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Abstract
We describe an alternative syntactic binding for C++. This new binding includes a completely redesigned declaration/definition syntax
for types, functions and objects, a simplified template syntax, and changes to several problematic operators and control structures. The
resulting syntax is LALR(1) parsable and provides better consistency in the specification of similar constructs, better syntactic
differentiation of dissimilar constructs, and greater overall readability of code.

1.  Motivation
It is widely accepted that the syntax of C/C++, having been evolved over several decades by a large number of contributors, leaves
much to be desired [1,2,3]. For example, the declaration syntax which C++ inherits from C (and extends) is so complicated that it is
doubtful whether, without the assistance of a manual or source code example, one in ten C++ programmers could correctly declare a
prototype for fundamental C++ allocation control function: set_new_handler1.  We invite the reader who is familiar with C++ to
attempt this exercise before continuing. The answer is given in Appendix A.
In The Design and Evolution of C++,  Stroustrup observes that "within C++ there is a much smaller and cleaner language struggling to get
out" [4] and foresees the development of "other interfaces" to C++. He cites Murray [5] and Koenig [6] who each demonstrated non-tex-
tual representations for C++ programs. Whilst such graphical representations of C++ offer considerable assistance in visualization and
abstraction, they sacrifice some measure of the convenience, accessibility and portability of a purely ASCII representation.
We propose an alternative text-based syntactic binding (called SPECS2) for the existing semantics of the C++ language. The SPECS syn-
tax departs substantially from the existing C++ syntax, particularly in the areas of declarations, definitions, templates, operators, and
operator overloading.
Section 2 of this paper discusses some of the language design principles we employed in creating SPECS, whilst section 3 outlines the
SPECS syntax and how it differs from the existing C++ syntax. Section 4 summarizes the remaining similarities between SPECS and C++.
Note that this paper does not cover every feature of the SPECS syntax. For the complete specification of the SPECS language see [7].

2.  SPECS Syntactic Design Principles
In designing the SPECS syntax we have been guided by four design principles: consistency, differentiation, readability, and formal gram-
matical simplicity.
The specification of types in C++ provides an excellent example of the lack of syntactic consistency that has resulted from the evolution-
ary development of the language. The following statements all define new types in C++:

class RXBase { virtual bool match(string) = 0; };

typedef struct { int x, y; int z; } Vector;

typedef int (*NumSrc)();

enum Result { reject, accept, defer };

union Tokens { int num; char* str; };

In designing the SPECS binding for C++ we have endeavoured to introduce better consistency into all syntactic forms, with particular
attention to declaration syntax. In SPECS the above constructs are clearly indicated as creating new types with easily located names:

type RXBase : class { func match : abstract (string->bool); }

type Vector : class { [public] obj x, y: int; obj z : int; }

type NumSrc : ^(void->int);

type Result : enum { reject, accept, defer }

type Tokens : union { obj num : int; obj str : ^char; }

Interestingly, C++ also exhibits the opposite syntactic shortcoming – insufficient syntactic differentiation of dissimilar constructs. This
is particularly evident in the declaration of functions and objects, where slight variations in component order may completely alter the
meaning of a statement:

const Vector& (*vectorA)(int,Vector[]);

const Vector* ( vectorB)(int,Vector[]);

const Vector* (&vectorC)(int,Vector[]);

const Vector* &(vectorD)(int,Vector[]);

In SPECS the differences between these constructs are clearly indicated and their names are (once again) more easily ascertained:

1  which takes a single argument (a pointer to a function taking no arguments and returning void) and returns a similar function pointer
(that is: it returns another pointer to a function taking no arguments and returning void).

