
Artificial Evolution

Copyrighted imagery used in the preparation of these lecture notes
remains the property of the credited owners and is included here for
educational purposes only. It has been sourced where possible from
publicity material or from material placed within the public domain.

FIT3094 AI, A-Life and Virtual Environments
Alan Dorin

Learning Objectives

To understand the basis of evolutionary computation.

To understand the evolutionary algorithm and the kinds of problems it may be applied to.

To be able to explain the processes of crossover and mutation.

In On the Origin of Species by Means of Natural Selection (1859),
Charles Darwin* proposed his theory of evolution.

Offspring inherit traits from their parents.
Variations in organisms occur in reproduction.
Variations may make an organism more or less likely to produce offspring.

Variations that do not, will not be preserved, since the offspring carrying them will be less
likely to produce offspring themselves than the organisms carrying helpful variations.

Variations that allow organisms to successfully reproduce will be preserved in successive generations.

* Alfred Russel Wallace had a similar
theory at the same time

Charles Darwin, 1809 – 1882

Evolution by Natural Selection

Artificial Evolution

from nature, and implement them in software to arrive at one of several
methods of evolutionary computation (also known as artificial evolution).

These methods make excellent search and optimisation algorithms for
many difficult game-related and virtual environment design problems.

Finding paths through maps.
Finding arrangements of game pieces that meet particular requirements.
Designing game agent shapes and visual characteristics.
Designing complex agent behavioural strategies.

inheritance,
reproduction and
selection

We can extract the processes of

Could you write Finite State Machines to...
...have these creatures detect and run from
predators, flock together, search for food and eat
it, stand-up without falling over etc.?

...have this creature detect and chase the weakest
prey, catch and eat it, stand-up without falling
over, avoid being eaten by predators larger than
itself etc.?

Evolutionary Computation could be used to do all of
this. It is a searching technique good at finding
solutions to complex problems where incremental
improvements to solutions exist.

Images by Ben Porter, 2009

Could you design a 5 legged creature and a method to coordinate its gait*
that does not tie its legs in knots and end with the creature tripping over
its own feet?

* gait, a manner of walking

Evolutionary Computation could be used to do this.

Remember Richard Dawkins? Here are some structures he generated using artificial evolution.

Here are some 3D structures generated
using artificial evolution.

Artificial Evolution, the 8 Queens problem

Can you find an arrangement of 8 queens on the chess board in such a
way that no queen is attacking any other?

Queens can attack along complete rows,
columns and diagonals. 

For instance, the red queen is attacking three
others, as shown.

We shall look at how Evolutionary
Computation can be used to do this.

Artificial Evolution, the algorithm

Artificial Evolution follows this general algorithm.

Population

Offspring

Parent 
selection

Survivor selection

Initialisation

Termination

generation function

individual solution

replacement rule

Parents

Crossover and
mutation

fitness function

The generation function

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

The algorithm is initialised here, by randomly
generating perhaps 100 potential problem solutions.

Termination

individual solution

fitness function

Initialisation

generation function

For instance, the initial population in the 8 Queens
problem might be a set of random arrangements of
queens on the board.

How can we represent these potential solutions to the 8 Queens problem in a data-structure?

00000000

01000000

00000000

00011001

00001000

00000100

01100000

00000000

These bits can be strung together into a single 64-
bit number that can encode any configuration.
!
This is called the genotype or just the genes of the
solution. 
 
The board itself, with the queens placed on it,
some attacking one another, some not, is called
the phenotype.

bits representing queen positions

Artificial Evolution, the 8 Queens problem

But, for the 8-queens problem, only numbers with eight 1s and fifty-six 0s
are valid board configurations.
!
Also, we know that a valid solution will never have two queens in the same
row (or the same column for that matter).

Why would we want such a representation for solving this puzzle?

Artificial Evolution, the 8 Queens problem

So, what is a better way to represent the boards that ensures only potentially
useful board configurations can be represented?

How can we represent potential solutions to the 8 Queens problem in a data-structure?

Note that in the different board configuration shown here,
no queens share a row or column… but this is still not a
complete solution as queens can attack along diagonals.
!
Still, it is a better configuration than the previous one,
since less queens are attacking one another.

digit representing queen positions

This board configuration can be represented
by a single 8-digit number where all digits are
between 0 and 7: 13452607.
!
This is a different way to encode a genotype
for the 8 Queens problem.

Evolutionary computing works on improving
solutions incrementally. It depends on being able
to compare solutions.

Artificial Evolution, the 8 Queens problem

1

3

4

5

2

6

0

7

The initial population

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

These randomly generated potential solutions,
each encoded as a data-structure, form the
initial “population” of solutions to the problem.

Termination

individual solution

fitness function

Initialisation

generation function

The fitness function

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

The population of potential solutions is each evaluated using
a fitness function. This returns a score for the potential

solution based on how well it satisfies the goal. The better the
solution, the higher the fitness score it receives.

If a member of the population receives a perfect fitness score (or the algorithm has looped
enough times so that the programmer thinks it is time to finish), the algorithm can terminate!
!
It has found a perfect solution (or it has found the best solution it is ever going to find).

Termination?

individual solution

fitness function

Initialisation

generation function

For instance, the fitness measure in the 8
Queens problem might be a the number of
non-attacking pairs of queens. This has a
value of 28 for a solution.

