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Abstract

The use of the agent-based paradigm in modelling finan-
cial markets provides an intuitively natural approach and
is a well established technique. In contrast with the as-
sumptions and conclusions of the efficient markets hypothe-
sis (EMH), agent based models provide a refreshing causal
approach to understanding the emergence of the general
stylized facts of financial markets. In this report we present
details of an agent-based stock market simulation in which
traders utilise a hybrid mixture of common information cri-
teria based inference procedures, including minimum mes-
sage length (MML) inference. Traders in our model com-
pete with each other using a range of different inference
techniques to infer the parameters and appropriate order of
simple autoregressive (AR) models of stock price evolution.
We show that in the presence of a noisy AR signal, MML
traders significantly outperform their competitors, and in
fact do well even in the absence of such a signal.

1 Introduction

The efficient markets hypothesis (EMH) as popularised
by Fama [26] and others (e.g., Jensen (1978)[35] and
Malkiel (1973)[43]) presents us with the claim that the mar-
ket is ‘efficient with respect to [an] information set ... if it is
impossible to make economic profits by trading on the basis
of [that] information’ [35].

This model ignores the behaviour of individual trading
agents in the system, relegating them to an arbitrage role in
which more efficient traders exploit less efficient traders to
keep the market correctly priced, with respect to the infor-
mation set they are basing their decisions upon. See, e.g.,
Mayhew [46] for further discussion. The EMH has been
disputed on various conceptual grounds. Farmer and Lo
[27] point out that the EMH is ‘not a well-poised and em-
pirically refutable hypothesis’ (Ibidem, p.2), and that only
concepts of relative efficiency make any sense. Further-
more, they note that by extending the concept of strict effi-

ciency to scientific research one ends up with the conclusion
that any worthwhile research must have already been done,
and hence that no progress is possible; e.g., if it were worth
working out whether markets are efficient or not, someone
would have already done it. Dowe and Korb [24] object
to the EMH on various other grounds. One ground upon
which they object is computational; the undecidability of
Kolmogorov complexity [55, 36, 15] and the relationship
between Minimum Message Length (MML) inference and
Kolmogorov complexity [66] means that we can rarely, if
ever, prove that our inference technique is superior to that
of other potential traders in the market, and hence we can
never (or rarely) preclude the existence of a superior infer-
ence technique to our own. It follows then that we cannot,
in general, prove that a non-trivial market is efficient.

Agent based micro-simulation models of individual trad-
ing explore the possibility that the emergent behaviour of
individual interactions is responsible for observed market
behaviours [18]. Tesfatsion [59] conducts a review of agent
based approaches in finance, and LeBaron [40] reviews the
methodology and construction of agent-based stock market
simulations in particular. Within the context of heteroge-
neous agent-based simulation, one can introduce agents that
correspond with rational expectations (RE) type assump-
tions (see e.g., Chen and Yeh [16]), as well as agents that
correspond to behavioural models of individual economic
behaviour (for a review of behavioural finance the reader is
referred to Shiller [54], and Barberis and Thaler [6]).

In this simulation we introduce a set of trading agents
into an artificial single stock trading environment who at-
tempt to model the evolution of the stock price using an au-
toregressive (AR) model. Furthermore, the AR agents are
divided into subsets of agents who use different informa-
tion criteria (IC) to select an autoregressive model order.
The method used to generate parameter estimates for the
AR models used here is that of conditional least squares,
as outlined in [28], modified such that the maximum like-
lihood estimators of the standard deviation are used for the
stationary model variance estimates, as described in Box,
Jenkins and Reinsel ([12, pp296-304]).



The use of an information criterion as a means to se-
lecting a parsimonious model to explain observed data is
fairly controversial in terms of implementation, if not in
principle. Commonly used information criteria which have
been used to penalise models with an excessive number
of explanatory factors (typically leading to increasingly
poor predictive accuracy) include Akaike’s AIC [2], Hur-
vich and Tsai’s corrected AIC [33], Schwarz’s Bayesian IC
(BIC) [53], Rissanen’s 1978 mimimum description length
(MDL) [51, 52], Hannan and Quinn’s IC (HQIC) [31], and
C.S. Wallace’s Minimum Message Length (MML) criterion
([64] (with Boulton) [69] (with Freeman) [66] (with Dowe)
[63]). Based upon the work of Fitzgibbon, Dowe and Vahid
[28] in which various inference techniques are compared
on various generated AR signals, we implement within this
simulation agents that embody a range of different informa-
tion criteria based inference techniques, and allow them to
compete directly with each other1.

