
Search Algorithms - A*

Copyrighted imagery used in the preparation of these lecture notes
remains the property of the credited owners and is included here for
educational purposes only. It has been sourced where possible from
publicity material or from material placed within the public domain.

A

FIT3094 AI, A-Life and Virtual Environments
Alan Dorin

Learning Objectives

To know the advantages of using the A* search algorithm.

To understand how the A* algorithm explores a map from a starting location to a goal.

a* (fruit)

We return to this frequently encountered problem:

It may search the possible options to
find the most satisfactory solution.

How does an agent choose between multiple paths?

??

obstacle

goal

?

2

1 3

4

Recall: The lady-bird (agent) can move into any
unblocked, neighbouring square, not including
diagonals. This is its von Neumann neighbourhood.

von Neumann neighbourhood

Basic algorithms : Depth-first search (revision)

The algorithm expands the first child node of the search tree that appears at each stage.  
 
Hence, it explores deeply into the space until the goal is reached, or it finds a dead end.  
 
At a dead end, the algorithm backtracks to the most recent node that contains
unexplored branches and continues taking the first child node that appears at each stage.

1

2

6

754

3

8 9

10

11 12

13

In a very deep search space, the algorithm can be bogged down searching deeper and deeper
into the space (a recursive algorithm can recurse so deeply the computer runs out of memory).

To avoid this trap, a depth limit is imposed to cause the algorithm to backtrack without exploring
beyond a certain level. This variation of the algorithm is called a Depth-limited search.

Basic algorithms : Breadth-first search (revision)

The algorithm expands every available node at a single level of the search tree. 
 
Then it moves on to explore the next deeper available level from the nodes it has already explored. 
 
Hence, it explores broadly across the space until the goal is reached.

1

2

6

11109

5

3 4

7

12 13

8

In a very broad search space, this algorithm can get bogged down storing all of the nodes in a
level before moving on to the next level... the number of nodes per level increases exponentially.

E.g. Consider the simplest tree, a binary tree… how many nodes are there in its
20th level? What if each node of a tree has three children instead?

Basic algorithms

Basic depth-first and breadth-first algorithms perform uninformed searches.

They exhaustively search the nodes in a tree or graph.
They do not estimate the cost of a particular route to the goal.
!
They halt when they first find the goal.
They do not necessarily find the shortest path to the goal.

Can we do better than this?

A* search

* Pronounced ay-star

Is a graph or tree searching algorithm.
Finds a path from a starting position to a goal if one exists.
Finds the shortest path to the goal.

Assesses the best direction to explore at each stage of the search, rather
than blindly searching every available path in a predetermined order.

And best of all, it is relatively quick because it...

a* (fish)

Map

Node
A node is a data structure representing a position p on the map. 
Nodes are not the map, they are kept in an independent data-structure that is
assembled into a tree to represent the map.

The elements of an A* search

There may be several paths to a single location p!

A map is a space (usually) containing:
!
A goal position
A start position
Routes from the start (hopefully!) to the goal.

In the A* algorithm, a node stores: 

• The distance from the start, via a specific path, to p.
• An estimate of the distance from p to the goal.

Heuristic

Cost

A heuristic is a rule that helps to find a solution. 
 
In this case, the heuristic is an estimate of the distance from the current position on the
map to the goal.

The cost of a path is the result of weighing up its benefits and drawbacks. 
 
The A* algorithm attempts to minimise a cost that is defined for each specific
problem it is applied to...

More elements of an A* search

distance travelled
energy consumed
injury sustained
time taken

points earned
experience gained

areas explored
objects found

puzzles solved

The A* node contents

g The cost from the start node to this node via the specific path used to get here.

h
The heuristic (estimated) cheapest cost of the path from here onwards to the goal. 
This must not over-estimate the distance to the goal (under-estimation is OK).

f

The fitness = g + h. 
 
This is an estimate for the complete cost of travelling from the starting point,
via here, onwards to the goal.

The lower f is, the better we think this path is likely to be. 

