Metal-poor stars towards the bulge: a mixed bag of chemical enrichments

Andreas Koch

University

A. McWilliam, G.W. Preston, I.B. Thompson (Carnegie Observatories)

Galactic Components

M104 (HST) - unbarred spiral with ca. 30\% of MW extent
Disk(s)
Halo: stars, globular clusters, satellite galaxies, dark matter Central bulge (bars)

Halo formation

Λ CDM: hierarchical halo formation via accretion of dark matter dominated fragments.

Metal-poor halo stars were probably donated from satellite accretion.

Some stars in the dwarf satellites show chemical imprints from individual SNe (\rightarrow Pop III).
\rightarrow clues to the earliest enrichment phases.

Bullock \& Johnston (2005)

Bulges

-25% of the light in the local universe comes from bulges.

- Inhomogeneous class of objects with different formation channels:

1) Spheroidal ("classical") bulges form rapidly via early mergers. Bulge forms before disk.
2) Pseudo-bulges / bars evolve from a buckling instability over longer timescales (>1 Gyr).

(Galactic) bulge formation

- The bulge is old and metal rich, yet very complex (e.g., McWilliam \& Rich 1994; Clarkson et al. 2008; Bensby et al. 2013).
- Dynamical formation, where bulge $==$ bar (e.g., Shen etal. 2010; Wegg et al. 2015) ? Prominent X-shape (Mcwilliam \& Zoccali 2010)
- No evidence for kinematic substructures (streams), although hyper-velocity stars exist.
(e.g., Howard et al. 2008; Kunder, AK, et al. 2012; Kunder et al. 2014, 2015;
C.J. Hansen, AK, et al. subm.).

Bulge vs. halo formation

- Oldest stars with $[\mathrm{Fe} / \mathrm{H}]<-3(z>6-10)$ are predicted on tight orbits in the innermost halo, due to inside-out nature of CDM: "In the bulge, not of the bulge" (Tumlinson 2010).
- E.g., ARGOS bulge survey: non-rotating, metal-poor tail; attributed to the inner halo ($\mathrm{R}_{\mathrm{GC}}<3.5 \mathrm{kpc}$; Ness et al. 2013)

To date: 55 stars between
-2 and -4 dex in surveys of several 10000s stars
(Ness et al. 2013; García Pérez et al. 2013;
Howes et al. 2014, 2015; Casey \& Schlaufman 2015, AK et al. 2016)

Target selection

- EMP candidates from narrow-band Ca K photometry (20 Å line, 200 Å continuum, at $3933 \AA$ Å).
- $T_{\text {eff }}$-sensitivity from BVI imaging.
- Calibrated against known EMP stars.

Beers \& Christlieb (2005)

Target selection

- Problems: CR hits, diffraction spikes, TiO in cold M -stars.
- \rightarrow low-res (R~2000) follow-up of ~150 stars (WFCCD grism)
\rightarrow high-res (R~45000) follow-up of 8 stars (MIKE @Magellan)

Abundance results

- One metal-rich (Solar) bulge star
- The majority of (23) species for the rest of the stars is compatible with halo abundances!

Metal-poor Halo (Roederer et al. 2014)

Bulge (Johnson et al. 2012, 2014)

Metal-poor "bulge" (Casey \& Schlaufman 2014; Howes et al. 2014)
r-process enhanced bulge (Johnson et al. 2013)
This work (AK et al. 2016)

Normal halo-(like) stars ?!

- The majority of (23) species for the rest of the "bulge" stars is compatible with halo abundances and points to standard enrichment processes !

AK et al. 2016, A\&A, in press (arXiv:1511.01490)

Mean abundances of all stars compared to Solar r/s pattern
(Simmerer 2004).

HD 122563, weak r-process
star (Honda 2006)

Some special guests

- one CEMP- $s([\mathrm{Fe} / \mathrm{H}]=-2.5,[\mathrm{C} / \mathrm{Fe}]=1.4,[\mathrm{Ba} / \mathrm{Fe}]=1.3)$
- one Ba-star ($[\mathrm{Fe} / \mathrm{H}]=-1.5,[\mathrm{C} / \mathrm{Fe}]=0.4,[\mathrm{Ba} / \mathrm{Fe}]=1.3$)

No evidence for binarity (no velocity variations, but no representative time coverage); abundances indicate origin of C-enhancement from AGB transfer.

First contenders of this class towards the bulge.

Bonifacio et al. (2015); C.J. Hansen et al. (2016)

Bulge CEMP-s and CH

- Ba-star: High Rb/Zr ratio (0.99), [hs/ls] = 0.41, low La, Y
- Low-metallicity ($\mathrm{Z}=0.0001$ - 0.0003) AGB models indicate ~4 \mathbf{M}_{\odot} progenitor for Ba-star, ~1.3 \mathbf{M}_{\odot} for CEMP-s.
- $[\mathrm{Fe} / \mathrm{H}]$ of -2.5 coincident with peak of halo-CEMP MDF

$[\mathrm{Fe} / \mathrm{H}]=-1.5$
F.R.U.I.T.Y. (Cristallo et al. 2011)

$[\mathrm{Fe} / \mathrm{H}]=-2.5$

No Population III

- Regular (Solar) [Sc/Fe] values are in contrast to predicted depletions in Sc from Pop III nucleosynthesis.
- Cf. observations of ultrafaint dwarf spheroidals
(AK et al. 2008; Simon et al. 2010)

Low-Sc was suggested in bulge (Casey \& Schlaufman 2015)
\rightarrow Localized enrichment?
\rightarrow Low-numbers?

Metal-free, high-explosion model of a $30 \mathrm{M}_{\odot}$ star (Heger \& Woosley 2010). Or $10 \mathrm{M}_{\odot}$ with less dilution

Bulge or halo? - Location

- Location indicates three members on the far side of the X.
- Sample contains stars out to $R_{G c} \sim 6 \mathrm{kpc},|\mathrm{z}| \sim 3 \mathrm{kpc}$. Combined with the regular chemistry this conforms with an overlapping inner halo, in line with Tumlinson (2010).

\leftarrow Model of smooth component
\leftarrow Model of X-shaped bulge component

Metal rich star

Bulge or halo? - Kinematics

- Often, metal-poor "bulge" stars found to be on tight or eccentric orbits (Howes et al. 2014, 2015; Casey \& Schlaufman 2015).
- Usually based on various sets of proper motions (SPM4, UCAC4, OGLE), which can grossly disagree!

Bulge or halo? - Kinematics

- Often, metal-poor "bulge" stars found to be on tight or eccentric orbits (Howes et al. 2014, 2015; Casey \& Schlaufman 2015).
- Usually based on various sets of proper motions (SPM4, UCAC4, OGLE), which can grossly disagree!

Summary

- We detected "metal-poor" stars towards the "bulge", down to -2.7 dex.
- No evidence for Pop III enrichment (normal Sc/Fe), nor extraordinarily massive AGB.
- First CEMP and Ba-stars in that population.
- Kinematics are inconclusive due to uncertain proper motions.
\rightarrow Caution with a true, metal-poor bulge - how to distinguish from halo stars passing through ?! Yet consistent with the notion that anicent objects ($z>10$) are to be found in the central regions of the Milky Way.
- Improved target selection methods desirable, e.g., using (2MASS+WISE) IR and optical colors (Schlaufman \& Casey 2014).

Summary

