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Abstract. The visibility graph V(P) of a point set P € R? has vertex set P, such that
two points v, w € P are adjacent whenever there is no other point in P on the line segment
between v and w. We study the chromatic number of V(P). We characterise the 2- and
3-chromatic visibility graphs. It is an open problem whether the chromatic number of a
visibility graph is bounded by its clique number. Our main result is a super-polynomial

lower bound on the chromatic number (in terms of the clique number).

1. Introduction

Let P C R?be aset of points in the plane. Let vw denote the closed line segment between
points v € R? and w € R2. Two distinct points v, w € P are visible with respect to P if
P Nvw = {v, w}. The visibility graph V(P) of P has vertex set P, where two distinct

points v, w € P are adjacent if and only if they are visible with respect to P.
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is supported by the Government of Spain Grant MEC SB2003-0270.
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Fig. 1. 4-Colouring of the visibility graph of the integer lattice.

A k-colouring of a graph G = (V, E) is a function f: V — C for some set C of
k colours, such that f(v) # f(w) for every edge vw € E. We say G is k-colourable.
The chromatic number x (G) is the minimum k such that G is k-colourable. The clique
number @ (G) is the maximum k such that G has a k-clique.

This paper studies the chromatic number of visibility graphs. We begin with an
interesting example.

Proposition 1. Let P = {(x, y): x, y € Z} be the integer lattice. Then x (V(P)) = 4.

Proof. Let f((x,y)) = (x mod 2, y mod 2) for all (x,y) € P. For any two points
(x1,y1) and (x2, y2) in P for which f((x1,y1)) = f((x2,y2)), both [x; — x| and
|y1 — y2| are even. Thus the midpoint of the segment (x;, y;)(x2, y2) is in P, and
(x1, y1) and (x5, y,) are not visible. Hence f is a 4-colouring of V(P), as illustrated in
Fig. 1. There is no 3-colouring since {(0, 0), (1, 0), (1, 1), (0, 1)} is a4-clique. Therefore
x(V(P)) =4 O

While the visibility graph of the integer lattice has a quadratic number of edges,
Proposition 1 proves that it has a small chromatic number. Also note that Proposition 1
generalises to prove that the visibility graph of the d-dimensional! integer lattice is 2¢.
In this case the chromatic number and the clique number coincide.> Whether there is a
similar relationship for all visibility graphs is a fundamental open problem.

! Note that the visibility graph of a set of points in R?, by a suitable projection, is also a visibility graph
of some set of points in R?.

2 The visibility graph of the integer lattice is not perfect. For example, ((2, 5)(1, 3)(5, 8)(8, 3)(5, 1)) is an
induced 5-cycle.
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Conjecture 1. Visibility graphs are x -bounded. That is, is there a function f such that
xV(P)) < f(w(V(P))) for every finite point set P?

In Section 2 we make some observations about visibility graphs, and give an elemen-
tary bound on their chromatic number. In Section 3 we prove that in Conjecture 1, we
can take f(2) = 2 and f(3) = 3. In fact we characterise the finite point sets whose
visibility graph has chromatic number 2 or 3. The main result of this paper, presented in
Section 4, is a super-polynomial lower bound on the chromatic number in terms of the
clique number, for a certain family of visibility graphs. We conclude in Section 5 with
a discussion of visibility graphs with w (V(P)) = 4.

Note that visibility graphs of polygons are well studied (see [1] for example); even
here, it is an open problem whether the chromatic number is bounded by the clique
number. The main open problem that has been studied here is whether visibility graphs
of polygons can be recognised in polynomial time (see [3] for example). This question is
also of interest for general visibility graphs of point sets. See [6], [7], and [9] for results
and open problems regarding the x-boundedness of other graph families that arise in a
geometric context.

2. Observations
Thee following is a fundamental observation regarding visibility graphs.

Proposition 2.  For every finite point set P C R?, the diameter of the visibility graph
V(P) is

1 if P is in general position,
|[P|—1 if P is collinear,
2 otherwise.

