Abundances 000000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars?	Winds 000000
	م ما بر سر ال مر رسل		autoring of a	مانير برمير مالخ مترجع	

Unveiling the chemical origin of stars through nucleosynthetic and observational studies Monash University, Melbourne

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

February 2016

The Dark Cosmology Centre, University of Copenhagen

Camilla Juul Hansen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars? 0000000000	Winds 000000

Outline

- Cool stars are the only astrophysical objects in which we can conduct a detailed and precise abundance study of up to $\sim\!70$ elements
- Stellar parameters, abundances, and assumptions
- Tracing astrophysical formation sites using stellar abundances
- Comparing to AGB & (EC)SN yields
- CEMP stars
- How many processes are needed in the early Universe?

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances •0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

Stellar spectra and equivalent width (W)

The Dark Cosmology Centre, University of Copenhagen

Unveiling the chemical origin of stars through nucleosynthetic and observational studies

Camilla Juul Hansen

Abundances 0●000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

Abundance - W - log gf relation; the impact of stellar parameters and atomic data

$$\log W = \log(const) + \log(A) + \log(gf\lambda) - \theta\chi - \log(\kappa)$$
 (1)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

Two ways of deriving abundances:

- Equivalent width and synthetic spectra
- We need to know the stellar parameters: Temperature, gravity, metallicity and velocity (small scale)
- Model atmosphere (e.g. MARCS) and synthetic spectrum code (e.g. MOOG)
- Assumptions: 1D, LTE one local temperature, black body radiation (Planck), Maxwellian velocity distribution, Boltzmann and Saha describe excitation and ionisation
- Line lists with atomic and molecular information (excitation potential and log gf)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

Temperature, gravity and metallicity

- The color of a star depends on two factors: Temperature and metallicity
- Color (V-K) calibration Alonso et al. 1999, Casagrande et al. 2010: $T=a+b(V-K)+c(V-K)^2+d(V-K)[Fe/H]+\ldots.$
- Excitation potential based on Fe lines (NLTE sensitive)
- Parallax/distance (π) e.g., Nissen et al. 1997: $log \frac{g}{g_{Sun}} = log \frac{M}{M_{Sun}} + 4 \frac{T}{T_{Sun}} + 0.4V_o + 2log(\pi) + corrections$
- Ionisation equilibrium from Fe lines (NLTE sensitive)
- Metallicity ([Fe/H]) from equivalent widths of Fe lines

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000					

A comparison of two cluster (47Tuc) stars to AGB yields

Figure: Comparing two seemingly similar stars to each other and AGB yields from FRUITY; Cordero (CJH) et al. 2015, Cristallo et al. 2011

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Stellar spectra, abundances, and [Fe/H]

$$[\mathsf{Fe}/\mathsf{H}] \equiv \log(N_{\mathsf{Fe}}/N_{\mathsf{H}})_* - \log(N_{\mathsf{Fe}}/N_{\mathsf{H}})_{\odot}$$

(2)

500

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 000000●0000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars? 0000000000	Winds 000000
	F				
		$\neg \cap M$	$\mathcal{N}_{\mathcal{N}}$		
		V V	V VV		
	0.0 <u>E [Fe/H]</u> = - 4128	4129	4130 4131	4132	
		V V	Eu		
	0.2 0.2 0.0 [Fe/H]= -	2		V	
	4128	4129	4130 4131	4132	
	1.0 0.8		Eu		
	0.4			VE	
	0:0 <u>E [Fe/H]= -</u> 4128	4129	4130 4131	<u>∃</u> 4132	
		N N	Vavelength [A]		
					and the second
	Figure: Observ	ational abui	ndance biases (н	ansen et al, 2014b)	Relation to the
					•
			4 🗆		= nar

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000●000	Assumptions	n-captures 0000	2. r-process	The oldest stars? 0000000000	Winds 000000

Observable elements - with high-resolution instruments

58 Ce	-59 P	60 No	en Pm	62 Sm	Eu	64 Gd	65 Tb	66 Dy	67 Ho	68	69 Tm	70 Yb	71 La
90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Figure: Blue: ground based observations, green: space, yellow: isotopic abundances

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
00000000000					

Table 1. LTE abundances in CS 31082-001 as derived from previous works, from the present paper, and our adopted final abundances.