The stock market simulation used here is an extension of
the artificial stock market presented in Collie [18], in which
agents are selected randomly from a trader pool of fixed
total size to appraise the market (consider the sequence of
past prices) and potentially submit bids to a double-auction
process. Other stock market simulations using an agent-
based trading methodology include the pioneering work of
the Santa Fe simulation [32, 4], the Genoese simulation [50]
and others, e.g. [42, 34, 17], See LeBaron [41] and also his
website2 for further references.

The next section outlines the set-up of the stock market
simulation in more detail, and presents a closer examination
of the information criterion used by the trading agents. We
then discuss the results obtained, and their implications for
discussions of market efficiency. Finally we conclude with
potential directions for further research.

2 Simulation Design

2.1 Stock Market Design

As mentioned, the stock market simulation used here is
an extension of the artificial stock market first presented
in Collie [18]. Agents participate in multiple rounds of a
continuous double-sided auction of a single tradable asset,
submitting buy and sell orders at fixed prices (‘at limit’ bid-
ding). Unmatched or partially matched orders are submitted
to an ‘order book’, as commonly employed in modern ex-
changes. New trades are matched against existing orders in
the book. Such order books are often publicly visible, and

1We omit pricing approaches like the Capital Assets Pricing Model
(CAPM) mean-variance trade-off. Dowe [23] considers it to be largely
discredited.

2http://people.brandeis.edu/∼blebaron/acf/index.htm

are often used to estimate underlying ‘depth’ and hidden in-
formation in the market for a security [9, 11], but agents in
this simulation do not consider this information. Each trad-
ing round consists of a random number of traders randomly
selected from the trader pool. When an agent is selected
from the trader pool they appraise the market according to
their characteristic trading strategy or trading rules, and po-
tentially submit an order to the market. If, upon the new or-
der being submitted, a matching or partially matching pre-
existing bid is found in the order book, then these bids are
matched and the trade is executed at the average of the buy
and sell prices. Where two existing orders enter the book at
the same price, the earlier order takes precedence. Agents
in this simulation trade a single stock with no dividend; the
total amount of cash and shares available remains constant
throughout the simulation, although total wealth levels may
fluctuate with the current trading price of the asset.

After the bid submission and matching process has been
cycled through a predetermined number of times, an ‘end-
of-day’ phase is reached, and the order book of outstanding
orders is cleared, and the process repeats. Open, close, high
and low prices and trade volume are recorded, and the cycle
re-initiated for the next ‘day’, or round, of trading. Sim-
ulations are run for an exogenously determined number of
trading rounds, or until some other termination condition is
reached, such as the cessation of trade by the trading agents.
This may occur, for example, if one of the agents has cap-
tured the bulk of the available wealth in the market.

Traders are initially allocated equal numbers of shares
and an equal value of virtual currency with which to trade.
The total amount of shares and currency within the simu-
lation is held constant throughout, but the total amount of
wealth available at any one time fluctuates with the current
trading value of the asset. There are 100 traders in total in
each simulation, of which 40 are random or AR signal gen-
erating, with the remaining 60 divided evenly amongst the
6 inference techniques examined3. Orders to buy and sell
take the form of ‘at limit’, or fixed price orders. Such or-
der books are often publicly visible, and are often used to
estimate underlying ‘depth’ and hidden information in the
market for a security [9, 11], but agents in this simulation
do not consider this information.

We present three simulations here, one in which infer-
ence traders act in a market with each other and randomly
trading ‘noise’ agents, one in which the random traders
are replaced by a set of traders who calculate future price
changes as following an exogenously specified noisy AR
process, and one in which inference agents interact with
each other with noise only from their own trading sig-

3The proportion of the number of random to inference traders is ex-
ogenously determined, and is arrived at by attempting to gather enough
random traders to provide necessary liquidity, whilst not so many that the
emergent properties of the market take too long to appear.



nals. We demonstrate significant performance differences
between the inferential traders in the presence of the under-
lying noisy AR signal, the Gaussian noise traders, and even
in the absence of explicitly noisy traders.

Trading agents participating in these simulations are ei-
ther of the randomly trading variety, or are one of a number
of different types of autoregressive inference traders.

