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Learning Objectives 

To understand the basis of evolutionary computation. 

To understand the evolutionary algorithm and the kinds of problems it may be applied to. 

To be able to explain the processes of crossover and mutation.



In On the Origin of Species by Means of Natural Selection (1859), 
Charles Darwin* proposed his theory of evolution.

Offspring inherit traits from their parents. 
Variations in organisms occur in reproduction. 
Variations may make an organism more or less likely to produce offspring.

Variations that do not, will not be preserved, since the offspring carrying them will be less 
likely to produce offspring themselves than the organisms carrying helpful variations.

Variations that allow organisms to successfully reproduce will be preserved in successive generations.

* Alfred Russel Wallace had a similar 
theory at the same time 

Charles Darwin, 1809 – 1882

Evolution by Natural Selection



Artificial Evolution

from nature, and implement them in software to arrive at one of several 
methods of evolutionary computation (also known as artificial evolution).

These methods make excellent search and optimisation algorithms for 
many difficult game-related and virtual environment design problems.

Finding paths through maps. 
Finding arrangements of game pieces that meet particular requirements. 
Designing game agent shapes and visual characteristics. 
Designing complex agent behavioural strategies.

inheritance, 
reproduction and 
selection

We can extract the processes of



Could you write Finite State Machines to...
...have these creatures detect and run from 
predators, flock together, search for food and eat 
it, stand-up without falling over etc.?

...have this creature detect and chase the weakest 
prey, catch and eat it, stand-up without falling 
over, avoid being eaten by predators larger than 
itself etc.?

Evolutionary Computation could be used to do all of 
this. It is a searching technique good at finding 
solutions to complex problems where incremental 
improvements to solutions exist.

Images by Ben Porter, 2009



Could you design a 5 legged creature and a method to coordinate its gait* 
that does not tie its legs in knots and end with the creature tripping over 
its own feet?

* gait, a manner of walking 

Evolutionary Computation could be used to do this.



Remember Richard Dawkins?  Here are some structures he generated using artificial evolution.



Here are some 3D structures generated 
using artificial evolution.



Artificial Evolution, the 8 Queens problem

Can you find an arrangement of 8 queens on the chess board in such a 
way that no queen is attacking any other?

Queens can attack along complete rows, 
columns and diagonals. 

For instance, the red queen is attacking three 
others, as shown.

We shall look at how Evolutionary 
Computation can be used to do this.



Artificial Evolution, the algorithm

Artificial Evolution follows this general algorithm.
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The generation function
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The algorithm is initialised here, by randomly 
generating perhaps 100 potential problem solutions.

Termination

individual solution

fitness function

Initialisation

generation function

For instance, the initial population in the 8 Queens 
problem might be a set of random arrangements of 
queens on the board.



How can we represent these potential solutions to the 8 Queens problem in a data-structure?

00000000

01000000

00000000

00011001

00001000

00000100

01100000

00000000

These bits can be strung together into a single 64-
bit number that can encode any configuration. 
!
This is called the genotype or just the genes of the 
solution. 
 
The board itself, with the queens placed on it, 
some attacking one another, some not, is called 
the phenotype.

bits representing queen positions

Artificial Evolution, the 8 Queens problem



But, for the 8-queens problem, only numbers with eight 1s and fifty-six 0s 
are valid board configurations. 
!
Also, we know that a valid solution will never have two queens in the same 
row (or the same column for that matter).

Why would we want such a representation for solving this puzzle?

Artificial Evolution, the 8 Queens problem

So, what is a better way to represent the boards that ensures only potentially 
useful board configurations can be represented?



How can we represent potential solutions to the 8 Queens problem in a data-structure?

Note that in the different board configuration shown here, 
no queens share a row or column… but this is still not a 
complete solution as queens can attack along diagonals. 
!
Still, it is a better configuration than the previous one, 
since less queens are attacking one another.

digit representing queen positions

This board configuration can be represented 
by a single 8-digit number where all digits are 
between 0 and 7: 13452607.  
!
This is a different way to encode a genotype 
for the 8 Queens problem.

Evolutionary computing works on improving 
solutions incrementally. It depends on being able 
to compare solutions. 

Artificial Evolution, the 8 Queens problem

1

3

4

5

2

6

0

7



The initial population
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These randomly generated potential solutions, 
each encoded as a data-structure, form the 
initial “population” of solutions to the problem.
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The fitness function
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The population of potential solutions is each evaluated using 
a fitness function. This returns a score for the potential 

solution based on how well it satisfies the goal. The better the 
solution, the higher the fitness score it receives.

If a member of the population receives a perfect fitness score (or the algorithm has looped 
enough times so that the programmer thinks it is time to finish), the algorithm can terminate! 
!
It has found a perfect solution (or it has found the best solution it is ever going to find).

