
Copyrighted imagery used in the preparation of these lecture notes
remains the property of the credited owners and is included here for
educational purposes only. It has been sourced where possible from
publicity material or from material placed within the public domain.

> look
!
It is dark. You can’t see.
!
> light lamp with match
!
The lamp glows a warm yellow.
!
> look
!
In the light of the lamp you can see before you two closed
doors. To the left is a red, weathered wooden door. To the right
is a rusty, iron door.
!
The lamp splutters out. It is dark.
!
> ?

FIT3094 Artificial Life, Artificial Intelligence and Virtual Environments

Lecture 3a
Interactive Programs and Agent Decision Making

Alan Dorin

Learning Objectives

To understand the typical cycle of events an agent performs
To appreciate the difference between tactical and strategic behaviours
!
To learn how an AI unit fits within an interactive software loop
To learn how to set up an interactive software loop using OpenGL/GLUT
!
To understand how to construct a basic AI using Finite State Automata

decision

perception action

An Agent’s Behavioural Cycle

e.g., stimuli: sight, sound,
touch, detect board state...

e.g. turn, move, fight,
dodge, change colour...

internal model, knowledge and beliefs

informed by

A Learning Agent’s Behavioural Cycle

decision

perception action
e.g. sight, sound, touch,
detect board state...

e.g. turn, move, fight,
dodge, change colour...

internal model, knowledge, beliefs and goals

update = learning informed by

Perception
The state of a game or virtual environment from the perspective of the agent
must be encoded for interpretation by the decision making software.

How much should a software agent know?

X

X

O

available paths Y+, Y-
target position 6, 22
current position 6, 17
current mode chase

 1 0 -1
-1 1 -1
-1 -1 -1

Decision: Reactive and Strategic Behaviour

A reactive agent examines the current state
of the world and responds to it tactically.

Strategic behaviour considers long term goals...
it may even forfeit a battle to win a war.

!

Decision: Realistic... ...and Unrealistic

Strategies must be computed
keeping in mind an individual agent’s
abilities, internal model, knowledge
and intelligence...

...or the agent’s behaviour will be
completely unconvincing!

✘

✘

Action

Apply the Decision System to
the perceptions of the world.

Carry out the behaviour the decision
system recommends.

X

X

O

available paths Y+, Y-
target position 6, 22
current position 6, 17
current mode chase

 1 0 -1
-1 1 -1
-1 -1 -1

available paths Y+, Y-
target position 6, 22
current position 6, 18
current mode chase

Are these example behaviours likely to
require tactical or strategic responses?

 1 0 -1
-1 1 -1
-1 -1 0

available paths N, S, E, W
target distance 5
target direction 0, 1
current state aim
current health 100%
current ammo 17
target state shoot
target health 84%
target ammo 27

available paths N, S, E, W
target distance 5
target direction 0, 0, 0
current state shoot
current health 100%
current ammo 16
target state shoot
target health 84%
target ammo 27

IF((target is directly ahead)
&& (target distance <= maximum range)
&& (current ammo > 0)
&& (current state == aim)
&& (current health > 50%))
THEN
{
 set (current state, shoot)
 shoot (1)
 current ammo--
}
ELSE
{
 ...?
}

Is the illustrated behaviour tactical or strategic?!
How quickly should the agent return fire?!
How accurately should the agent shoot? What if it is injured?!
How well should the agent predict the player’s behaviour?!
!
How should the agent behave if the “THEN” clause is not activated?

A Simple Interactive
Algorithm Loop

decide

perceiveact

For each
agent

Check for human input
Update world

initialise
simulation

world

exit on 
simulation over

Display world

Update avatar stateBEGIN
initialise world
WHILE (!simulation over)
{

display world
check for human input
update avatar state
FOR EACH agent DO
{

perceive
decide
act

 update agent state
}
update world

}
END

player avatar, all agents,
environment or board, pieces etc.

mouse, joystick or controller,
buttons, keyboard...

current activity, health,
position, velocity, score...

replace the current
agent states with the
future agent states

generate a future state
for each agent

the current state
of the world

based on the agent’s
internal model of the
current state of the world

BEGIN
initialise game world
WHILE (!game over)
{

display game world
check for player input
update game world
FOR EACH agent DO
{

perceive
decide
act

}
update game world

}
END

BEGIN
clear board
WHILE (!gameOver)
{

draw board and pieces
WHILE (!player moved)
{
 check for human move
}
read human move
check for human win
draw board and pieces
!
do 3-in-a-row(col/row/diag) if avail. gameOver = true
else do block if avail.
else do fork if avail.
else do corner if avail.
else do centre if avail.
else do random if avail.
else gameOver = true