2.2 Random Traders

Random trading agents (or ‘noise traders’) are gener-
ally introduced into agent based stock market simulations
as a means of providing market liquidity. Collie [18] has
shown that simulations involving randomly trading agents
with only a simple monetary constraint (finite assets) gen-
erate realistic stock price dynamics. One of the earliest
models incorporating random traders appears to be that of
Kyle in 1985 [38], coming just before Fischer Black’s im-
portant paper on trading noise in empirical markets [10].
Jack Treynor described a three-trader model of the stock
market (trading with a market maker) containing a ran-
dom (‘liquidity-motivated’) trader in 1971 [5]. Probably the
most well known artificial randomly agent trading model
is the ‘zero intelligence’ model of Gode and Sunder [29],
where randomly trading agents subject to a ‘budget con-
straint’ achieve high allocative efficiency in a double auc-
tion.

The random trading agents used in this model differ
slightly from those of the previous random traders in [18].
When a randomly trading agent is selected from the trader
pool, they clear any existing, previously unfilled orders re-
maining in the order book, and choose a uniformly dis-
tributed random number from 0 to 1 (random numbers are
generated using the Mersenne Twister generator of Mat-
sumoto and Nishimura [45]). This number is then compared
to the trader’s current ratio of stocks to cash, and (if nec-
essary) an order is submitted to the market to adjust their
current position to that of the randomly generated position.
The price this order is submitted at is drawn from a Gaus-
sian distribution around the last price change. These gener-
ated prices are not bounded below or above by the current
price, so that (for example) a randomly generated sell order
may be submitted at a price greater than the current price.

2.3 Noisy and Inferential AR Traders

Autoregressive time series processes for a time series
y(t) are of the general form

yt =

p∑

i=1

[φiyt−i] + εt (1)

where εt is an N(µt, σ
2
t ) Gaussian i.i.d. error term with

average µt and variance σ2
t .

In our second simulation we introduce both a noisy AR
signal and AR signal-detecting inference traders. The AR
signal is introduced into the stock price series by replacing
the random noise traders of the previous simulation with
the noisy AR signal generating traders, who generate trade
prices using an autoregressive model like that given above
in eq. (1).

The order p of the autoregressive function is varied ran-
domly from one to eight when the simulation is initialised,
and the parameters (φi) of the auto-regression chosen not
necessarily to guarantee stationarity. When the order p of
the model is greater than one, the individual parameters are
initially chosen as Ai = 1.0+εi, where εi is assumed Gaus-
sian i.i.d. with standard deviation of 0.01, and the final pa-
rameters are then normalised; φi = Ai/(

∑p
j=1 Aj). For

AR models of order one the stationarity condition is im-
posed, the parameter φ is chosen as N(0.99, 0.01), such
that φ is less than or equal to one.

Fitzgibbon, Dowe and Vahid in [28] show clear dif-
ferences in inferential power amongst different informa-
tion criteria (IC) based inference techniques. We introduce
groups of different inference technique based trading agents
into the second simulation to potentially exploit the noisy
AR signal in the price series, and to compare advantages
to using different types of inference techniques. We include
agents that assume both a stationary and non-stationary pro-
cess, and model data accordingly.

We allow inferential agents to construct AR models to
forecast future price changes of order p ≤ 8. In order to
determine the order of AR model used to estimate the next
price change, traders rely upon their particular IC imple-
mentation.

2.4 Competing Inference Traders

The third simulation we undertake involves the removal
of all noise traders, with only the different types of infer-
ence traders participating in the trading scenario. Liquidity
is introduced to the model via the inference traders them-
selves; when they cannot determine a signal in the past price
sequence, due most likely to a failure of the OLS routine,
then the traders can submit random bids. Since all inference
traders use the same OLS routine to estimate the parameters
of their autoregressive models, a failure of the OLS routine
does not prefer one kind of trader over another. Traders only
have a potential for advantage when all trader types could
hypothetically trade on the available past price sequence.

3 Inference Technique and Parameter Esti-
mation

Parameter estimation for the AR models is done by in-
dividual agents using the techniques and methods outlined



in [28], with some implementation differences. The use of
IC in model selection has generally been used as a means
of augmenting maximum likelihood (ML) techniques so as
to identify not simply the model that best fits the data, but
rather the model that best explains the data; that is, the most
parsimonious model. Such models are generally chosen
on the basis of minimisation of model complexity [13], or
minimum message (hypothesis and data given hypothesis)
length [66]. As noted by Hanlon and Forbes [30], these IC
in general take the form

−n log (σ2) + Penalty(k, n), (2)

where the penalty term is a function of the number of pa-
rameters, k, and the sample size, n. The IC above is min-
imised by the appropriate selection of model order, p =
k − 1.