Proof. The diameter is 1 if and only if V(P) is complete, which occurs if and only if P
is in general position. If P is collinear, then V(P) is a path, which has diameter | P| — 1.
Thus it suffices to prove that if P is not in general position and not collinear, then the
diameter of V(P) is 2. Consider two non-visible points v, w € P. Two such points exist,
since P is not in general position. Let L be the line containing v and w. Let x be a point
in P not on L, such that the perpendicular distance from x to L is minimised. There is
such a point x as P is finite, and not all the points in P are collinear. Then v and x are
visible and w and x are visible, as otherwise there is a point in P closer to L than x.
Thus the distance from v to w in V(P) is 2. Hence the diameter of V(P) is 2. O

Here is one way to colour V(P).

Proposition 3. If a point set P C R? can be covered by k lines, then x (V(P)) < 2k.

Proof. Associate each point v € P with one of the k lines that contain v. The subgraph
of V(P) induced by the set of points assigned to any one line is a collection of disjoint
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paths, and is thus 2-colourable. Using a different pair of colours for each line we obtain
a 2k-colouring of V(P). O

Corollary 1. For every point set P € R?, x(V(P)) is at most twice the minimum
degree of V(P).

Proof. The result follows from Proposition 3, since P clearly can be covered by deg(v)
lines for any point v € P. O

3. The 2- and 3-Chromatic Visibility Graphs

In what follows we characterise the finite point sets whose visibility graph has chromatic
number 2 or 3.

Theorem 1. Let P be a finite point set. Then the following are equivalent:

@ x(V(P) <2,
(b) all the points in P are collinear,
(¢c) V(P) has no K5 subgraph.

Proof. That (a) implies (c) is immediate. If all the points in P are collinear, then V(P)
is a path, which is obviously 2-colourable. Thus (b) implies (a). It remains to prove that
(c) implies (b). Suppose that not all the points in P are collinear. Let {u, v, w} be a set
of three non-collinear points in P such that the triangle #vw has minimum area. If there
is a distinct point x € P Nuv, then {x, v, w} are non-collinear and the triangle xvw has
less area than uvw, which is a contradiction. Thus u# and v are visible. Similarly # and
w are visible, and v and w are visible. Hence {u, v, w} induce K3 in V(P). O

Before characterising the 3-colourable visibility graphs, consider when V(P)
is planar. In V(P) there is a line segment between every pair of vertices (which
may be comprised of many edges). Dujmovi¢ et al. [5] characterised those planar
graphs in which there is a line segment between every pair of vertices, as illustrated
in Fig. 2.

Lemma 1 [5]. Let P be a point set. Then V(P) is planar if and only if at least one of
the following conditions hold:

(a) all the points in P are collinear,

(b) all the points in P, except for one, are collinear,

(c) all the points in P are collinear, except for two non-visible points,

(d) all the points in P are collinear, except for two points v, w € P, such that the
line segment vw does not intersect the line segment that contains P\{v, w},

(e) V(P) is an affine transformation of the octahedron drawn in Fig. 2(e).
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Fig. 2. The planar visibility graphs.

Theorem 2. Let P be a finite point set. Then the following are equivalent:

1 x(V(P)) <3,
(i1) P satisfies conditions (a), (b), (c) or (e) in Lemma 1,
(iii) V(P) has no K4 subgraph.

Proof. That (i) implies (iii) is immediate. It is easy to construct a 3-colouring of a
visibility graph that satisfies conditions (a)—(c) or (e) in Lemma 1. Thus (ii) implies
(). It remains to prove that (iii) implies (ii). Suppose that V(P) has no K, subgraph.
Develin et al. [4] proved that a visibility graph is planar or contains K4. (This result
applies to a broad range of visibility graphs that includes visibility graphs of point sets.)
Thus V(P) is planar. Lemma 1 describes all the planar visibility graphs. Of these only
those satisfying condition (d) contain Kjy. O

4. A Lower Bound

In this section we prove the following super-polynomial lower bound on the chromatic
number of a visibility graph.

