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Abstract

In this paper we improve on the supervised classification method developed in
Kornienko et al. (2002) by the introduction of Principal Components Analysis
to the inference process. We also extend the classifier from dealing with binomial
(two-class) problems only to multinomial (multi-class) problems.

The application to which the MML criterion has been applied in this paper
is the classification of objects via a linear hyperplane, where the objects are able
to come from any multi-class distribution. The inclusion of Principal Compo-
nent Analysis to the original inference scheme reduces the bias present in the
classifier’s search technique. Such improvements lead to a method which, when
compared against three commercial Support Vector Machine (SVM) classifiers
on Binary data, was found to be as good as the most successful SVM tested. Fur-
thermore, the new scheme is able to classify objects of a multiclass distribution
with just one hyperplane, whereas SVMs require several hyperplanes.
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1 Introduction

This paper extends the binary linear classification method presented by the
authors in [9] by introducing Principal Component Analysis to the inference
process. Furthermore, the capability of dealing with multinomial distributions is
also developed.

The original method, named the Spikey method [10, Chapter 5] [9, 11], used
a Linear classifier in conjunction with the Bayesian ‘Minimum Message Length’
(MML) principle [18–21] as an objective function to infer the correct distribu-
tions of a given binary-labelled data set. We have developed a new scheme named
PCA-Spikey, which takes advantage of any biases in the spread of the data by
using the Principal Components as an initial set of axes on which to begin the
search for the separating hyperplane. Furthermore, rather than just discriminate
between two classes of data, as most linear classifiers do, PCA-Spikey allows for
any kind of multinomial distribution either side of the hyperplane.

As a benchmark, we have used an implementation in Statistical Learning
Theory, namely the Support Vector Machine (SVM) [17].
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2 The PCA-Spikey Codes

The primary aim of introducing Principal Components Analysis (PCA) to the
Spikey program was to improve the inference technique by obtaining a set of
axes on which to perform the inference that were more representative of the
natural spread of the data. Doing this would, in theory, enable inherent biases
in the data to be recognised - thus producing hyperplanes that were a better fit
at a cheaper MML cost. One reason for the belief that introducing PCA would
produce cheaper hyperplanes is due to the search technique used in the Spikey
scheme: hyperplanes in the direction of or perpendicular to the major axes are
given the cheapest encoding costs. Thus, by transforming the original axes to the
directions and scales of greatest spread in the data, the cheapest hyperplanes are
going to be amongst those which split the data perpendicular to these directions.
This suggests the following process to obtain a Linear classifier:

1. The Principal Components are found for the skewed data and the points
projected into the Principal Component space.

2. The data in the Principal Component space is then normalised so that it
falls within a hyper-cubed region (a square in two dimensions).

3. Inference is performed in the normalised Principal Component space via the
Spikey program [10, Chapter 5] [9].

4. The hyperplane found was transformed back into the original coordinates.

3 Results

Four PCA-Spikey methods were developed in [10, Chapters 6,7,8]. These were
PCA-MMLWT

NU , PCA-MMLWT
NUR, PCA-MMLWT

SR and PCA-MMLANG. The SVMs
used to test the PCA-Spikey methods against are SV M light [8], the Lagrangian
SVM [13] and SMOBR [15].

As with the Spikey methods, all the PCA-Spikey methods were compared to
a true hyperplane, if known, using the Kullback-Leibler distance [12] or if the
true hyperplane was not known (as for real data), using 10-fold cross-validation
in conjunction with Probabilistic Scoring [5, 14, 4] [16, Section 3.1] [3, Section
11.4.2] and the Right/Wrong Predictive Accuracy scoring metric [10, Section
4.5]. We tested the PCA-Spikey methods on both real and artificial data having
both binomial and trinomial distributions.

The boldface entries in the table columns highlight those methods that per-
formed the best for those data sets with a 95% significance level using Student’s
t distribution on the population mean.

Data The artificial binary data sets were simply the original uniformly dis-
tributed data sets as input to the Spikey methods, but skewed according to two
linear translation matrices (TM). In this paper, we present the Kullback-Leibler
distances from the second Translation Matrix [10, Section 7.6] [11].
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The data presented here is distributed relative to a true hyperplane, y =
1.6x + 10.0, where points were generated randomly having 95% of the points
positive on one side of the hyperplane and 5% positive on the other side (see
[10, Section 7.7] for elaboration). ‘N’ refers to the size of the data sets. All
Kullback-Leibler scores presented in the tables are of the form ‘Mean ± Standard
Deviation’, or µ± σ. Table 1 shows the results for this data.