El.	Z	A(X)	A(X)	Å(X)	A(X)	A(X)	[X/Fe]
		(I)	(2)	(3)	This Work	adopted	adopted
Ge	32			(-)	+0.10	$+0.10\pm0.21$	-0.55
Sr	38	+0.72				$+0.72\pm0.10$	0.73
Y	39	-0.23		_	-0.15	-0.19 ± 0.07	0.53
Zr	40	+0.43	-		+0.55	$+0.49\pm0.08$	0.84
Nb	41	-0.55			-0.52	-0.54 ± 0.12	0.97
Mo	42	0.000			-0.11	-0.11 ± 0.13	0.90
Ru	44	+0.36		-	+0.36	$+0.36\pm0.12$	1.45
Rh	45	-0.42			-0.42	-0.42 ± 0.12	1.39
Pd	46	-0.05		-	-0.09	-0.09±0.07	1.18
Ag	47	-0.81			-0.84	-0.84±0.21	1.15
Ba	56	+0.40	-			$+0.40\pm0.14$	1.16
La	57	-0.60	-0.62			-0.62 ± 0.05	1.17
Ce	58	-0.31	-0.29	_	-0.31	-0.29±0.05	1.03
Pr	59	-0.86	-0.79			-0.79±0.05	1.38
Nd	60	-0.13	-0.15		-0.21	-0.15±0.05	1.33
Sm	62	-0.51	-0.42		-0.42	-0.42 ± 0.05	1.51
Eu	63	-0.76	-0.72		-0.75	-0.72±0.05	1.69
Gd	64	-0.27	-0.21		-0.29	-0.21 ± 0.05	1.61
Tb	65	-1.26	-1.01		-1.00	-1.01 ± 0.05	1.64
Dv	66	-0.21	-0.07	_	-0.12	-0.07±0.05	1.73
Ho	67	-	-0.80	_		-0.80 ± 0.06	1.62
Er	68	-0.27	-0.30		-0.31	-0.30 ± 0.05	1.67
Tm	69	-1.24	-1.15		-1.18	-1.15 ± 0.05	1.64
Yb	70	_	-0.41			-0.41 ± 0.11	1.66
Lu	71	1.1			-1.08	-1.08 ± 0.13	1.73
Hf	72	-0.59	-0.72		-0.73	-0.72 ± 0.05	1.33
Ta	73	-	_	-	-1.60	-1.60 ± 0.23	1.47
W	74				-0.90	-0.90 ± 0.24	0.92
Rc	75				-0.21	-0.21 ± 0.21	2.45
Os	76	+0.43	100	+0.18		$+0.18\pm0.07$	1.72
Ir	77	+0.20	-	+0.20		$+0.20\pm0.07$	1.72
Pt	78	_	_	+0.30	_	$+0.30\pm0.23$	1.46
Au	79	_	-	-1.00		-1.00 ± 0.34	0.89
Pb	82	-		-0.65	_	-0.65 ± 0.19	0.25
Bi	83	_		-0.40		-0.40 ± 0.33	1.83
Th	90	-0.98	_			-0.98 ± 0.13	1.84
U	92	-1.92	_	_		-1.92 ± 0.17	1.68

References. (1) Hill et al. (2002), (2) Sneden et al. (2009), (3) Barbuy et al. (2011).

Camilla Juul Hansen

Record holding star - CS31082-001 Abundances

of almost 70 elements,

Siqueira Mello et al. 2013

37 of which are heavy elements.

The Dark Cosmology Centre, University of Copenhagen

The most metal-poor (oldest) RR Lyrae stars known C.J.Hansen +2011a

- α-elements serve as tracers of SN Mass (Kobayashi et al. 2006)
- The α/odd-Z elements provide information on, e.g., the explosion energy
- The amounts of Sc, Ti and Zn can be linked to Y_e
- In-/complete Si-burning elements may provide clues on the T_{peak}

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000					

A peculiar high-velocity RR Lyrae star $\rightarrow V_{los} \sim -400$ km/s – A bulge or halo star? Kicked from a SN Ia or stripped from an accreted dwarf galaxy?

