
Copyrighted imagery used in the preparation of these lecture notes 
remains the property of the credited owners and is included here for 
educational purposes only. It has been sourced where possible from 
publicity material or from material placed within the public domain. 

Lecture 4a 
Vectors and Steering Behaviour

FIT3094 Artificial Life, Artificial Intelligence and Virtual Environments Alan Dorin



Learning Objectives 

To know how to apply steering behaviour to game AI. 

To understand the application of bounding boxes in collision detection. 

To know how to compute vectors for agent pursuit, evasion and collision avoidance.



Steering Behaviour

Steering behaviour is an individual agent’s response to stimuli by movement. 
!
Turning when? Which direction? How much? 
Moving when? How far? How fast?

To give an agent the appearance of intelligence, it will need to steer in a way that is 
appropriate to its current knowledge, decision-making and physical capabilities.

collision 
avoidance

pursuit

alignment

evasion!



Steering behaviour : vectors

To compute steering behaviour we usually use vector arithmetic.

vector  
noun 
Mathematics & Physics a quantity having direction as well as magnitude, esp. as 
determining the position of  one point in space relative to another.

P blue(x
b, 

yb)

xb

yb

y

x

Pred(x
r, y

r)

xr

yr

A vector in 2D space has x and y components.

The magnitude of a vector corresponds to its 
length — the distance between its endpoints:

|P| = √(x2-x1)2 + (y2-y1)2

Porigin(x0, y0)

What is the magnitude of Pblue in the diagram?



Steering behaviour : vector translation

To translate an object — i.e. to move the object — add a vector to the 
vector representing its current position.

P blue(x
b, 

yb)

xb

yb

y

Porigin(x0, y0)

Pdestination(xb+xt, yb+yt)Ptranslation(xt, yt)

If this translation represents the movement of an agent, we 
can say that this vector is the agent’s velocity vector.



Pto finish = ((xr-xb), (yr-yb)) Pfrom finish = ((xb-xr), (yb-yr))

Pblue(xb, yb)

xb

yb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)

Steering behaviour : vectors

To compute a vector between two points remember the simple rule: 
The vector between two points is the vector of the desired final position minus the vector of the 
desired initial position...

Pfrom 1 to 2 = ((x2-x1), (y2-y1))

...or just remember the expression “final minus initial”

Pblue(xb, yb)

xb

yb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)



Steering behaviour : pursuit
Pursuit requires the calculation of a vector towards a target and translation in that direction.

 Pblue destination = Pblue + Pblue to red

Pblue to red = ((xr-xb), (yr-yb))

xb

yb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)

Pblue(xb, yb)
Pblue to red

y

x

Pred(xr, yr)

Pblue(xb, yb)

E.g., To move the blue cyclist to the finishing flag,

compute a vector from the cyclist to the flag...
...add the computed vector to the cyclist’s position.



Steering behaviour : pursuit

It is unrealistic for the blue cyclist to instantly move to the finish! We should only move the 
blue cyclist towards the flag by an amount governed by the blue cyclist’s speed.

Pblue to red = ((xr-xb), (yr-yb))

xb

yb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)

Pblue(xb, yb)

As before, we must still compute a 
vector from the blue cyclist to the flag.

But we should then derive from this a unit vector (a 
vector of magnitude 1) in the direction of this vector...

Pblue to red = Pblue to red
∧

|P|
Pblue to red

Pblue to red
∧

We multiply the unit vector by a 
scalar*, the cyclist’s speed S...

...and add this velocity vector to the cyclist’s position...

* A scalar is a number like “2.3” or “77”. It has a magnitude, but no direction.

Pblue to red

Pblue to red * S = Pblue to red (x*S, y*S)
∧ ∧



Pred(xr, yr)

Pblue to red

Pblue to red * S
∧

before translation by velocity after translation by velocity

Steering behaviour : pursuit

new position = old position + (velocity * time-step)

Euler integration says:     u’ = u + vt



Steering behaviour : pursuit

After every update of a game world, each pursuing agent needs to compute a new 
velocity vector based on its speed and the direction to its target.

An agent’s target may 
change completely.

Targets may move relative to the agent’s 
position, and through the world.

p
p
p

p
p
p

p
p
p

time step 1 time step 2 time step 3

pp p
NPC (agent)

human (avatar)



Pfrom target

Pblue(xb, yb)

xb

yb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)

Steering behaviour : evasion

Evasion requires the calculation of a velocity vector away from a point.

