adopters and non-
adopters within any treatment arm.
These findings have implications for how

economists understand learning in the context
of technology adoption in developing coun-
tries. In particular, they seem inconsistent with
core predictions of workhorse target-input
models of technology adoption but are consis-
tent with newer multi-object learning models,
with potentially important implications for
the study of the adoption of agricultural (and
other) technologies.
A rich literature has followed the path-

breaking work of Foster and Rosenz-
weig (1995), which builds on prior
information theoretic work on learning
(Wilson 1975; Jovanovic and Nyarko 1995) to
model a producer choosing among multiple
technologies that exhibit uncertain and endog-
enous profitability. As farmers accrue more
observations of a new technology that, if used
correctly, is expected to be more profitable
than the incumbent practice—for example,
an improved seed, a new fertilizer – the addi-
tional information helps them steadily
approach optimal expected practices, leading
to consistently higher expected profits and
therefore well-being. Each additional observa-
tion of an application of the new technology,
whether by the farmer himself—that is, learn-
ing by doing—or by other farmers, extension
agents, or agro-input dealers—that is, learning
from others—creates another opportunity to
learn and thereby to make better, more profit-
able production decisions. A farmer optimally

adopts the new technology only once he has
learned enough that the expected profitability
of adopting the new technology, including the
future returns from learning by doing, exceeds
that of sticking with the incumbent, traditional
practices. As further information arrives
through his own experience with the technol-
ogy, he continues to learn and thereby further
improves his expected performance. The prof-
itability of the new technology is thus endoge-
nous to farmer learning and is itself the single,
performance-based object of that learning.

A considerable literature has used this con-
ceptualization, with the optimal technology
use—most commonly summarized by
profits—as the unique object of learning. For
example, Conley and Udry (2010) model sto-
chastic profits as the object of Ghanaian pine-
apple farmers’ learning as they seek to
optimize fertilizer application. Farmers learn
as new information arrives from a farmer’s
own experiments with fertilizer and from
observing others’ practices and outcomes, and
they respond by adjusting fertilizer application
rates. As they learn more, information-driven
adjustments lead to higher profits.

The target input model carries two directly
testable implications. First, the more farmers
learn, the better they should perform with
the new technology, on average. To quote Fos-
ter and Rosenzweig (1995, p. 1178), “the prof-
itability of any new technology grows over
time as knowledge accumulates.” One should
be able to reject the null hypothesis that
profit—or any performance-based object of
learning, for example, crop yield—is invariant
with respect to a farmers’ exposure to the tech-
nology in favor of the one-sided alternate
hypothesis that performance improves with
learning about the technology. We consis-
tently fail to reject that null in our data.

The second prediction is that a farmer should
use a new technology if and only if he has
learned enough about how to apply the new
technology optimally such that he enjoys posi-
tive expected profits from adoption, up to the
discounted future value of gains from subse-
quent learning by doing. Once a farmer has
adopted, subsequent learning by doing should
only further increase the expected profitability
from the technology, implying that the farmer
should never disadopt unless there is some
shock to other covariates relevant to profitabil-
ity. Indeed, Conley and Udry (2010, p. 62)
expressly state that farmer “movements from
positive to zero fertilizer use are mistakes.”
We find high rates of SRI disadoption,
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however, despite strongly positive and statisti-
cally significant expected profit gains and no
significant heterogeneity in estimated returns
conditional on observables that could generate
disadoption. This finding likewise seems incon-
sistent with target-input models of learning.

Overall, our findings suggest that intensity of
SRI training exposure impacts learning about
whether to use the method far more than it does
how best to use the technology. These findings
are supported by detailed analysis of how inten-
sity of SRI training exposure affects farmer
adherence to the precise principles BRAC
extension agents communicated in the training,
as reported in tables A17 and A18, and the
accompanying appendix text. Few farmers com-
mit much land to SRI, and adherence to princi-
ples as taught is limited and does not adjust
much, if at all, with additional experience with
or exposure to SRI from midline to endline.

As farmers increasingly confront more com-
plex technologies that, like SRI, may require
learning about multiple objects simultaneously,
newer, multi-object learning models may prove
more suitable than the workhorse target-input
model. These models draw a key distinction
between learning whether a new technology is
likely to boost performance versus learning
how best to employ that same technology so
as to boost performance (Fafchamps et al,
2016; Banerjee et al. 2019; Nourani 2019;Maer-
tens, Michelson, and Nourani 2021). Learning
whether it is worthwhile to try a new technol-
ogy may be less costly than is learning how to
use the technology to maximal effectiveness.

Indeed, this is the fundamental problem of
marketing. Sales agents aim to provide enough
information to convince a prospective customer
to try a product. The objective is not necessarily
to optimize the customer’s experience of the
new technology. Similarly, agricultural exten-
sion agents directed (and rewarded) to pro-
mote uptake of a new technology that is, on
average, superior provide information that
helps induce farmer uptake. Butmore exposure
to that same information does not necessarily
improve farmer performance with the new
technology nor induce farmers to adjust their
practices to optimize performance. This distinc-
tion between single object learning about per-
formance and multi-object learning matters to
the design of effective agricultural information
systems, such as extension services.