Figure: CJH et al. 2016b, subm. to A&A: [Mg/Fe] and velocity of the old but [Fe/H]=-0.9 RR Lyrae star.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars? 000000000	Winds 000000

Another record holding early Universe star: Keller et al. 2014: [Fe/H] < -7.1 - origin SN II of M $\sim 60M_{\odot}$ Bessel et al. 2015 (3D, NLTE) \rightarrow [Fe/H] < -7.5 & $40M_{\odot}$ SN

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
	0000				

Assumptions: LTE vs NLTE - the impact on stellar parameters

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
	0000				

Assumptions: LTE vs NLTE - Strontium

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000		0000	0000	000000000	000000

Chemical evolution of Sr C.J.Hansen et al. 2013

- 1) Yields from faint EC SN II (Wanajo et al. 2011 B. Mueller's talk)
- 2) Yields from ν -driven winds (Arcones & Montes 2011)
- 3) Yields from massive fast rotating stars (Frischknecht et al. 2012)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions 000●	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

The uncertain yields can cover a large range of stellar abundances. Despite uncertainties we can still make quantitative predictions such as:

- Faint EC SN are well constrained due to the selfconsistent 2D models and match the observations fairly well (despite slight overpredictions).
- ν -driven winds are promising but need to be better constrained.
- Massive stars may facilitate an early s-process which creates small amounts of Sr.

The Dark Cosmology Centre, University of Copenhagen

Unveiling the chemical origin of stars through nucleosynthetic and observational studies

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Unveiling the chemical origin of stars through nucleosynthetic and observational studies

Camilla Juul Hansen

r-poor vs r-rich stars: HD122563 & CS31082-001

(Honda et al. 2007, Hill et al. 2002 & C.J.Hansen et al. 2012)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000	0000	0000	0000	000000000	000000
Neutron-capture Proce	esses				

Selected elements

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

 Abundances
 Assumptions
 n-captures
 2.
 r-process
 The oldest stars?
 Winds

 0000000000
 0000
 0000
 0000
 0000
 00000
 00000

 Neutron-capture Processes

Galactic chemical evolution of Mo and Ag

$$[Fe/H] \equiv \log(N_{Fe}/N_{H})_{*} - \log(N_{Fe}/N_{H})_{\odot}$$
(3)

Figure: C.J.Hansen et al. 2014a, 2012, Comparison samples: Roederer et al. 2014, Peterson 2013, Johnson&Bolte 2002, Crawford et al. 1998

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

500

Abundances A	Assumptions	n-captures	r-process	The oldest stars?	Winds
000000000000000000000000000000000000000	0000	0000	0000	000000000	000000
Sr - Eu					

Correlation - Anticorrelation

If two elements are created by the same process, they most likely grow in the same way (correlate).

Elements (38 < Z < 50) are generally found to anti-correlate with

Z > 56 elements (Burris et al, 2000, Montes et al, 2007, Francois et al 2007)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Weak/main s/r-process elements - Sr (85% s), Ba (81% s) and Eu (94% r) Arlandini et al. 1999; C.J.Hansen et al. 2012

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 00000000000	Assumptions 0000	n-captures 0000	2. r-process ○○●○	The oldest stars? 0000000000	Winds 000000
Sr - Eu					
-					

Ru not main s or main r (C.J.Hansen et al. 2014a)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000
Sr - Eu					

Two r-processes

Ru, Pd, and Ag are formed by the weak r-process

- The main r-process creates the heaviest elements (Z >56) in a very robust way
- The 'weak' r-process creates the intermediately heavy (37 < Z <50) range uncertain
- Possible formation sites are neutron star (NS) mergers (main r), and ECSN, $\nu\text{-}driven$ winds (weak r)

The Dark Cosmology Centre, University of Copenhagen

Camilla Juul Hansen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000	0000	0000	0000	•00000000	000000

Carbon Enhanced Metal-Poor stars (CEMP stars) – why care? Between 40% and 100% of EMP stars are CEMP stars!