The four inference trader types used in this simulation
that use an IC of the form of eq. (2) use: Akaike’s informa-
tion criteria [3] (hereafter AIC), corrected AIC [33](CAIC),
Schwartz’s Bayesian IC [53], which is here equivalent to
the 1978 implementation of the MDL [51] technique (BIC),
and Hannan and Quinn’s information criteria [31] (HQIC).
Their IC forms are:

AIC(k) = −2 ln(f(y|φ̂k)) + 2k (3)

CAIC(k) = −2 ln(f(y|φ̂k)) +
2(k + 1)n

n − k − 2
(4)

BIC(k) = −2 ln(f(y|φ̂k)) + k ln n (5)

HQ(k) = −2 ln(f(y|φ̂k)) + 2k ln(ln(n)) (6)

The IC formalism of eq. (2) does not explicitly take
into account factors relating to prior probability of potential
model choices (see, e.g., [69, p251], [30, 8], [66, pp279-
280]).

3.1 MML Inference

The Minimum Message Length (MML) formalism of
Wallace et al. [64, 69, 66, 67, 68, 63] differs from the usual
informational criteria in that it uses an explicitly Bayesian
approach, in that additional terms are included in the infor-
mation criterion specifying the prior distribution over the
model parameters (see, e.g., Baxter and Oliver [8] for de-
tails). Furthermore, the inclusion of a term involving the
determinant of the expected Fisher information matrix cap-
tures further information about the appropriate weighting of
observed data from different regions of the data space ([30,
section 2]). As outlined in Fitzgibbon, Dowe and Vahid
[28], the MML87 IC approximation [69] used in this simu-

lation is described by

− log (f(y|φ))

− log

(
h(φ)εn√
|I(φ)|

)
+ p

2 (1 + log (κp)) − log (h(p)) (7)

where f(y|φ)) is the likelihood function for the model
φ = (φ1, ..., φp, σ

2) over the n observed data points (y =
y1, ..., yn), with p + 1 = k model parameters. |I(φ)| is
the determinant of the expected Fisher information matrix,
κp is a space quantising lattice constant, h(p) is a prior over
the model order, p, and ε is an estimate of data measurement
error.

These parameters, along with the estimation of the AR
parameters, are described below. They are substituted into
equation (7) to give the message length in terms of the au-
toregressive order, p. The shortest message length for a
given string of past prices is then used to determine the ap-
propriate order of AR model used in forecasting the next
price, and the estimated standard deviation of this forecast.

3.1.1 Fisher Information

The Fisher information matrix, I(φ), is obtained from
the second partial derivatives of the log-likelihood (10),
E ∂2l

∂φi∂φj
. Its value is approximately [12, p303][28]

np+1

2σ4
|Mp|−1 (8)

For the non-stationary case, the partial expected Fisher
information is used

Iyp+1,...,yn
(φ) ≈

[
σ−2X ′X 0

0 n−p
2σ4

]
(9)

3.1.2 Bayesian Priors

For a stationary AR time series, the message length given
by equation (7) is calculated by substituting in the expected
Fisher information (8), the likelihood (10), priors over the
number of parameters h(p) (over which we assume a uni-
form prior)4, and h(φ) ∝ 1

Rp

1
σ2 , the prior over the param-

eter space R; the stationarity region of the AR series. The
stationarity region for p > 3 is complicated [47, 7]. As
given in [28, equations 21 and 22], we use an (uninforma-
tive) uniform prior over the parameter space, since as noted
above and also in [28, footnote 4, page 4], the ranges used
for p and σ2 do not affect the model selection in this experi-
ment, although in various circumstances where the absolute

4This uniform prior over some parameter range will obviously affect
the message length (in terms of an additive constant), but for the purposes
of comparing between different message lengths for different AR models,
the prior chosen will simply cancel out, and not affect the final message
choice. The range of parameters over which the prior is chosen is hence
arbitrary, and hence h(p) is set to unity for the calculations.



message length is important it will be necessary to use an
alternative, e.g., a Beta distribution [44]. The hypervolume
of the parameter space is given by Piccolo [49] in terms of
the following recursion:

R1 = 2 M1 = 2

Rp = (M1M3 × · · · × Mp−1)
2 for p even

Mp+1 =
p

p + 1
Mp−1 Rp+1 = RpMp+1

3.1.3 Lattice Constants

As explained in [63, p178, subsection 3.3.4] (also [39, p15-
16]), in considering the set of possible intervals that the es-
timates of φ can take within φ, we regard this set as be-
ing representable by regular lattice structures, where each
such possible set has the same geometry. The most ef-
ficient encoding of this structure, that is, the most effi-
cient packing of the lattice of points within the space is
called the optimal quantizing lattice, describable by the
lattice packing constant, κ, which is given exactly here
only for the first three dimensions, but is bounded above
by κ < ((p/2)!)2/p(2/p)!/π, and from below by κ >
((p/2)!)2/p/((p + 2)π). Conway and Sloane [22, p61] give
some of the best known quantizing lattices. The first eight
are reproduced in table 1.

p κp

1 1/12

2 5/(36
√

3)
3 19/(192× 21/3)
4 0.076603
5 0.075625
6 0.074244
7 0.073116
8 0.071682

Table 1. Quantizing lattice constants, κp.

3.2 Parameter Estimation

Given an AR time series (eq. 1) de-trended to insure that
the mean is zero (µ = 0) and assuming normality for the
ε’s, we can write the exact log-likelihood as ([12, p299])

l(φ, σε|y) = −n

2
ln(σ2

ε ) +
1

2
ln |Mp| −

S(φ)

2σ2
ε

(10)

where

S(φ) = y′
pMpyp +

n∑

t=p+1

(yt − φ1yt−1 − ... − φpyt−p)
2

(11)
(Mn)−1σ2

ε is the n × n autocovariance matrix of the y’s,




γ0 γ1 · · · γn−1

γ1 γ0 · · · γn−2

...
...

...
γn−1 γn−2 · · · γ0




Since the maximum likelihood estimates of φ obtained
from ∂l

∂φj
(j = 1, 2, ..., p) generally require analytic solu-

tions which do not always converge [14], we use conditional
least squares (OLS) estimates, which do. The likelihood of
yp+1, ..., yn conditional upon the first p values of y is given
by ([12, p297])

p(yp+1, ..., yn|yp, φ, σε) = (2πσ2
ε )−(n−p)/2×

exp
[
− 1

2σ2
ε

∑
n
t=p+1(yt − φ1yt−1 − · · · − φpyt−p)

2
]
(12)

which, if the log is taken, and the partial derivative with
respect to σε set to zero, yields the conditional least squares
estimate for σ2

ε ,

σ̂2
ε =

1

n − p

n∑

t=p+1

(yt − φ̂1yt−1 − · · · − φ̂pyt−p)
2 (13)

The minimisation of the sum in the above estimate yields
the OLS estimates for φ, ([12, p301]) φ̂ = D−1

p d, where
Dij =

∑n
t=p+1 yt−iyt−j and di =

∑n
t=p+1 yt−iyt.

4 Results

Figures 1 and 2 show average wealth levels for the dif-
ferent classes of traders across 10 simulations, where the
results for each individual simulation are averages across
each agent class over 150 trading rounds. Within each trad-
ing round there are between 3,600 and 8,200 individual po-
tential trading opportunities for each of the 100 agents in
each simulation.

In our first simulation inference agents attempt to model
an AR time series from the prices generated by the noise
traders and their interaction with them. As one might ex-
pect, with little or no signal to detect, the wealth levels of
the inference traders don’t show much variation; they man-
age to take most of the noise traders’ wealth from them,
but their own wealth, affected by the declining price of the
stock they are trading, does not increase significantly after
an initial, highly volatile trading period.



Figure 1. Random noise traders and inference
agents average wealth.

Figure 1 shows the average wealth levels for the ran-
dom (AVG randtrade) and inference agents (AVG all IC),
for approximately 150 trading rounds, where wealth levels
are averages across 10 simulations, each simulation therein
averaging the results for each trader class. Random traders’
wealth levels are on the left axis (log scale), and show a
rapid decline as the inference agents capture their wealth.
Average inference agents’ wealth, shown on the right axis,
fluctuates significantly in the first 40 rounds of trading, and
begins to stabilise when most of the random traders’ wealth
has been captured. Smaller jumps in average inference
trader wealth later in the trading rounds reflect the trans-
fer of wealth into fewer and fewer inferential agents’ con-
trol. The type of inference trader that captures most of the
wealth appears to fluctuate randomly, and did not show any
clear outperformer across many simulations.

In the second simulation with a noisy AR signal being
generated, inference technique traders do significantly bet-
ter than in the presence of only random traders. Each of the
10 individual simulations has a different randomly selected
autoregressive model built in to the noisy AR signal traders
within it.