Theorem 3. There are constants cy, ¢, c3, ¢4 > 0 and an infinite sequence of visibility
graphs Gy, G, Ga, ..., such that v (G;) — oo and

X(Gi) = (erlogw(G)» @) = (c3(Gy)Hielee@),

Before proving Theorem 3 we recall two definitions from the literature. Let G and H
be graphs. The lexicographic product of G by H, denoted by H[G], is the graph with
vertex set V(G) x V(H), where {va, wb} is anedge if and only ifab € E(H),ora = b
and vw € E(G). The fractional chromatic number x:(G) of a graph G is the infimum
of all fractions a/b such that, to each vertex of G, one can assign a b-element subset of
{1,2, ..., a}insuch away that adjacent vertices are assigned disjoint subsets. Obviously
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x£(G) < x(G). Scheinerman and Ullman [11] proved the following important property
about the fractional chromatic number of the lexicographic product.

Lemma 2 [11]. Forall graphs G and H, x¢{(H[G]) = x¢(H) - x¢(G).

Lemma 3. Foreveryvisibility graph G and for every finite graph H , there is a visibility
graph X such that o(H) - w(G) < o(X) < w(H) - w(G) + 2|V(H)|, and x¢(X) >
xe(H) - x:(G).

Proof. Suppose V(H) = {1,2,...,n}. Let {Dy, D», ..., D,} be a set of closed unit
discs in the plane, whose centres are positioned on the vertices of a sufficiently large
regular n-gon. For all 1 <i < j < n, we say a segment with endpoints in D; and D; is
an i j-segment. Here “sufficiently large” means that for each disc D;:

(1) the only disc that an i j-segment intersects is D; and D;,

(2) there is a line L; such that every ij-segment crosses L;,

(3) whenever an i j-segment crosses an i k-segment (j # k), the crossing point is on
the side of L; that contains D;.

Scale G so that its convex hull is enclosed in a unit disc and no vertex is at the centre
of the disc. Let {G, G, ..., G,} be copies of G, one associated with each vertex of H.
Place each G; in the disc D;, rotated so that if three points in Ui V (G,) are collinear,
then they are in a single G;. This can be achieved by rotating each G; in turn. At each
step, there are only finitely many forbidden rotation angles.

Let X be the visibility graph defined by the point set | J;, V(G;). By property (1)
and the choice of orientations, every point in G; is visible with every point in G; for all
i # j. Visibility within each G; is preserved by scaling and rotating. Thus Xy = K,[G].

We now introduce blocker points to our set, so that the subgraph of the visibility graph
induced by | J; V(G,) is H[G]. For every non-edge ij of H (that is, an edge of H), and
for all vertices p € V(G;) and ¢ € V(G;), add one blocker point at the intersection of
the segment pq and the line L;, and add another blocker point at the intersection of the
segment pq and the line L;. If two blocker points coincide, then just use one point. This
construction is illustrated in Fig. 3.

Let X be the visibility graph of the point set obtained. By property (3) above, for
every edge ij € E(H), every vertex in G; is visible with every vertex in G;. Thus the
subgraph of X induced by | J; V(G,) is H[G].

Obviously w(H[G]) = w(H) - w(G). The blocker vertices on each line L; can add
at most two vertices to a maximum clique. Thus w(H) - ®(G) < w(X) < w(H) -
w(G) + 2|V (H)|, as claimed. By Lemma 2 and since H[G] is an induced subgraph of
X, xe(X) = xt(H[G]) = xt(H) - x¢1(G), as claimed. |

The following result of Larsen et al. [8] is based on the famous construction of
Mycielski [10], which we include for completeness.

Lemma 4 [8]. Forall k > 0, there is a triangle-free graph My on 3 - 2k — 1 vertices
such that xs(My) > ~/2k.
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Fig. 3. Construction of X from a visibility graph G with H = K3 3.