The $\sim 10 \text{ most metal-poor stars known}$ Keller et al. 2014, T.T.Hansen (CJH) et al. 2015

and C-normal: Caffau et al. 2011

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

CEMP stars

See, e.g., Beers & Christlieb 2005, Aoki et al. 2007, Masseron et al. 2010, Lugaro et al. 2012, Bisterzo 2010,2011, 2012

- Binary fraction increasing with decreasing metallicity.
- CEMP-no, CEMP- $r \sim 18\%$ & CEMP-s almost all (> 80%)

Lucatello et al. 2005, Lee et al. 2013, Starkenburg et al. 2014, Abate et al. 2015a,b,

T.T.Hansen et al. 2015b,c

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
00000000000		0000	0000	00●0000000	000000

CEMP-no and CEMP-s stars - unmixed dwarfs (Spite et al. 2013)

Fig. 14. Abundance of carbon A(C) vs. [Fe/H] in dwarfs and turnoff CEMP stars, following Sivarani et al. (2006, their Table 4), [orange open squares]), Frebel et al. (2005, 2007) [blue open squares], Thompson et al. (2008) [green open circle], Aoki et al. (2009) [blue open diamonds], Behara et al. (2010) [full orange circles], Placco et al.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
				00000000	

CEMP-no and CEMP-s stars - Extremely/Ultra metal-poor stars (Bonifacio et al. 2015)

Fig. 6. The carbon abundances A(C) of CEMP stars as a function of [Fe/H]. The stars in the present paper and in Caffau et al. (2013a) are shown with big and small circles, respectively. The other turn-off stars come from the literature (Sivarani et al. 2006, Freebel et al. 2005, 6x06; Thompson et al. 2008; Ax06 et al. 2008; Behar at et al. 2019; Masseron et al. 2010, 2012; Yong et al. 2013; Chone et al. 2013; Lit et al. 2015). The CEMP-no

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 00000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 000000

X-shooter CEMP stars (C.J.Hansen et al. 2016)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
				000000000	

CEMP-s and -no stars - different from EMP C-normal stars This is in agreement with the recent findings $_{\rm Bonifacio\ et\ al.\ 2015}$

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 00000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars? 000000●000	Winds 000000

CEMP-s vs -no stars - and C-normal stars

Figure: <[Ba/Sr]> ~ 0.5 for $\sim 2 M_{\odot}$ AGB stars while <[Ba/Sr]> ~ -0.5 matches GCE prediction from spinstars (0 to -1.5). c.J.Hansen et al. 2016

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars? 0000000●00	Winds 000000

GCE of CEMP and C-normal stars Predictions: Cescutti 2008, 2013

Figure: An r-process + spinstars ([Ba/Sr] ~ 0 to -1.5). C.J.Hansen et al. 2016

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

500

10

$$Y_{calc}(Z) = (C_H Y_H(Z) + C_L Y_L(Z)) * 10^{[Fe/H_{35}]}$$

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances	Assumptions	n-captures	2. r-process	The oldest stars?	Winds
0000000000		0000	0000	000000000	o●oooo
Winds					

Figure: Robustness of the processes! (C.J.Hansen et al. 2014b)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars? 000000000	Winds oo●ooo
Winds					

Figure: Differences in Sr and Ba (C.J.Hansen et al. 2014b)

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars? 000000000	Winds 0000●0
Winds					

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D).
- Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars?	Winds 0000●0
Winds					

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D).
- Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process 0000	The oldest stars?	Winds 0000●0
Winds					

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D).
- Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 0000●0
Winds					

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D).
- Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 0000●0
Winds					

- We can use stellar abundances to constrain the nuclear synthetic formation processes, but it is important to know how the 1D, LTE assumptions affect these abundances.
- Some yield predictions are still very uncertain.
- The formation of some CEMP stars remains a puzzle.
- Outlook: 3D, NLTE corrected heavy element abundances. Better constrained yields based on self-consistent exploding SN models (3D).
- Large homogeneously analysed samples and more complete abundance patterns - not just for GCE of single elements - but the surveys can be used to find important targets for detailed blue follow-up observations.

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

Abundances 0000000000	Assumptions	n-captures 0000	2. r-process	The oldest stars?	Winds 00000●
Winds					

Thank you for listening

Finally thanks to my collaborators: A. C. Andersen, S. Andreivsky, A. Arcones, N. Christlieb, C. Fröhlich,

F. Montes, H. Hartmann, M. Bergemann, B. Nordström, P. Jofre, the 4MOST team, LSW & others. =

Camilla Juul Hansen

The Dark Cosmology Centre, University of Copenhagen

500