

Electron Capture Supernovae & Super-AGB Star Workshop

Monash University, February 2016

KEY ROLE OF SNIA & SNII FOR GALACTIC CHEMICAL EVOLUTION OF *P*-NUCLEI

Travaglio C. INAF Astrophysical Observatory Turin (Italy)

Collaborators: [Seitenzahl I.](#) [Roepke F.](#) [Heger A.](#) [Pignatari M.](#)
[Bisterzo S.](#)

Computer resources

*The solar abundances of the nuclides, as a function of mass number, showing the p-, s- and r-process contributions.
Cameron 1998*

'The first remarkable feature of the p-process is the scarcity of the efforts devoted to its understanding. Although about 50 years of nuclear astrophysics research, the number of articles devoted to their understanding remains inferior to the 35 nuclides traditionally classified as p-nuclides'
(Arnould & Goriely 2003)

γ -process

νp -process

(Wanajo *et al.* 2011;
Arcones *et al.* 2012)

Figure 1. Snapshot of the convective region of the 2D simulation of an ECSN at 262 ms after core bounce with entropy per nucleon (s ; left) and Y_e (right).

Figure 2. Ejecta masses vs. Y_e for the 1D (blue) and 2D (red) explosion models. The width of a Y_e -bin is chosen to be $\Delta Y_e = 0.005$.

- SNIa: the role of γ -process in multi-D (comparison between 2D and 3D)
- SNII+ECSN: the role of γ -process and what is predicted by vp-process
 - Interplay of different sources in galactic chemical evolution

C.Travaglio - INAF Turin Italy
Monash University, February 2016

2D model DDT-a, 51200 tracers

(Travaglio et al. 2011)

3D N100,
1 million tracers
(Seitenzahl et al. 2013)

s-process nucleosynthesis during accretion phase

“Accreting white dwarfs as an alternate or additional source of s-process isotopes” (Iben, ApJ 243, 1981)

C.Travaglio - INAF Turin Italy
Monash University, February 2016

^{113}In , ^{115}Sn are p-only isotopes?

r-process contribution

(Dillmann *et al.* 2008, Nemeth *et al.* 1994)?

^{138}La produced by neutrino
(Woosley *et al.* 1990)

^{152}Gd has large s-process contribution
at solar composition

(Arlandini *et al.* 1999, Käppeler *et al.* 2011)

^{180}Ta at least 50% contribution from s-process
at solar composition (Mohr *et al.* 2007), plus
contribution from neutrino in SNII (Heger *et al.* 2005)

Travaglio *et al.* 2011, ApJ, 739, 93

C.Travaglio - INAF Turin Italy

Monash University, February 2016

C.Travaglio - INAF Turin Italy
Monash University, February 2016

Travaglio et al. (2015, ApJ, 799, 54)

C.Travaglio - INAF Turin Italy
Monash University, February 2016

C.Travaglio - INAF Turin Italy
Monash University, February 2016

92Mo/94Mo

●	1.5
2D	9.0
N100	4.3
N1600	3.8
N5	3.5
N5def (⁹⁴ Mo(γ,n) ⁹³ Mo/3)	2.7 (1.6)

C.Travaglio - INAF Turin Italy
Monash University, February 2016

^{94}Mo is one of the isotopes that particularly reflects the difference between 2D and 3D models.

In 2D it is mainly synthesized in matter that has undegone detonation, while in 3D it is also made in the later phases of deflagration. Therefore a stronger deflagration phase in DDT-3D models (that will produce less ^{56}Fe) will produce more ^{94}Mo .

SNII: M. Pignatari & Nugrid collaboration

Set-1 (Nugrid collaboration, Pignatari et al. 2013 ApJS submitted)

- Preexplosive GENEC (no p -process calculations) (R. Hirschi)
- Explosion 2D (Freyer et al. 2012)

p nuclei are made via γ -process in the O-burning region, very sensitive to the explosion mechanism and fall back.

Secondary component.: from $12 M_{\odot}$ to $25 M_{\odot}$ carry the classical γ -process.

α -rich freeze out only about 10% of $15 M_{\odot}$. Primary component

C.Travaglio - INAF Turin Italy
Monash University, February 2016

SNII: models from A.Heger

xi45,xi25,ertl,nocutoff

A grid of 14 metallicities has been used.

Masses included: $13M_{\odot}$, $15M_{\odot}$, $17M_{\odot}$, $20M_{\odot}$, $22M_{\odot}$,
 $25M_{\odot}$, $30M_{\odot}$

C.Travaglio - INAF Turin Italy
Monash University, February 2016

Set-1, $15M_{\odot}$:

10% of primary component, from α -rich freeze-out

(Woosley & Hoffman 1992)

- Too much ^{74}Se
- Ok for ^{78}Kr , ^{84}Sr and ^{92}Mo
- Nothing from ^{94}Mo

$M = 15 M_{\odot}$,
 $Z=0.02$,
Stellar code: GENEC
SN explosion =
Fryer+ 2012
Pignatari+ 2013

If single degenerate SNIa do
exist,
they can be important contributors
to explain the abundances of
p-nuclei
in the Solar System

C.Travaglio - INAF Turin Italy
Monash University, February 2016

Open problems, work in progress

- A more detailed analysis of the role of **SNIII** in GCE of p-nuclei:
 - *grid of models at different Z with rotation*
 - *multi-D role in p-production*
 - *role of vp process in electron capture SNe*
(talks by Mueller, Hix)
- To better understand the role of **SNIa** in GCE of p-nuclei:
 - *more detailed analysis of 3D models*
 - *s-seeds composition*
 - *sub-Chandrasekhar and mergers* as alternative contributors to explain the solar p-nuclei composition
- *Constraints from spectroscopic observations and meteorites measurements*

Observational constraints

❖ Spectroscopic observations:
no way to get isotopic composition.
Search for correlations
(Hansen et al. 2014)

❖ Interstellar grains: CHILI
(THE CHICAGO INSTRUMENT FOR
LASER IONIZATION)
is planning to measure p-isotopes
(ref. A. Davis)

Hansen et al. 2014 for Mo