N = 10 N = 100 N = 1000

PCA-MMLWT
NU 0.2081 ± 0.0527 0.0844 ± 0.0462 0.0303 ± 0.0264

PCA-MMLWT
SR 0.2038 ± 0.0535 0.0547 ± 0.0469 0.0056 ± 0.0050

PCA-MMLWT
NUR 0.2110 ± 0.0464 0.0837 ± 0.0441 0.0679 ± 0.0124

PCA-MMLANG 0.1801 ± 0.0735 0.0767 ± 0.0502 0.0122 ± 0.0122

MMLWT
NU 0.1805 ± 0.0450 0.1139 ± 0.0258 0.1055 ± 0.0029

MMLWT
SR 0.2167 ± 0.0409 0.3679 ± 0.0109 0.3902 ± 0.0010

SV M light 0.1884 ± 0.0280 0.2609 ± 0.0432 0.1597 ±0.0136 ∗2

Lagrangian 0.0573 ± 0.0434 0.0690 ± 0.0349 0.0296 ± 0.0156

SMOBR 0.1411 ± 0.0673 0.1093 ± 0.0501 0.1282 ± 0.0236

Table 1. Kullback-Leibler distances (µ± σ) between the true hyperplane (y = 1.6x +
10.0) and inferred hyperplanes for TM2 - on 95/05 data, N = 10, 100, 1000 points. The
‘n’ in µ± σ ∗n denotes the number of data sets on which SV M light did not converge.

The real data sets used are the Wisconsin Prognostic Breast Cancer Database,
January 8, 1991 [1] and the trinomial Iris data set [7].

The Wisconsin Prognostic Breast Cancer data set consists of 699 data, each
having 10 input attributes plus a binary class attribute. The first attribute is
the sample code number, which was ignored. The Iris data set contains 150 data
points, where each of the three classes contains 50 points and each point consists
of four numeric attributes and a class specification. However, we just report here
the test on the last two attributes. Tables 2 and 3 refer to the results for the
Breast Cancer and Iris data respectively. The first column of each table refers to
the results obtained using Probabilistic Scoring and the second column refers to
the Right/Wrong Predictive Accuracy score [5, 14, 4] [16, Section 3.1] [3, Section
11.4.2] [10, Section 4.5]. No SVMs have been tested on the Iris data set as how
SVM classifiers deal with multinomial data sets is still an open question.

4 Discussion and Conclusion

It has been shown that the original Spikey encoding scheme described in [10,
Chapter 5] [9] could be improved by the introduction of Principal Component
Analysis, as results indicate that the PCA-Spikey methods out-performed the
original Spikey methods on skewed data. It was also found that the PCA-Spikey
methods performed significantly better than the SVMs on the larger artificial
Binomial data sets tested, while the SVMs tended to dominate the smaller data
sets. On the real Binomial data sets, due to the fact that the data was not highly
skewed, the PCA-Spikey methods performed similarly to the original Spikey
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Wisconsin Breast Cancer Prob. (bit score) error Right/Wrong Acc’y

PCA-MMLWT
NU 14.0531 ± 13.6865 0.905714 ± 0.160809

PCA-MMLWT
SR 10.1341 ± 7.52156 0.957143 ± 0.0349927

PCA-MMLWT
NUR 9.97667 ± 7.52561 0.957143 ± 0.0368856

Iris 2D Prob. (bit score) error Right/Wrong Acc’y

PCA−MMLWT
NU 8.2333 ± 1.5605 0.6567 ± 0.0568

PCA−MMLWT
SR 7.8656 ± 1.1779 0.6667 ± 0.0544

PCA−MMLWT
NUR 7.3257 ± 1.6426 0.6667 ± 0.0685

PCA−MMLANG 8.0853 ± 1.6950 0.6600 ± 0.0717

Table 2. Real Data Set - Wisconsin Prognostic Breast Cancer Database. Probabilistic
prediction bit score error results and “right/wrong” predictive accuracy results using
10-fold cross-validation (µ± σ).

Table 3. Real Data Set - Iris, 2D. Probabilistic prediction bit score error results
and “right/wrong” predictive accuracy results using 10-fold cross-validation (mean ±
standard deviation).

methods, and they were as good as the best SVM on that data. The PCA-
Spikey methods are also flexible enough to deal with multinomial data without
any major changes to their implementation. It was found that the PCA-Spikey
methods, when run on the trinomial ‘Iris’ data set, were able to separate the one
separable class from the remaining two inseparable classes.

Overall, several improvements can be made to the PCA-Spikey methods in
terms of the search procedures and coding schemes used, particularly for smaller
data sets. A possible alternative is the encoding of data points to geometrically
define a hyperplane, similar to the Support Vectors in SVMs (for an alternative
MML approach to a related problem, which does not use Principal Components,
see [16]). Furthermore, the type of distribution used for the input data may be
varied to non-uniform distributions. Another recent development in MML that
may be looked into has been in Comley and Dowe [2, 3], where a concrete appli-
cation of Dowe’s abstract notion of inverse learning [6] to generalised Bayesian
networks including a mix of both continuous and discrete variables is given.
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