2  "Significantly Prettier and Easier C++ Syntax"



obj vectorA : ^((int, [] Vector) -> & const Vector);

func vectorB :  ((int, [] Vector) -> ^ const Vector);

obj vectorC : &((int, [] Vector) -> ^ const Vector);

func vectorD :  ((int, [] Vector) -> & ^ const Vector);

Both these design goals help support a third – that of maximizing the overall readability of the language. Other notable contributions
towards this goal have been:

• reordering declarations to emphasize important features and group together related information
• modification of the template declaration syntax to reduce excess verbosity and better localize relevant information;
• requiring that all iteration or selection statements are followed by brace-enclosed compound statements rather than single un-

bracketed statements;
• the introduction of the keyword common to specify "static" class members, thereby reducing the semantic overloading of

static;
• the replacement of the old-style cast syntax with one that is similar to the new-style casts;
• the introduction of the abstract keyword to replace the "=0" syntax for pure virtual functions;
• the rebinding of the assignment operator to ":=" to better differentiate it from the equality test, which becomes "=";
• the rebinding of the "address of" operator to "@" so as to reduce the overloading of "&";
• the introduction of the defined_cast keyword to make operator conversion declarations more obvious;
• the addition of the keywords inherits and  initially .

A final design principle for SPECS was grammatical simplicity. The language was designed to ensure that the new syntax was LALR(1)
parsable, grammatically unambiguous and required no semantic feedback from parser to tokenizer. This constraint considerably simpli-
fies the construction of a portable compiler for the language by allowing us to use the widely available parser construction tools yacc
and lex. As mentioned above, this has also improved the readability of the language.

3.  The SPECS syntax
Sections 3.1 to 3.5 summarize the principal differences between SPECS and (proto-)standard C++. Note that the bracketed symbolic
names after each subheading indicate the corresponding section of the working paper for the draft ISO/ANSI C++ standard [8].

3.1.  Declarations  [dcl.dcl]
The area of greatest difference between SPECS and C++ is declaration syntax. The SPECS binding adopts a number of conventions for
consistency across declaration types. Most significantly, all declarations begin with a keyword which identifies the declaration type.
This keyword is then followed by the name of the entity being declared, where this is appropriate. Additionally, all declarations either
end in a semicolon or a curly-brace enclosed block. This is also the case for C++ function definitions, however C++ type definitions end-
ing in a curly-brace enclosed block require an additional trailing semicolon. SPECS is consistent across the entire syntax in neither re-
quiring nor allowing such a trailing semicolon. Hence, in SPECS, a type ends either in a semicolon or a right brace, but never both.

3.1.1.  Type IDs [dcl.name]

Specifying a type in C++ is made difficult by the fact that some of the components of a declaration (such as the pointer specifier) are pre-
fix operators while others (such as the array specifier) are postfix. These declaration operators are also of varying precedence, necessi-
tating careful bracketing to achieve the desired declaration. Furthermore, if the type ID is to apply to an identifier, this identifier ends
up at somewhere between these operators, and is therefore obscured in even moderately complicated examples (see Appendix A for in-
stance). The result is that the clarity of such declarations is greatly diminished.
Within SPECS, this problem is overcome by entirely redesigning the type ID mechanism in a manner similar to (but simpler than) that
proposed by Anderson [1]. All declaration operators are prefix, right-associative, and are at the same precedence level. Any attached
identifiers are separated from the type ID to make them visible. The intention is that the meaning of a type ID can be determined by
simply reading it left-to-right, rather than by subtle parsing tricks better suited to a compiler rather than a programmer.
The following are simple C++ abstract declarators:

int // integer

int * // pointer to integer

int *[3] // array of 3 pointers to integer

int (*)[3] // pointer to array of 3 integers

int *() // function having no parameters, returning pointer to integer

int (*)(double) // pointer to function of double, returning an integer

The equivalent SPECS type IDs are:

int // integer

^ int // pointer to integer

[3] ^ int // array of 3 pointers to integer

^ [3] int // pointer to array of 3 integers

(void -> ^int) // function having no parameters, returning pointer to integer

^ (double -> int) // pointer to function taking a double, returning an integer

The following table describes the operators and specifiers that can compose a declaration:



^ typeID pointer to type typeID

ClassName::^ typeID pointer to member (with type typeID) of class ClassName

& typeID reference to type typeID

[] typeID array of typeIDs with unspecified number of elements

[constExpr] typeID array of typeIDs with constExpr elements

(typeID) type typeID

(paramList -> typeID) function taking paramList and returning typeID

const typeID type constant typeID

volatile typeID type volatile typeID

3.1.2.  Type declarations and definitions  [dcl.type]

In SPECS, all type declarations begin with the keyword type, followed by the type name. Four kinds of type declaration are allowed
in SPECS:  simple, enum, class, and union. The union declaration is analogous to that of the class and is not discussed here.