The fitness landscape

global optimum — the best solution

local optimum

increasing
fitness

parameter x

Here is a sketch of a (imaginary) fitness landscape. The values of parameter x as
tested by the genetic algorithm give rise to troughs and peaks of fitness giving
the appearance of a landscape.

These arrows indicate the
desired path of a population’s
maximum fitness: rising from
a low value, over a local
optimum and trough to the
global optimum.

local optimum

The higher the fitness score a potential solution receives, the greater the
probability that it will be selected to become a parent. 

I.e. The fittest individual in the population would be expected to parent
many more children than the least fit member of the population. 

Parent selection

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

Termination

individual solution

fitness function

Initialisation

generation function

Different methods for using the fitnesses of solutions to select parents
exist. One simple method is called roulette wheel selection using a
fitness-proportionate or a ranked system to select the wedge sizes.

7%

8%
10% 11%

29%

35%

Selection Pointer
Spin

the
wheel!

solution A

B

CD

E

F

Reproduction

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

Pairs of selected parents “reproduce” — they mate and give birth to a child. 
Reproduction involves splicing together the characteristics of the two

parents (crossover) and sometimes, a random change in one of the
characteristics of the child (mutation).

Termination

individual solution

fitness function

Initialisation

generation function

two parents’ genes and their
matching crossover points 1 & 2

offspring’s genes

mutated offspring’s genes

mutation

crossover

1 12 2

Crossover and
Mutation

Crossover requires one or more locations within the genotype to be selected
randomly. The location of these crossover points determines which genes from
each parent are spliced together to appear in their offspring."
!
Mutation randomly varies one of the child’s genes or discards it and generates a
new one from scratch.

During reproduction, two parent solutions are mated together. 
The operations that occur to produce a child are crossover (recombination) and mutation.

Crossover  
and  

Mutation

1 3 4 5 2 6 0 7

7 5 4 3 0 2 6 1

Two parents’ genes and their crossover point
Crossover 1 3 4 3 0 2 6 1

7 5 4 5 2 6 0 7

The offsprings’ genes created by crossover

Mutation

7 5 4 0 2 6 0 7

Sometimes (not always), a random gene in the
offspring is selected for random mutation and its
value is changed.

1

3

4

5

2

6

0

7

1

3

4

3

0

2

6

1

parent a

7

5

4

3

0

2

6

1

parent b

7

5

4

0

2

6

0

7

child 2

child 1

Offspring

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

Many pairs of parents reproduce children in this way
to produce a large number of offspring

Termination

individual solution

fitness function

Initialisation

generation function

Population replacement

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

The algorithm requires that at each stage through the loop,
the population size should remain constant. Hence, a

replacement rule is used to decide which offspring should
replace which members of the previous population.

Termination

individual solution

fitness function

Initialisation

generation function

Different replacement rules exist. E.g. Replace all
of the population with new offspring, or select a
random offspring and a random parent and
whichever has the highest fitness value is kept.

Termination conditions

Population

Offspring

Parent 
selection

Survivor selection

replacement rule

Parents

Crossover and
mutation

The population of potential solutions is each evaluated using
a fitness function. This returns a score for the potential

solution based on how well it satisfies the goal. The better the
solution, the higher the fitness score it receives.

If a member of the population receives a perfect fitness score (or the algorithm has looped
enough times so that the programmer thinks it is time to finish), the algorithm can terminate!
!
It has found a perfect solution (or it has found the best solution it is ever going to find).

Termination ?

individual solution

fitness function

etc. etc. etc...

Initialisation

generation function

Fitness vs Time

As the algorithm repeatedly proceeds through the loop, generating and testing
potential solutions, the average fitness of the population gradually improves.

At some stage it is hoped that a perfect solution will be found. 
The algorithm can then stop.

2

4

1

7

0

6

3

5

normalised

mean fitness

time (generations) 40

A perfect solution is
found at generation 40.

1.0

We are here!

Fitness landscape

Here are some creatures with body structure and behaviour generated by an
artificial evolution algorithm implemented by Karl Sims.

Creatures that compete
to trap a puck.

Creatures that walk.

Creatures that swim.

What do you think he used as fitness functions?

Sims K., Evolving Virtual Creatures. Computer Graphics,
Siggraph '94 Proceedings, July 1994, pp.15-22.

Adapting a simple genotype

Class discussion: 
 
How could this basic genotype be used to specify a different
structure of an agent or even its behaviour?

1 3 4 4 1 6 2 7

Number of heads.

Number of body segments.

Colour of body segments.

Number of tails.

Radius of body segments. Width of tails.

Number of wings.

Length of wings.

0 1 2 3 4 5

Alternative Applications specific to games.

Design complex agent controllers by evolving them before release.
Then disable evolution algorithm.
Users play the game against the evolved controllers.

Design complex agent controllers by evolving them to a simple level before release.
Users play the game against evolving controllers that adapt to their behaviour and
changes in the game world.

However, evaluating the fitness of a population, breeding them and selecting members
of the population for replacement is often CPU intensive.
!
This can be too much for a computer to do whilst running an interactive game so...

Have you met the learning objectives?

What is Evolutionary Computing and what biological process does it mimic?
Can you describe the evolutionary algorithm?
!
What are crossover and mutation? How do they work?
!
How might you use evolutionary computation to search for a finite state
machine that chased a target on a grid world? How would you encode its
genotype?

How could you specify the
genotype of a creature like this?