}
!
END

Noughts and Crosses 
a basic interactive algorithm

Initialisaing an Interactive Loop
GLUT : (Open GL) Graphics Library Utility Toolkit

#include <GLUT/glut.h>	
!
int main(int argc, char **argv)	
{	

glutInit(&argc, argv); // Initialize OpenGL/GLUT (only do this once)	
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH); // Use double buffering, RGB mode, depth-buffer	

 	
glutInitWindowSize (gWinCols, gWinRows); // Set up the window and open it...	
glutInitWindowPosition (0, 0);	
glutCreateWindow ("Your Window Name");	

 	
glutFullScreen(); // Make the graphics window occupy the whole screen	
myInitializeOpenGL(); // Do some of your own initializations	

 	
glutDisplayFunc(displayWorld); // Register all of the event handlers	
glutVisibilityFunc(visible);	
glutReshapeFunc(reshape);	
glutKeyboardFunc(keyboard);	
glutMouseFunc(mouse);	
glutMotionFunc(mouseMove);	
glutPassiveMotionFunc(mousePassiveMove);	
glutIdleFunc(updateWorld);	

 	
glutMainLoop(); 		

 return 0;	
}

http://www.opengl.org/resources/libraries/glut/

// Start infinite loop: poll events update state

decide

perceiveact

For each
agent

updateAgent()

Check for player input

Update game world

Display game world
glutInit(...);	
glutInitDisplayMode (...);	
 	
glutInitWindowSize (...);	
glutInitWindowPosition (...);	
glutCreateWindow (...);	
 	
glutFullScreen();	
myInitializeOpenGL();

void displayWorld(void);

void keyboard(unsigned char key, int x, int y);	
void mouse(int button, int state, int x, int y);	
void mouseMove(int x, int y);	
void mousePassiveMove(int x, int y);

void updatePlayer(...);
Update player state

each event handler above calls updatePlayer()
if it changes player character state. Then it calls
glutPostRedisplay()

void updateWorld(void);

called within glutMainLoop() when there is
nothing else to do. Enacts each agent’s update
cycle and then copies the future states of all agents
into their current state data structures. Then it
calls glutPostRedisplay()

exit(0);

Running an Interactive Loop

glutMainLoop();

E.g. in response to keyboard() receiving Q
or updateWorld() returning done

if idle

if events queued

End

Begin

Agent Decision Making

IF((target is not shooting at me)
&& (target is directly ahead)
&& (target distance <= maximum range)
&& (current ammo > 0)
&& (current state == aim)
&& (current health > 50%))
THEN
{
 set (current state, shoot)
 shoot (1)
 current ammo--
}
ELSE
{
 ...?
}

Recall this simple algorithm for agent
decision making?

Note this in particular...

...and this!

These refer to internal state data that must be
stored in the enemy solider class. It changes, if
certain conditions are met, like this:

aim shoot

Finite State Machines (FSM)

The FSM* is an extremely common, simple and powerful way
to encode the behaviour of game or simulation agents.

rise

chase
Pacman

A state machine contains:!
!
A set of states!
A set of transitions between states!
A set of conditions by which transitions are triggered

die

move
randomly

Pacman reborn

Pacman dies

Pacman eats
power-up

power-up
wears off

Pacman eats ghost

ghost eyes return to chamber

ghost leaves
chamber

event

Blinky, the red ghost and his FSM

flee
Pacman

* also called a Finite State Automaton (FSA)

snooze

A Probalistic Finite State Machine (FSM)

move
ahead meow

turn left

turn right

1.0

1.0

0.2
0.1

0.3
0.1

0.1

0.8
0.2

0.9

0.3

Be sure that all transition
probabilities from a state sum to 1.0!

look left

A Hierarchical Finite State Machine with Linear Sections

0.8

Sometimes an agent (such as a frog trying to cross a busy road) needs a series
of transitions to occur one after another...

look right
road is clear road is clear

look left
road is clear

cross road

rotate 180
degrees

0.1

croak

blink 0.5

0.20.4

wait

Sometimes states may be
hierarchically organised.

Transition Triggers

State transitions can be triggered:!
!
- Automatically at the conclusion of a state’s behaviour!
!

- Stochastically!
!

- By human/player action  

- On timer elapse!
!

- When certain model conditions are met

What are some examples of each?