3.1.2.1.  Simple type declaration

A simple type declaration in SPECS is equivalent to a C++ typedef. It associates an identifier with a type ID and has the syntax:
type identifier : typeID;

The following is a typical C++ typedef declaration:
typedef int* IntPtr;

The equivalent SPECS declarations is:
type IntPtr : ^ int;

3.1.2.2.  Enum type declaration

An enum declaration is similar to its C++ equivalent, but in a format consistent with the other type declarations. It has the syntax:
type optional_enumName : enum { enumContents }

The following is a simple C++ enum declaration:
enum Colour { red=1, green, blue };

The equivalent SPECS declaration (declared without a trailing semicolon) is:
type Colour : enum { red:=1, green, blue }

3.1.2.3.  Class type declaration

A class declaration in SPECS is semantically equivalent to a C++ class. It takes the place of both the C++ class and struct declarations,
since the two constructs are isomorphic. A class definition has the form:

type className : class { memberDeclarations }

Section 3.2 describes the SPECS class definition mechanism in greater detail.

3.1.3.  Object declarations and definitions  [dcl.meaning]

An object declaration creates one or more variables. These variables can be of any type and need not just be instances of classes. All ob-
ject declarations begin with the keyword obj. The general syntax is:

obj objName1, objName2, ... objNameN : typeID

where the type after the colon is one of the four types described in section 3.1.2.
The following are C++ declarations:

double *x, *y;

enum { green, gold } aColour;

The equivalent SPECS declarations are:
obj x, y : ^double;

obj aColour : enum { green, gold }

Objects can be initialized at construction time using either the "constructor" or "assignment" forms:
obj val1 := 1, val2(2) : int;

obj myInst(init1,init2) : MyClass::InnerType;

obj array := {1,2,3,4} : [4] int;

Different initialization syntaxes can be combined within one declaration statement, as in the first example. Note however that different
types of variables cannot be instantiated in the same declaration. The infamous C++ example:

char* c1, c2, c3();

has no direct equivalent in SPECS. We consider this to be a feature.



Specifiers can be applied to objects at declaration time, and are listed directly after the colon in the declaration. Non-class-member ob-
jects can be declared auto,  register,  static  and/or  extern. Class members can be declared  common,  mutable  and/or
bits(constExpr) (to declare a bit field). For example:

obj localMax(1.0) : static register const double;

type MyClass : class { obj ourNextIndex : common int; }

Note that the const is not a specifier, but part of the actual type, and must therefore be placed after the specifier sequence.
Note too that SPECS reduces the overloading of the static keyword by introducing a new keyword, common, as a specifier for
"static" class members. All other usages of static as a non-member storage specifier, as in C, are retained.

3.1.4.  Function declarations and definitions  [dcl.fct]

We note three main problems with the syntax of standard C++ function declarations:
• Function declarations are very similar in structure to variable declarations. In cases where the type of a variable involves a

pointer to a function, the distinction can become very subtle, often involving only slight differences in bracketing.
• The name of a function has no uniform location within the declaration, and in more difficult examples can be embedded within

levels of bracketing. Searching for a function declaration within a mass of code can be a challenge.
• The return type is placed before (and some distance away from) the parameter list, or may be entirely implicit. This makes it dif-

ficult to quickly ascertain the complete type of a function.
The SPECS syntax for function declaration tackles each of these problems. All function declarations begin with the keyword func, fol-
lowed by the name of the function. The general syntax is:

func functionName : opt_specifiers ( parameterList -> returnType );