A related thread of this literature further
hypothesizes that in the face of costly learning,
agents might fail to improve their performance
with a technology because they do not pay

attention to the right pieces of available
information. Such “rational” or “selective” inat-
tention models (Gabaix et al. 2006; Hanna,
Mullainathan, and Schwartzstein 2014;
Schwartzstein 2014; Ghosh 2016; Wolitzky
2018; Gabaix 2019) generate a prediction simi-
lar to multi-object learning models. Increased
information access may favorably impact
uptake but not performance. Having learned
that a new technology is, on average, more pro-
ductive than one’s traditional practice, a farmer
might rationally confirm that belief with further
information, doubling down on the initial adop-
tion choice but not paying attention to other
available data that might help him improve his
performance with the technology.
For example, Hanna, Mullainathan, and

Schwartzstein (2014) study Indonesian sea-
weed farmers who optimize with respect to
some of many production choice variables
but underperform by failing to notice and
adjust a key technology feature. As with SRI,
seaweed farmers face a suite of multiple vari-
ables that matter to performance and might
not be able, or willing, to pay attention to them
all. In a world of selective inattention, greater
farmer exposure to information may reinforce
beliefs that lead farmers to try a new practice,
like SRI, yet farmers might not pay attention
to key information as to how they might
improve their use of the new technology, per-
haps especially if they enjoy (perhaps subopti-
mal) gains from the new practice. This can
result in satisficing-like behavior.
We cannot directly test whether Bangladeshi

rice farmers pay attention to particular pieces of
information or not. But we do find that practices
and performance—as distinct from adoption—
respond modestly, often insignificantly, to addi-
tional information beyond the extensive margin
of initial exposure to SRI training. We cannot
identify the right learning model in our data.
But our findings reinforce the prospective
importance of emergent models of multi-object
learning and selective or rational inattention to
processes of agricultural development.46

The distinction between single and multi-
object learning models is a subtle but important
one. The simple reason is that promoting

46Wolitzky (2018) shows that for outcome-improving innova-
tions, such as the one we study, adoption increases the greater
one’s exposure to (i.e., data on) the new technology. He also dem-
onstrates how rational agents can fail to learn from more observa-
tions of cost-reducing technologies. That latter result is
superficially consistent with our empirical findings, except that
the technology we study is demonstrably outcome improving and
cost increasing.
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diffusion of a technology differs from advancing
optimal performance as the method diffuses.
Extension services in the developingworld com-
monly organize (and are evaluated and com-
pensated) simply around diffusion of new
methods rather than around farmers’ perfor-
mance in employing new methods. That
approachworks in a target-inputworld, inwhich
learning sufficient to induce uptake will neces-
sarily lead to continued learning and further
productivity and profitability improvements.
But in a world of multi-object learning, rational
inattention, or both, the learning that induces
uptake may not generate satisfactory, sustained
productivity or profitability with the innovation.
Farmers can then persist in implementation
errors or even disadopt when disappointed by
their (perhaps suboptimal) performance with
the new technology. Our evidence strongly sup-
ports the value of further research on multi-
object learning among farmers.

Conclusions

Although the system of rice intensification
(SRI) has now spread to more than fifty coun-
tries, the existing evidence on the purported
gains from SRI previously relied exclusively
on observational data without especially rigor-
ous causal identification. Partly for that rea-
son, claims of gains from SRI have remained
contentious within the international agricul-
tural research community. This paper offers
the first SRI impact evaluation based on a
large-scale, multi-year RCT.
We find that providing Bangladeshi farmers

relatively brief training on the key principles
and practices of SRI induces significant farmer
adoption of the method in villages previously
unexposed to the technology. The extent of
SRI adoption increases with the intensity
of exposure to SRI training. Significant spill-
overs arise from training. Untrained farmers
in training villages are significantly more likely
to adopt SRI than are farmers in pure control
villages where no training took place. Farmers
directly trained are nonetheless four to five
times more likely to adopt SRI than untrained
farmers within the training villages, indicating
that farmers learn more from extension agents
than from each other.
Our findings strongly support the extant

observational evidence on SRI’s impacts. The
ITT estimates of SRI training’s impacts on rice
yields and profits are statistically significant

and very large: 14%–17% and 22%–31%,
respectively. The LATE estimates of the
impacts of SRI training on trainees who adopt
SRI are significantly larger. We also find posi-
tive and statistically significant gains in multi-
ple household well-being measures among
farmers in training villages.

Yet SRI disadoption rates are also high,
likewise confirming key findings of prior
observational studies. Roughly one-third of
the farmers adopt SRI, and about 60% of
early adopters continue the practice a year
later, whereas almost identical numbers of
farmers adopted SRI with a one-year lag as
disadopted after an initial year’s experience
with the method. Disadoption patterns
directly reflect pre-treatment conditions
and post-adoption experiences, with
farmers who did well prior to the introduc-
tion of SRI, or who saw little or no improve-
ment from SRI in their first season’s trial, far
more likely to disadopt.

These disadoption patterns, and the apparent
direct impact of SRI training on the performance
of non-adopters within treatment arms, are con-
sistent with the apparent non-random selection
into SRI adoption conditional on SRI training
exposure intensity and farmer- or farm-specific
unobservables. The main effect of greater expo-
sure to SRI training occurs at the extensive mar-
gin, in scaling up the number of farmers
practicingSRIrather thanat the intensivemargin,
in improvingfarmers’performancewithSRI,or in
increasing adherence to the principles taught by
extension agents. The result is seemingly rational
self-selection into SRI use, both in cross-section,
comparing adopters and non-adopters within a
given period, and over time, looking at patterns
of delayed adoption or disadoption.

These results may help settle intense
debates around SRI as a tool for boosting rice
productivity and rice farmers’ well-being in
the Global South. But our findings also raise
several important issues, including about how
economists conceptualize and model farmer
learning about new technologies in the adop-
tion process, even for practices that appear to
deliver considerable productivity and welfare
gains.

Supplementary Material

Supplementary material are available atAmer-
ican Journal of Agricultural Economics online.
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