Termination?

individual solution

fitness function

Initialisation

generation function

For instance, the fitness measure in the 8 
Queens problem might be a the number of 
non-attacking pairs of queens. This has a 
value of 28 for a solution.



The fitness landscape

global optimum — the best solution

local optimum

increasing 
fitness

parameter x

Here is a sketch of a (imaginary) fitness landscape. The values of parameter x as 
tested by the genetic algorithm give rise to troughs and peaks of fitness giving 
the appearance of a landscape.

These arrows indicate the 
desired path of a population’s 
maximum fitness: rising from 
a low value, over a local 
optimum and trough to the 
global optimum.

local optimum



The higher the fitness score a potential solution receives, the greater the 
probability that it will be selected to become a parent. 

I.e. The fittest individual in the population would be expected to parent 
many more children than the least fit member of the population. 

Parent selection
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Different methods for using the fitnesses of solutions to select parents 
exist. One simple method is called roulette wheel selection using a 
fitness-proportionate or a ranked system to select the wedge sizes.
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Reproduction
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Pairs of selected parents “reproduce” — they mate and give birth to a child. 
Reproduction involves splicing together the characteristics of the two 

parents (crossover) and sometimes, a random change in one of the 
characteristics of the child (mutation).
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two parents’ genes and their 
matching crossover points 1 & 2

offspring’s genes

mutated offspring’s genes

mutation

crossover

1 12 2

Crossover and 
Mutation

Crossover requires one or more locations within the genotype to be selected 
randomly. The location of these crossover points determines which genes from 
each parent are spliced together to appear in their offspring."
!
Mutation randomly varies one of the child’s genes or discards it and generates a 
new one from scratch.

During reproduction, two parent solutions are mated together. 
The operations that occur to produce a child are crossover (recombination) and mutation.



Crossover  
and  

Mutation

1 3 4 5 2 6 0 7

7 5 4 3 0 2 6 1

Two parents’ genes    and their crossover point
Crossover 1 3 4 3 0 2 6 1

7 5 4 5 2 6 0 7

The offsprings’ genes created by crossover

Mutation

7 5 4 0 2 6 0 7

Sometimes (not always), a random gene in the 
offspring is selected for random mutation and its 
value is changed.
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Offspring
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Many pairs of parents reproduce children in this way 
to produce a large number of offspring
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Population replacement
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The algorithm requires that at each stage through the loop, 
the population size should remain constant. Hence, a 

replacement rule is used to decide which offspring should 
replace which members of the previous population.
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Different replacement rules exist. E.g. Replace all 
of the population with new offspring, or select a 
random offspring and a random parent and 
whichever has the highest fitness value is kept. 



Termination conditions
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The population of potential solutions is each evaluated using 
a fitness function. This returns a score for the potential 

solution based on how well it satisfies the goal. The better the 
solution, the higher the fitness score it receives.

If a member of the population receives a perfect fitness score (or the algorithm has looped 
enough times so that the programmer thinks it is time to finish), the algorithm can terminate! 
!
It has found a perfect solution (or it has found the best solution it is ever going to find).

Termination ?

individual solution

fitness function

etc. etc. etc...

Initialisation

generation function



Fitness vs Time

As the algorithm repeatedly proceeds through the loop, generating and testing 
potential solutions, the average fitness of the population gradually improves.

At some stage it is hoped that a perfect solution will be found. 
The algorithm can then stop.
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found at generation 40.
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Here are some creatures with body structure and behaviour generated by an 
artificial evolution algorithm implemented by Karl Sims.

Creatures that compete 
to trap a puck.

Creatures that walk.

Creatures that swim.

What do you think he used as fitness functions?

Sims K., Evolving Virtual Creatures. Computer Graphics, 
Siggraph '94 Proceedings, July 1994, pp.15-22.



Adapting a simple genotype

Class discussion: 
 
How could this basic genotype be used to specify a different 
structure of an agent or even its behaviour?

1 3 4 4 1 6 2 7

Number of heads.

Number of body segments.

Colour of body segments.

Number of tails.

Radius of body segments. Width of tails.

Number of wings.

Length of wings.

0 1 2 3 4 5



Alternative Applications specific to games.

Design complex agent controllers by evolving them before release. 
Then disable evolution algorithm. 
Users play the game against the evolved controllers.

Design complex agent controllers by evolving them to a simple level before release. 
Users play the game against evolving controllers that adapt to their behaviour and 
changes in the game world.

However, evaluating the fitness of a population, breeding them and selecting members 
of the population for replacement is often CPU intensive. 
!
This can be too much for a computer to do whilst running an interactive game so...



Have you met the learning objectives? 

What is Evolutionary Computing and what biological process does it mimic? 
Can you describe the evolutionary algorithm? 
!
What are crossover and mutation? How do they work? 
!
How might you use evolutionary computation to search for a finite state 
machine that chased a target on a grid world? How would you encode its 
genotype?

How could you specify the 
genotype of a creature like this?