The parameter list is an optionally-bracketed, comma-separated list of parameters. The syntaxes for a parameter declaration are:
parameterName : paramType

parameterName := defaultValue : paramType

If a function takes no parameters, the parameter list must be declared void. The following are C++ function declarations:
fn1();

char* fn2(char* param1, int param2);

const T& fn3(int (*param1)[10]);

The equivalent SPECS declarations are:

func fn1 : (void -> int);

func fn2 : ((param1 : ^char, param2 : int) -> ^char);

func fn3 : ((param1 : ^ [10] int) -> & const T);

Specifiers can be applied to functions at declaration time. These are listed in sequence directly after the colon in the declaration. The
specifier for a non-class-member object may be either static or extern. Class-member specifiers are: inline,  virtual,
abstract,  explicit (constructors only) and/or common (replacing the C++ keyword static as in section 3.1.3).
The abstract keyword specifies that a member function is pure virtual.  It is mutually exclusive with virtual, and can only be ap-
plied to declarations/definitions within a class:

type MyClass : class
{
[public]

func printMe : abstract (& ostream -> void);
}

The equivalent C++ is:
class MyClass
{
public:

virtual void printMe(ostream&) = 0;
};

3.1.5.  Language declarations [dcl.asm, dcl.link]

A language declaration in a SPECS program specifies a (link to a) non-SPECS code fragment. It has the general structure:
lang "languageName" { declarationSeq }

where the set of allowed language names is implementation dependent, but contains at least "asm",  "C",  "C++" and "SPECS". The
lang keyword provides a unification of the asm (assembly directive) and extern (external linkage) declarations of C++, whilst
eliminating the semantic overloading of the latter.
Within an "asm" language declaration, assembly directives are either newline or semicolon terminated (or both):

lang "asm"
{

mov eax, ebx; xchg ecx, edx
shl eax, 7; // This semi-colon not required

}



The equivalent C++ would be:
asm("mov eax, ebx"); asm("xchg ecx, edx");
asm("shl eax, 7");

The behavior of the "C" language declaration is identical to the corresponding extern (external linkage) declaration in C++. By
extension, standard C++ syntax code is expected within a "C++" language declaration. This is useful when writing SPECS programs
that include header files for one or more C++ standard libraries.

3.2.  Class declarations and definitions  [class]
A class declaration in SPECS is semantically equivalent to a C++ class. It takes the place of both the class and struct declarations, since
the semantics of a struct can be achieved by the addition of a public access specifier at the start of a class type declaration. A class dec-
laration has one of the following formats:

type className : class;
type className : class opt_inheritanceList { /* member declarations */ }

where the first form brings a class name into scope, and the second defines an actual class. The inheritance list has the form:
inherits BaseClass1, BaseClass2, ...etc

where the base class specifications may include one of the access specifiers: public, protected and private, and/or the
inheritance specifier virtual, with the same semantics as in C++. Hence, the following SPECS class declaration:

type ListClass : class inherits public ListBase, private virtual ListImpl
{ /* member declarations */ }

is equivalent to the C++ declaration:
class ListClass : public ListBase, private virtual ListImpl
{ /* member declarations */ };

3.2.1.  Member access control [class.access]

A member of a class can be declared public, protected or private (the default). Within a class, only one of these access specifiers will ac-
tive at any time. To change the current specifier within a class declaration, a directive of the form [accessSpecifier] is used:

type PublicClass : class
{

// members declared here are private
[public]

// members declared here are public
}

3.2.2. Friends [class.friend]

In C++, a friend declaration is performed by placing the keyword friend in front of the declaration. We believe that this does not
sufficiently differentiate between friend and member declarations. In SPECS, the keyword [friend] is used in exactly the same way
as the access specifiers described in section 3.2.1. It declares all subsequent declarations to be friend declarations, until the end of the
enclosing class or the next access specifier is reached:

type FriendlyClass : class
{

// members declared here are private
[friend]