At each stage, the A* algorithm chooses which node to explore by
selecting the one with the lowest f.

Choosing a heuristic for A*

City-block distance between two points = 3 Straight-line distance between two points = 2.236

1

1

This is a very accurate admissible estimate
for the ladybird problem.

This is an admissible heuristic that often
under-estimates the distance between two

points in our ladybird problem.

A heuristic that estimates a value that is guaranteed to be less than or equal to the actual
value it is estimating is called an admissible heuristic.h

For A* to be optimal the heuristic it uses must be admissible.
Possibilities for our ladybird problem include:

The A* algorithm’s utility ingredients

the Open List

the Closed List

A list of all the nodes visited but not yet explored.

A list of all the nodes visited and completely explored.

A node is explored if A* algorithm has:

Looked at every node that leads from it; and  
 
Calculated their f, g and h values; and  
 
Placed these nodes in the Open List for later exploration.

Clear OpenList
Clear ClosedList
startNode.g = 0
startNode.h = EstimateCost (startNode, goalNode)
startNode.f = startNode.g + startNode.h
Add start Node to OpenList !
While (OpenList is not empty)
{

currentNode = RemoveNodeWithSmallest_f from OpenList
Add currentNode to ClosedList !
If (currentNode is goalNode)

Return path from startNode to goalNode --- success! !
For Each (nextNode accessible from currentNode)
{

If (nextNode is in ClosedList)
Skip nextNode !

Else
possible_g = currentNode.g + DistanceBetween(currentNode, nextNode)
possible_g_isBetter = false !
If (nextNode is not in OpenList)

Add nextNode to OpenList
nextNode.h = EstimateCost (nextNode, goalNode)
possible_g_isBetter = true !

Else If (possible_g < nextNode.g)
possible_g_isBetter = true !

If (possible_g_isBetter is true)
nextNode.cameFrom = currentNode
nextNode.g = possible_g
nextNode.f = nextNode.g + nextNode.h

}
}
Return null --- failed to find a path!

The A* algorithm

Using the simple example below, carefully
trace this algorithm through from the
ladybird’s S position to the goal, G.

1

1

S

G

A B

C

Suggested layout for your trace of the A* algorithm

Open List Closed List

possible g =

g h f came
from

S

G

a

b

c

current

next

1

1

S

G

a b

c

How might you evaluate the cost of a particular route in this example?
How would you compute the heuristic?

Beautiful forest

pppp
p

Logging
machinery

road

track ponds

protesters

S

G

Example search problem

How could you search this puzzle for a solution from a
random starting condition using A*?

Example search problem

Hints...

Goal state: <SPACE>, 1, 2, 3, 4, 5, 6, 7, 8

Start state: 3, 2, 4, 1, <SPACE>, 8, 6, 7, 5

How could you represent this search space as a tree?
What could you use for g and h? 
Do a little research to find out.

Goal state

Dijkstra’s Search Algorithm

In A* recall that the fitness f = g + h. 
 
This is an estimate for the complete cost of travelling from the starting point, via a specific
node, onwards to the goal.
!
The fitness is used to decide which node we should take from the Open List to explore next.

Dijkstra’s algorithm does without h — the fitness of a node is just assumed to be g.
!
Dijkstra’s algorithm still finds the shortest path to the goal, only it needs to explore more
widely than does A*, so it takes longer.

Edsger Wybe Dijkstra

If you don’t know where the goal is you
can’t derive a heuristic h…  
 
but you can still use my algorithm!

Start

Goal

1 2 3 4

1

2

3

4

5

6

Try Dijkstra’s algorithm on the map also. 
Does it behave any differently? 
What if you try it on the simplified ladybird problem?

Try the A* algorithm on the following map.

Have you met the learning objectives?

What are the costs of employing the Depth-first or Breadth-first search?
!
Can you follow the A* algorithm? 
What components does it require to do its job? 
Why is it a particularly useful search technique?

Try A* on a simple grid-based map of your own invention, in which an agent
can move from a cell to any location within its Moore neighbourhood.

A