Proof of Construction. Let My = K,. Construct M;; from M; as follows. Sup-
pose V(My) = {vi: 1 < i < my}. Let ViMyyy) = {xi,yi0 1 < i < i} U {z}. Let
EMiy1) = {xixj: viv; € E(Mp)} U {x;y;: viv; € E(MMp)} U {yiz: 1 <11 < ni}. Note
that M1 has ngy = 2n; + 1 vertices. Since ng = 2, it follows that n;, = 3 -2F — 1.
Mycielski [10] proved that M, is triangle-free and x (M;) = k + 2. Larsen et al. [§]
proved that x¢(Mi+1) = xe(My) + 1/ x¢(My). It follows that x¢(My) > V2k (and this is
asymptotically tight; see [8] and [11]). |

Proof of Theorem 3. In what follows we make little effort to optimise the constants
¢y and ¢;. Let Gg = K. For all i > 0, apply Lemma 3 to obtain a visibility graph
Giy1 (= X) from G; (= G), where H is the Mycielski graph M;;), chosen so that

3w(Gi) < V(M) = 3-2°0 =1 < 6(G)). ey
By Lemma 3 and since My;) is triangle-free,
20(Gi) < w(Git1) = 20(G;) +2|V(Mii)| < 14w(Gy),
where the last inequality follows from (1). Since w(Gy) = 1,

2 < w(G) < 14 2
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We now prove a lower bound on the chromatic number of G, ;. By Lemmata 3 and 4,

xt(Git1) = xe(Miay) - xe(Gi) = +/2k(@) xe(Gi).
By (1) and the lower bound in (2), k(i) > log, w(G;) > i. Hence,
xt(Giz) > ~2i x1(Gy).
Since x:(Gg) = 1,
xe(Gi) = V2l

By Stirling’s formula,

xt(Gi) = v/ (2i/e)'.
By the upper bound in (2), i > log,, w(G;). Hence

2 (1/2) log4 0(Gi)
xe(G;) > 210g14 w(G))

Obviously x (G;) > x¢(G;). Thus for an appropriate choice of constants c;, ¢; > 0,
X(G) = xi(Gi) = (c1loga(Gy)) @',

as claimed. O

5. Future Directions

We have proved Conjecture 1 for visibility graphs with w(V(P)) < 3. The next inter-
esting case is w (V(P)) = 4. Figure 4 shows a visibility graph with w (V(P)) = 4, for
which it is easily seen that x (V(P)) = 5. It is an open problem whether every visibility
graph with o (V(P)) <4 has x(V(P)) <5.

Fig. 4. A 5-chromatic visibility graph with maximum clique size 4.
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Fig. 5. An interesting example of a K5-free visibility graph.

The diversity of point sets that satisfy w(V(P)) = 4 is illustrated by the example
shown in Fig. 5. Let P = {(12i, 6), (3i, 3), (4i, 2), (6i,0): i > 0}. Then it is easily seen
that w(V(P)) = x(V(P)) = 4.

Finally, consider the following Ramsey-type conjecture, whose solution would seem
to be a helpful first step in proving Conjecture 1.

Conjecture 2. For all integers k, £ > 2 there is an n = n(k, £) such that every set P

of at least n points in the plane contains £ collinear points or k pairwise visible points
(that is, oV (P)) > k).

Note that n(k,£) > (£ — 1)'°2%=D gince the projection of the d-dimensional
€—-1)x®—-1)x---x (£—1) integer lattice has no set of £ collinear points and no
k pairwise visible points for k = 2¢ 4 1.

If we ask for k points in general position rather than k pairwise visible points, then
the solution is straightforward (see [2]). It is easily proved that for all k, £ > 2 every set
of at least %(ﬂ —3)(k — 1)(k — 2) + k + 1 points in the plane contains £ collinear points
or k points in general position.
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