// functions and types declared here are friends
}

3.2.3.  Special member functions [special]

3.2.3.1. Constructor and destructor declarations

In C++ the names of a constructor and destructor of a class are derived from the class name. Because these names will differ from class to
class, it can be difficult to identify these members at a first glance. To rectify this problem, in SPECS constructors and destructors are
always called ctor and dtor respectively. The general syntax is:

func ctor : optional_specifiers ( paramList )
optional_initializer_list
{ /* code */ }

func dtor : optional_specifiers ( void  )

{ /* code */ }

Note that, as in C++,  neither constructors nor destructors have a return type.
A constructor initializer list is introduced with the keyword initially:

func DerivedClass::ctor : (size : int, name : ^char)
initially BaseClass::ctor(), mySize(size), myName(name)
{ /* code */ }



3.2.3.2. Operators and casts

The C++ operator overloading semantics are unchanged in SPECS but the syntax is modified to conform to the function declaration syn-
tax described above and the renamed operators listed in section 3.4.1 below.  In addition, two keywords,  pre and post,  have been
introduced to simplify the overloading of the increment  and decrement operators by replacing the awkward "dummy integer" syntax:

type MyInt : class
{

obj myVal : int;

[public]

func operator:= : (i:& const MyInt -> & MyInt)
{ if (this@ != i@) { myVal := i.myVal }  return this; }

func operator pre ++ : (void -> & MyInt)
{ myVal++; return this; }

func operator post -- : (void -> MyInt)
{ obj oldVal(this) : MyInt; myVal--; return oldVal; }

}

Note that in SPECS the identifier this within a member function acts as a reference, not as a constant pointer (as in C++).
In C++, a declaration of an operator conversion function has the name operator typeID and no return type. The SPECS decla-
ration of an operator conversion function has the name defined_cast, and the target conversion type as the return type. For
example, the equivalent of a C++  operator int  member function in SPECS is declared:

type MyInt : class
{
[public]

func defined_cast : (void -> int)  { return myVal; }
}

3.3.  Template declarations and definitions  [temp]
Although templates are a central feature of C++, the declaration syntax of C++ templates is not always easy to comprehend:

template<class T1> class list
{
public:

template<class T2> T1* match(const T2&);
};

It is even more cumbersome to define such a member of a template outside the template body :
template<class T1> template<class T2>
T1 array<T1>::match(const T2&) { /* code */ }

The problem stems from the fact that a template declaration has its template parameter list separated  from the name that is being parame-
terized. SPECS alters this syntax so as to eliminate this separation and the excess verbosity of such declarations.
The first change is from simple angle brackets ("<" and ">") to composite brackets ("<[" and "]>"). Replacing single character brackets
with two character brackets is not a change that was taken lightly, but it does solve three C++ problems and at the same time clearly
delineates the parameterization of a template. The problems solved are:

• There is no longer a need to bracket template arguments containing the "greater than" operator, as in the C++ declaration
TemplateClass<( 1>2 )>, since the SPECS version: TemplateClass<[ 1>2 ]>  is unambiguous.

• It is no longer necessary to put a space between successive closing template brackets, (for example: array<auto_ptr<X> >
in C++) . In SPECS, array<[auto_ptr<[X]>]> is unambiguous.

• The template keyword is not needed to disambiguate a member template function call, as in C++:
x := p-> template alloc<200>();

The SPECS equivalent is:
x := p^.alloc<[200]>();

3.3.1. Class templates

The general form of a template class is:
type className <[ templateParamList ]> : class opt_derivedList
{

// template members...
}

The following C++ template examples:
template<class Key, class Value> class Map { /* members */ };

template<class T1> template<class T2> class Outer<T1>::Inner { /* members */ };

are written in SPECS as:
type Map<[type Key, type Value]> : class { /* members */ }

type Outer<[type T1]>::Inner<[type T2]> : class { /* members */ }



Specializations of these templates in SPECS are similarly readable:
type Map<[int, ^char]> : class { /* specialized members */ }

type Outer<[type T1]>::inner<[int]> : class { /* specialized members */ }

3.3.2. Function templates [temp.fct]

The general form of a function template is:
func funcName <[ templateParamList ]> : opt_specifiers ( paramList -> returnType );

Usage is analogous to class templates (as in section 3.3.1).