As can be seen in figure 2, wealth levels for AR se-
ries modelling inference traders are higher, and more sta-
ble, for longer, than in the previous simulation. It is diffi-
cult to detect much difference between the performance of
inference agents embodying non-MML techniques, which
show slight variation based upon the sophistication of the
information criteria (IC) they use, but in general the more
sophisticated ICs outperform the simpler ones. Using the
labels from section 2.3, we have outperformance of BIC
(AVG BIC) over HQ (AVG HQ) over CAIC (AVG CAIC)
over AIC (AVG AIC). As the trading rounds increase be-
yond 80, the MML inference traders split into two, with

those MML traders using a model assuming a stationary
AR time series (AVG MMLs) falling off to drift towards
the IC traders, whilst the MML inference technique that
assumes non-stationarity (AVG MMLns) significantly out-
performs. The collapse of wealth levels towards 200 trading
rounds represents the almost complete transfer of wealth to
the MML agents.

The third simulation regards only the inference traders’
interactions with each other, in the absence of any noise
traders. The inference traders act like Gaussian noise
traders when they cannot detect a signal in the past price
series. In this scenario the non-stationary MML infer-
ence trader significantly outperformed the other classes of
traders. Figure 3 depicts the averages of the average wealth
level of the inference agent class across 10 simulations
each containing 100 traders over 200 trading rounds. Once
again using the agent class labels from section 2.3, we
have the MML non-stationary inference agent (AVGavg-
MMLns) outperforming all other agent classes. The sta-
tionary MML agent (AVGavgMML) came next, capturing
the second greatest amount of wealth. The sudden drop in
the wealth level of the stationary MML agents near to the
170th round reflects this wealth level existing by this point
in only one of the ten aggregated simulations, and this par-
ticular simulation halting, or taking too long to continue,
at this point. The corrected AIC agent class (AVGavg-
CAIC) also stood out, capturing the third greatest propor-
tion of wealth before the single simulation remaining with
this agent outperforming came to a halt. With this scenario
halting, or taking too long to continue, only 4 of the origi-
nal 10 simulations continued running. With the cessation of
the stationary MML out-performance scenario, this dropped
to three which completed 200 trading rounds. The only
other agent class to show any potential in this scenario was
the BIC (MDL) agent (AVGavgBIC), which briefly outper-
formed all but the non-stationary MML agent in early trad-
ing rounds (< 27). From that point forward the BIC agent’s
declining wealth share was bounded above by the decline
of the AIC agent class (AVGavgAIC), and from below by
the worst performing agents, the HQ inference agents (AV-
GavgHQ). It is interesting to note the underperformance
of HQ agents in this scenario versus even the simple AIC
traders. In seven out of ten of the underlying simulations,
the MML non-stationary trader was the best performer at
the cessation of execution. The other three to outperform
were, as mentioned, CAIC, BIC, and stationary MML. The
high rate of halting or time overrun in these simulations,
which do not explicitly include noise traders, is due to the
greater risk of liquidity loss; under-performing traders tend
to go broke.



Figure 2. AR noise traders and inference agent wealth levels by type.

5 Conclusions

We have demonstrated a simulated stock market in which
trading agents embody a class of different AR time series
inference techniques, and shown that in the presence of a
noisy signal, MML-inference technique based agents sig-
nificantly outperform other traders using different inference
techniques. We have shown such performance advantages
to be persistent as long as there exists a noisy signal to ex-
ploit, and that a level of outperformance exists amongst in-
ferential agents even in the absence of an explicit noisy sig-
nal. Such types of agent-based hybrid inference technique
models appear to be a reasonable technique to apply to real
markets, and in future work we intend to combine inferen-
tial agents with genetic algorithm based search techniques
in building superior simulations of empirical market char-
acteristics, and to demonstrate the ability of such models to
perform in real trading environments.

The performance of the MML-based inference tech-
niques here is not surprising given the success of MML in
earlier applications by Wallace et al. (e.g., [70, 62, 65, 25,
67, 61, 60]) and Dowe et al. (e.g., [48, 56, 57, 1, 28, 20, 21,
58] and references therein) and, we hope, provides further
impetus to greater recognition of this methodology and its
relevance to practical statistical inference.

In terms of market efficiency, we see here that an agent
using a superior inference technique will consistently out-
perform a lesser one. Furthermore (recalling section 1, and
as stated in [24]), since in most markets we can never prove
that our inference technique is superior, we can neither in
general establish that there does not exist some (as yet un-
used) trading technique that will outperform, nor in general
that a market is efficient5 6.
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