
FIT3094 AI, ALife and Virtual Environments, by Alan Dorin.

Practical sheet #5 Cellular Automata

Before you begin this exercise, you must have prepared by reading through the iBook,
Biological Bits, section 3.1, pp. 55-60. It will also help you to read the online resource at
Wolfram MathWorld which provides a detailed discussion of 1D Cellular Automata. 1

The purpose of this exercise is to build and explore
the complex emergent behaviour of 1-bit, 1D Cellular
Automata.

Part A : Cellular Automaton Implementation

Implementing the CA class.

1) Within a new class called CA, implement a simple
array of Boolean values called stateArray1. The array
will store a set of variables representing the state of
your CA’s cells. Specify the length of the array with a
const class variable. Also, add a pointer called
currentState to the class. This should, to begin with,
point to the stateArray1.

2) Implement a second identical data-structure,
stateArray2. This too will store the state of the CA’s

cells. To begin with, it will store the future state of your CA after the rules have been
applied to the cells in stateArray1. Create a new pointer called futureState which, initially,
should point to stateArray2.

3) Implement a method for swapping the pointers currentState and futureState between
the two arrays stateArray1 & 2.

4) Implement an output method for printing to the console, on a single row with a newline
character at the end, the current state of the CA. I suggest printing false as the character “-”
and true as the character “X”. This looks pretty, but really, use any characters of equal
width you please!

5) Implement a method to allow the user to manually enter a series of true and false values
(or whatever characters you are using) to initialise the array pointed to by currentState.
Tell the user the length of the array they need to fill.

6) Implement a method getLeftNeighbourState() that takes a parameter which is a valid
index into the array indicated by currentState and returns the state of the left
neighbouring cell. If the index=0, treat cell at index=arrayLength-1 as its left neighbour.

7) Implement a method getRightNeighbourState() that takes a parameter which is a valid
index into the array pointed to by currentState and returns the state of the right
neighbouring cell. If the index=arrayLength-1, treat cell at index=0 as its right neighbour.

 http://mathworld.wolfram.com/ElementaryCellularAutomaton.html1

Image © Alice Eldridge

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Implementing a CA rule set class.

A CA has a set of transformation rules. A 1-bit rule has a “left” side that is a bit-pattern
which, in our case, is a sequence of 3 Boolean values. Its “right” side is a single Boolean
value. We can represent it like this (X,Y,Z; A) where X, Y, Z and A are Boolean values.

Each rule in the set is tested against each cell in the current state of the CA as follows:

For each cell in the CA’s currentState array

 currentCellState ⟵ getCellState(cell)

 leftNeighbourState ⟵ getLeftNeighbourState(cell)

 rightNeighbourState ⟵ getRightNeighbourState(cell)

For each rule (X,Y,Z; A) in the rule set
 if ((currentCellState=Y) && (leftNeighbourState=X) && (rightNeighbourState=Z))
 {

setCellFutureState(cell, A)
 }

8) Implement a RuleSet class to be used as described above.

It will need a container for a set of rules. For a 1-bit CA, how many rules will you need in a
set? How should these rules be ordered?

9) The class will need a method for specifying the rule set to be used. A single string of true
and false values (specified with whatever characters you are using) should be entered from
the keyboard to fill in the righthand sides for all of your rules. The lefthand side of the rules
needn’t be specified by the user. Why not?

10) Insert a RuleSet data member into your CA class.

11) Add a method to the CA class to apply its RuleSet to the array pointed to by
currentState. Compute each cell’s future state and enter this into the array pointed to by
futureState.

Once a rule has been applied to the array pointed to by currentState, what do you need to
do with the class’ array pointers?

12) Now set up a main() method with a loop that repeatedly applies the rule set to the CA
and prints out the current state of the CA after each iteration.

Part B: Cellular Automaton experimentation.

Initialise your currentState array with a length of 41 and a single, central True. Initialise all
other cells in the currentState to False. You can hardcode this configuration into the CA
class’ default constructor if you like (rather than forcing the user to enter it manually each
time).

Specify and record (e.g. by saving in a plain text file) 5 different rule set specifications
alongside their decimal values. Save the output of applying each rule set 20 times
beginning with the proscribed initial CA state.

How might the output these rules generate fit within Wolfram’s classes of Cellular
Automaton behaviour detailed in Biological Bits (p.58)?

Compare the output of each rule you tried to those listed in the online table here:
http://mathworld.wolfram.com/ElementaryCellularAutomaton.html

Is your software working correctly?

Test your software by applying Rule 30, i.e., 00011110 (binary) = 30 (decimal) which
specifies a rule set like this:

Rule 30 is well-know. Have a read of its Wikipedia page: 
http://en.wikipedia.org/wiki/Rule_30

Why is this rule set interesting? Were any of the other rule sets you tried out as interesting
as this one? Which ones?

Lefthand
side

111 110 101 100 011 010 001 000

Righthand
side

0 0 0 1 1 1 1 0

http://mathworld.wolfram.com/ElementaryCellularAutomaton.html
http://en.wikipedia.org/wiki/Rule_30