3.4.  Expressions  [expr]
3.4.1. Operator changes

The C++ equality test (val1 == val2) has been changed in SPECS to val1 = val2,  as this binding for "=" is more consistent with
widespread mathematical usage. The inequality operators ("!=", "<", "<=", ">", ">=") are unchanged.
As a consequence of the change in the equality operator, the C++ assignment operator  (ref = val)  becomes  ref := val  in SPECS1.
As might be anticipated, the compound assignment operators become "+:=",  "-:=" , "*:=",  etc.
The C++ unary prefix address-of operator  (&ref)  becomes a postfix operator in SPECS:  ref@.  The unary prefix pointer dereference
operator (*ptr in C++) also becomes a postfix operator: ptr^. As a result of this latter change to postfix notation, the C++ binary
dereference-and-select-member operator  (ptr->member)  is no longer required in SPECS, as the syntax ptr^.member suffices.
Likewise member selection through member pointers (ptr->*memptr  and  ref.*memptr  in C++) become  ptr^.(memptr^)
and  ref.(memptr^) respectively.
As a consequence of the use of "^" as the pointer dereference operator, the C++ binary bitwise exclusive-or operator  (bits1 ^
bits2)  has been changed to  bits1 ! bits2 in SPECS. The rationale for the choice of "!" is the analogy to "!=", the logical
equivalent of xor.
The use of the operators new and delete is unchanged in SPECS, except in the case of the placement syntax, where a new keyword,
placement, is reserved. The following C++ code:

ptr = new (myLocation) int[10]; // Placement new

::operator delete[](ptr,myLocation); // Placement delete

becomes, in SPECS:
ptr := new [10] int placement(myLocation);

delete [] ptr placement(myLocation);

This both improves the readability of the expression and considerably simplifies the grammar.  Note too that the array type on which
new operates must conform to the declaration syntax described in section 3.1.1, and so the array size precedes the element type.  This
has the useful side-effect of making uniform the location of square brackets in calls to operator new[] and operator delete[],
which, unlike in C++, immediately follow the operator name in all cases in SPECS.

3.4.2. Change to the old-style casting syntax

New-style casts in C++ provide a clear indication that a cast is in progress, and the purpose of that cast. However the ISO/ANSI C++
standard committee has not deprecated the use of old-style casts. Hence, SPECS allows old-style casts, but requires a clearer syntax:

cast<[typeID]>(Expression)

3.5.  Statements  [stmt.stmt]
The while, do-while and for loops retain their C++ syntax in SPECS, except that a single unbracketed statement is no longer
permitted as a loop body (that is, the body of a loop must be a block). Likewise, an if statement can only control a brace-enclosed block
of zero or more statements, and the statement following an else must either be a (cascaded) if statement or a brace-enclosed block.
The switch statement in SPECS has been considerably altered from its C++ equivalent. It consists of zero or more specified cases and
an optional default case, For example:

switch ( nextValue )
{

case 1: { cout << "Unity" << endl; }

case 2,4,6,8: { cout << "Even" << endl; }

default: { cout << "Other" << endl; }
}

Each case consists of a list of one or more (integral) constant expressions, followed by a brace-enclosed block. If the condition matches
any of the constant expressions belonging to a case, then the corresponding block of code will be executed. After the block executes
control jumps to the end of the switch statement (not to the next case, as in C++). The break statement will also cause control to jump to

1  Note that the arrow-like symbol "<-" was originally our preferred candidate for the assignment operator,  but this binding creates significant
problems because assignments can occur in logical tests, leading to ambiguities such as:

if (i<-10)  { cout << "big negative" << endl; }    // Assign 10 to i? Or compare i with -10?



the end of the switch statement. The continue statement can be used in a case block and causes control to jump immediately to the
beginning of the next case block, thereby implementing a more general, but safer form of fall-through than the C++ default behaviour.