E.g., To move the blue cyclist away from the ghost,

compute a unit vector from the ghost to the cyclist 
and scale it by the cyclist’s speed...

...as before, add the computed velocity 
vector to the cyclist’s position*.

Pblue(xb, yb)

xb

y

x

Pred(xr, yr)

xr

yr

Porigin(x0, y0)

 P destination

yb

* Is it realistic for a cyclist to change direction like this?



y

x

Pflag(65, 45)

Porigin(0, 0)

Steering behaviour : exercise

Pgreen(25, 30)

Pwhite(-15, 20)

Compute a vector from the green cyclist to the finish line. 
At a speed of 2 units per time step, how many steps will it take the green cyclist to reach the flag?

Pbottle(-10, 50)

If the white cyclist has to go around the left of the trees 
(collision avoidance) and collect the bottle on his way to 
the flag, how far does he have to travel to finish?

p
Ptree(-12, 38)
ppp



Tip: Create a waypoint to the left of the trees (allow space for the width of the cyclist and the trees).

Steering behaviour : exercise

Use this as an intermediate goal or target position before moving on to the next 
goal (the waypoint at the bottle) and then the final goal, the flag.

y

x

Pflag(65, 45)

Porigin(0, 0)

Pgreen(25, 30)

Pwhite(-15, 20)

Pbottle(-10, 50)

Ptree(-12, 38)
pppp

Pintermediate(-14, 38)



ppppp
p
pp

Steering behaviour : collision detection

Suppose an agent needs to avoid a collision with a wide object.

How does the agent know it needs to avoid a collision?

How does the agent choose which direction to go to avoid a collision?

forest

!?



A: Its anticipated path intersects an obstacle.

ppppp
p
pp

forest 
bounding box

forest x maxforest x min

forest  y max

forest  y min

Pdestination

Q: How does an agent know it needs to avoid a collision?

agent  y max

agent  y min

agent x min agent x max

Do the bounding boxes of the agent and obstacle 
intersect during the next simulation time step?

If the simulation time step is short, so that the 
agent moves only a small distance each time step, 
an approximate intersection test can be made...

Will the bounding boxes of the agent and 
obstacle intersect at the end of the time step?

agent 
bounding box

x

y

✔

✔

✘

✘

✘

Compute the conditions for the 
bounding boxes to intersect!

What might happen if the time 
steps are too long?



A: It (probably) chooses the path that causes it to deviate the least.
Q: How does the agent choose which direction to go to avoid a collision?

Which path is this?!

The answer depends on: 

- What the agent knows about the world 
- The location of its final destination 
- The agent’s turning ability

This is a search problem*

A “simple” agent might choose path A. 
A “smart” agent might calculate the lengths 
of all possible paths and prefer path B. 

* We look at searching in other lectures.

ppppp
p
pppath Bpath A ✘

A fast agent might be forced to choose path 
B because it would be unable to turn sharply 
enough to take path A.

appears 
short

appears 
long



Calculating the angle between two vectors using the dot product.

To avoid having an agent change direction too sharply, you need to know the 
deviation in direction between a velocity vector and the one that follows it.

Suppose a cyclist has just been translated by vector B and has 
a choice now of translating by B again, or turning with P. 
!
What change in direction is needed to turn onto P ?

Φ

You want to know the angle between two vectors!

B

P Φ = cos-1 (B•P) = cos-1 
∧ ∧

|B| |P|( B • P )

The “•” is the dot product of two vectors. 
The result of this operation is a scalar value.

B • P = |B||P|cos(Φ) = (xb * xp)+(yb * yp)

Dot Product

B



Steering behaviour

Tip: By carefully tweaking the angle of turn and frequency of directional changes, the speed and 
changes in speed of an agent, you can give the illusion of different mental states and physical properties.

Consider a cumbersome tractor driven by a bored farmer. 
Consider a scared, agile rabbit.

How often do they change direction? 
How quickly do they change direction? 
!
Now consider a crazed tractor driver and a sleepy, dazed rabbit. 
What changes?



Agents often need to make complicated movements around game worlds. 
A way to compute these movements is with vector addition, subtraction and dot products. 
A way to test for collisions between objects uses bounding boxes. 
!
Can you explain the circumstances when each of these is required? 
Can you compute some simple examples to show how these tools are used?

Summary

2nd1st