4.  Commonalities with C++
By this stage the reader may feel that SPECS has little in common with its parent C++. In fact, the two languages are semantically
isomorphic and significant portions of the two languages are syntactically identical. Features common to C++ and SPECS include:

• All inbuilt types are identically named and implemented. All literal values are specified in exactly the same way.
• The same set of operators (with the same precedences) are available for overloading. All binary operators maintain the same as-

sociativity in both languages.
• All scoping rules, temporary lifetimes, overloading constraints, function call resolution mechanisms, implicit conversions, access

defaults and restrictions, and control structure semantics (except switch statement fall-through) are identical.
• The same preprocessor (cpp) and standard libraries are used for both languages.
• RTTI is identically implemented in both languages, and uses the same syntax.
• The exception handling mechanism and keywords are the same. The specification syntax is also identical except where syntactic

differences in type or function specification preclude this.
• Namespaces have identical semantics and syntax in both languages.

Conclusion

In implementing a new text binding for the semantics of C++, we have enjoyed the unparalleled advantage of hindsight and the freedom to
step beyond the restrictions of the evolutionary path of C++.  Most significantly we have rejected the "failed experiment" of the C decla-
ration notation, in favour of a more Pascal-like approach. We have also taken the opportunity to clean up other error-prone constructs
and vestigial unpleasantnesses, such as fallthrough in a switch, the declaration of objects of (subtly) differing types in a single
declaration, single statements as control structure bodies,  this as a constant pointer (rather than a reference), the overuse of the "&"
symbol and static and extern keywords, the "="/"==" confusion, and the cryptic "=0" syntax for pure virtual functions.

The experience of syntactically redesigning a language of the complexity of C++ has been challenging and (at times) frustrating, and has
left us with nothing but admiration for the designers of any real-world language, who must not only contend with all the issues and
choices we have faced, but must also address the much harder task of simultaneously designing a consistent, powerful, and comprehensi-
ble semantics. It is our hope that the example of SPECS will encourage such language designers to recognize that language syntax is the
physical interface between programmer and computer and, as such, demands just as much care and design as the language semantics,
which is the programmer's logical interface to the machine.
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Appendix A
The correct declaration of set_new_handler is:

void (*set_new_handler(void (*)(void)))(void);

This is so complicated that it is usually declared in two stages:
typedef void (*new_handler)(void);

new_handler set_new_handler(new_handler);

The use of a typedef is not, in our opinion, a sufficient improvement.

The equivalent declarations in SPECS are considerably cleaner:
func set_new_handler : (^(void->void) -> ^(void->void));

and:
type new_handler : ^(void->void);

func set_new_handler : (new_handler -> new_handler);



Appendix B
The following is a complete example of a simple Stack class in SPECS , provided so as to convey something of the "flavour" of the
language. It is a line-for-line translation of the templated Stack class presented as Figures 7-1 and 7-2 in [9].

type Stack<[type T]> : class;

type Cell<[type T]> : class

{

[friend]

type Stack<[T]> : class;

[private]

obj next : ^Cell;

obj rep : ^T;

func ctor : (r:^T, c:^Cell<[T]>)

initially rep(r), next(c)

{}

}

type Stack<[type T]> : class

{

[public]

func pop : (void -> ^T);

func top : (void -> ^T) { return rep^.rep; }

func push : (v:^T -> void) { rep := new Cell<[T]>(v,rep); }

func empty : (void -> int) { return rep=0; }

func ctor : (void) { rep := 0; }

[private]

obj rep : ^Cell<[T]>;

}

func Stack<[type T]>::pop : (void -> ^T)

{
obj ret(rep^.rep) : ^T;

obj c(rep) : ^Cell<[T]>;

rep := rep^.next;

delete c;

return ret;

}

func sort<[type S]> : ((elements: [] S, nelements: const int) -> void)

{

obj flip:=0, sz:=nelements-1 : int;

do

{

for (obj j:=0, flip:=0 : int; j<sz; j++)

{

if (elements[j] < elements[j+1])

{

obj t:=elements[j+1] : S;

elements[j+1] := elements[j];

elements[j] := t

flip++;

}

}

} while (flip);

}


